
Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 1

About these slides

I Part of the Cryptanalysis course I taught at UCL in 2015
for the Master in Information Security

I Contain background computer algebra algorithms useful
for both that course and this one

I The slides will not be covered during this course

I Best usage : know what is in them and consult when
needed

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 2

Public Key Cryptanalysis
Algorithmic Number Theory Basics

Christophe Petit

University College London

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 3

Secure communications

I Alice wants to send a private message to Bob over a
public channel

I Private key cryptography : Alice and Bob both have a key
to some encryption box

I Public key cryptography : Alice uses a lock of which only
Bob has the key

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 4

Public key vs Private key cryptography

I No preshared password needed with public key crypto

I Security reduced to “hard” number theory problems
vs. “ad hoc” security for block ciphers, hash functions

I Mathematical problems have independent interest,
so more scrutinized. . . for the best and the worst

I Typically ∼ 1500 bits vs. ∼ 160 bits

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 5

Module objectives

I Revise algorithmic number theory basics from IntroCrypto

I Revise Linear Algebra basics

I If time : learn root-finding algorithms

I Lab & tutorial : discover SAGE and connect theory to
practice, play with some first attacks

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 6

Outline

Complexity measures

Algebra and number theory

First algorithmic number theory tools

Linear algebra

Root-finding algorithms

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 7

Reference book

I Algorithmic Cryptanalysis,
Chapters 1-3

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 8

Outline

Complexity measures

Algebra and number theory

First algorithmic number theory tools

Linear algebra

Root-finding algorithms

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 9

What do we mean by “hard” problem ?

I Is hard ?

I Is adding two integers hard ?

I Is multiplying two integers hard ?

I Is factoring integers hard ? what about 15 ?

I Is inverting a matrix hard ? what if it has billions of rows
and columns ?

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 10

Big Oh notation

I Let f , g : N→ R. We say f = O(g) if there exist N and
c such that for all n > N , we have g(n) ≥ cf (n).

I Examples :
I x = O(x2)
I 10000000x = O(x2)
I xn = O(ex) for any n
I log x = O(x)

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 11

Measuring complexity (theory)

I Consider the multiplication problem :
given two integers p and q, compute n = pq

I Hardness is function of s := log2 p + log2 q, the input size

I Trivial algorithm runs in time O(log2 p · log2 q) = O(s2) :
multiply p by each bit of q, shift by appropriate powers of
2, and make additions with carries

I Best algorithms achieve O(s log s)

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 12

Measuring complexity (theory)

I Consider exhaustive search on a key of n bits

I Hardness is function of n

I Complexity is O(2n) : try every possible key

I Exponential complexity !

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 13

Measuring complexity (theory)

I Consider the factorization problem : given a positive
composite integer n, find p and q such that n = pq

I Hardness is function of log2 n, that is the size of input

I The best algorithms today run in subexponential time

Ln(α; c) = exp(c(log n)α(log log n)1−α)

with α = 1/3

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 14

P and NP

I A problem is in P if it can be solved in polynomial time
(in other words, there is an integer n such that it can be
solved in time O(xn) for an input of size x)

I Refinements to this : randomization, memory, etc.

I A problem is in NP if a solution can be checked in
polynomial time

I P=NP ? is worth a million dollards (and glory !)

I NP-complete problems are as hard as the hardest known
NP problems such as 3-SAT, graph coloring, traveling
salesman, etc

I Factorization, Dlog, are (probably) NOT NP-complete

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 15

In practice

I Hardness depends on your computer power, your time,
your memory

I Hard for you might be easy for NSA

I Compare with exhaustive search : 220 is certainly possible
on a laptop, 260 becomes very hard for most organizations

I See www.keylength.com for key sizes

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 16

Outline

Complexity measures

Algebra and number theory

First algorithmic number theory tools

Linear algebra

Root-finding algorithms

www.keylength.com

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 17

Group

I A group (G , ◦) is a set G with some binary operation
◦ : G × G → G such that

I Neutral element : there exists e ∈ G such that for all
x ∈ G , we have x ◦ e = x = e ◦ x

I Inverse : for all x ∈ G , there exists y such that
x ◦ y = e = y ◦ x

I Associativity : for all x , y , z ∈ G , we have
(x ◦ y) ◦ z = x ◦ (y ◦ z)

I When ◦ is implicit, we say G is a group

I A group is Abelian if for all x , y , we have x ◦ y = y ◦ x
I A group is finite if |G | is finite

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 18

Group examples

I (Z,+) is a group with neutral element 0

I (Q,+) is a group with neutral element 0

I (Q, ∗) is not a group : 0 has no inverse

I (Q∗, ∗) is a group with neutral element 1
Here Q∗ = Q \ {0}

I (Zn,+) is a group for any positive integer n
Here Zn = Z/nZ are integers modulo n

I (Z∗p, ∗) is a group for any prime number p
Here Z∗p = Zp \ {0}

I . . .

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 19

Rank of a group

I The rank of a group (G ,+) is the minimal number of
elements needed to generate the whole group

min{k : ∃S = {g1, . . . , gk} ⊂ G s.t. ∀g ∈ G , g =
∑
i

gei with gei ∈ S}

I Example : (Z× Z,+) is a group of rank 2 with
generating set {(1, 0), (0, 1)}

I A group of rank 1 is called a cyclic group

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 20

Lagrange theorem

I Let (G , ◦) a finite group

I For any integer k and any g ∈ G , we write g k for
g ◦ g ◦ . . . ◦ g , k times

I Lagrange’s theorem : for any g ∈ G , we have g |G | = e
where e is the neutral element in the group

I Fermat’s small theorem : for any prime p and any
g 6= 0 mod p, we have gp−1 = 1 mod p

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 21

Field

I A field (K ,+, ∗) is a set K with two binary operations
+ : K × K → K and ∗ : K × K → K such that

I (K ,+) is an Abelian group
I (K ∗, ∗) is a group, where K ∗ = K \ {e}, where e is the

neutral element of K for +

I A field (K ,+, ∗) is finite if |K | is finite

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 22

Field examples

I (C,+, ∗) is a field with neutral elements 0 and 1
for + and *

I (Q,+, ∗) is a field with neutral elements 0 and 1
for + and *

I (Zp,+, ∗) is a finite field for any prime p
This field is often denoted Fp

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 23

A more complicated example

I Let f be a polynomial of degree n with coefficients in Fp,
such that f has no factor of degree different than 0 or n.

I Consider (K ,+, ∗) where
I K = all polynomials over Fp

I + and ∗ are addition and multiplication modulo the
polynomial f

I Then (K ,+, ∗) is a finite field with pn elements

I Example : let f (x) = x2 + x + 1 ∈ F2[x] then
F4 = F2[x]/(f (x)F2[x]) is a finite field with 4 elements
{0, 1, x , x + 1}

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 24

Vector space

I A vector space (V ,+, ∗) over some field K is a set
V ⊃ K with two operations + : V × V → V and
∗ : K × V → V such that

I (V ,+) is a group
I For all a, b ∈ K and all v ∈ V , we have

(a + b) ∗ v = a ∗ v + b ∗ v
I For all a ∈ K and v ,w ∈ V , we have

a ∗ (v + w) = a ∗ v + a ∗ w
I The dimension of this vector space is the rank of (V ,+)

I A basis of V is a set of (dimV) elements that generate V

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 25

Ring

I A ring (R ,+, ∗) is a set R with two operations
+ : R × R → R and ∗ : R × R → R such that

I (R,+) is an Abelian group
I (R, ∗) is associative and has a neutral element

(but some elements may have no inverse)
I Distributivity : for all a, b, c ∈ R, we have

(a + b) ∗ c = a ∗ c + b ∗ c

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 26

Ring examples

I Let K be a field and let K [X] be the set of polynomials
with coefficients in K . Then (K [X],+, ∗) is a ring

I Zn := Z/nZ (the integers modulo n) is a ring for any
n ∈ N. It is a field if and only if n is prime.

I Let K be a field. Let f ∈ K [X] and let K̃ = K [X]/(f (X))
be the set of polynomials over K “modulo f (x)”.
Then K̃ is a ring. It is a field if and only if f is irreducible.

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 27

Prime numbers

I 2,3,5,7,11,. . . are prime numbers. 4,6,8,9,10,... are not

I Any integer n can be decomposed uniquely has a product
of prime numbers

I There are infinitely many primes

I Prime number theorem : the number of primes up to
some bound B is roughly equal to B/ logB

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 28

The RSA ring

I Let p, q be two primes and let n = pq

I Let Zn := Z/nZ be the ring of integers modulo n

I Not a field : for any k , neither kp nor kq are invertible

I The map

ϕ : Zn → Zp × Zq : x → (x mod p, x mod q)

is a ring isomorphism. Its inverse is given by

ϕ−1 : Zp × Zq → Zn

(xp, xq) → xpq(q−1 mod p) + xqp(p−1 mod q)

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 29

Chinese remainder theorem

I More generally if n =
∏N

i=1 p
ei
i then the map

ϕ : Zn →
N∏
i=1

Zp
ei
i

: x → (x mod pe11 , . . . , x mod peNN)

is a ring isomorphism

I In other words given all residue values, there exists a
unique value that corresponds to them modulo n

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 30

Euler’s theorem

I Let n =
∏N

i=1 p
ei
i where the pi are distinct primes

I Define the Euler totient function

ϕ(n) =
N∏
i=1

(pi − 1)pei−1i

I Then for all x ∈ Z∗n, we have

xϕ(n) = 1 mod n

I If n = p a prime, then ϕ(n) = p − 1 and we recover
Fermat’s small theorem xp−1 = 1 mod p

I If n = pq like in RSA, then ϕ(n) = (p − 1)(q − 1)

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 31

Outline

Complexity measures

Algebra and number theory

First algorithmic number theory tools

Linear algebra

Root-finding algorithms

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 32

Addition in Fp

I Let p be a prime and let K := Fp = Z/pZ
I Addition in K : given a and b, return a + b mod p

1: c ← a + b
2: if c > p then
3: c ← c − p
4: end if
5: return c

I Complexity O(log p) bit operations

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 33

Multiplication in Fp

I Let p be a prime and let K := Fp = Z/pZ
I Multiplication in K : given a and b, return ab mod p

1: Let b =
∑n

i=0 bi2
i

2: a′ ← a ; c ← b0a
3: for i=1 to n do
4: a′ ← 2a′ mod p
5: c ← c + bia

′ mod p
6: end for
7: return c

I Complexity O(n2) = O(log2 p) bit operations

I Best algorithms achieve O(log p log log p)

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 34

Modular exponentiation : Square-and-Multiply

I Let p be a prime and let K := Fp = Z/pZ
I Exponentiation in K : given a and k , return ak mod p

1: Let k =
∑n

i=0 ki2
i

2: a′ ← a ; c ← ak0

3: for i=1 to n do
4: a′ ← a′2 mod p
5: c ← c(a′)ki mod p
6: end for
7: return c

I Complexity O(n) = O(log p) multiplications

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 35

Remark on elementary operations

I The above algorithms can be generalized to a great
extent to other fields, ring or group structures, with
similar complexities

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 36

The discrete logarithm problem

I Let p be a prime and let K := Fp = Z/pZ
I Exponentiation in K in O(n) = O(log p) multiplications

I What about the inverse operation ?

I Discrete logarithm problem :
Given g and h = g k mod p, compute k

I Believed to be very hard : subexponential complexity
Lp(1/3, c)

I More generally : given G , g ∈ G and h = g k , compute k

I Can be harder or easier depending on the group

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 37

Diffie-Hellman algorithm

I Designed by Diffie and Hellman in 1976

I Widely used today, e.g. in SSL

I Allows two parties to set up a common private key
over a public channel

I Security requires hardness of discrete logarithm problem

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 38

Diffie-Hellman algorithm

I Public elements : G cyclic, g ∈ G a generator

I Alice chooses random a and sends g a to Bob

I Bob chooses random b and sends gb to Alice

I Alice computes (gb)a = g ab

I Bob computes (g a)b = g ab

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 39

Diffie-Hellman security

I Solving discrete logarithm problem is sufficient to break
Diffie-Hellman key exchange

I Solving discrete logarithm problem might not be
necessary to break Diffie-Hellman key exchange

I Additional stuff is required for authentication, for example
certificates

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 40

Primality testing

I Given an integer n, decide whether n is prime or not

I You can generate primes by picking random numbers
smaller than B and checking whether they are prime :
need about logB trials by the prime number theorem

I There are deterministic algorithms for primality testing
(see AKS test)

I In practice, we use probabilistic algorithms (having a
small probability to return prime for composite numbers)
that are much faster

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 41

Fermat test

I Observation : if n is prime then an = a mod n for all a
(Fermat’s small theorem)

I Idea : choose random a and check whether an = a mod n.
If not then p is composite.

I Bad news : some numbers (Carmichael numbers) are
composite and satisfy this equation for all 0 < a < n !

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 42

Miller-Rabin test

I Observation : if n is prime, than the only x such that
x2 = 1 mod n are ±1 mod n whereas if n is composite,
there are more of them

I Idea : write n − 1 = 2kq, pick random a and compute
a0 = aq mod n, then ai = a2i−1 mod n, etc, up to
ak = an−1 mod n

I If n is prime : the sequence (a0, a1, . . . , ak) will be
(∗, ∗, . . . , ∗,−1, 1, . . . , 1) where ∗ 6= ±1

I If n is composite then it will be (∗, ∗, . . . , ∗, ∗, 1, . . . , 1)
for at least 3/4 of the values a

I Complexity O(− log ε) modular exponentiations,
where ε is error probability

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 43

RSA algorithm

I Designed by Rivest-Shamir-Adleman in 1977

I One of the most widely used algorithms today, for both
signatures and public key encryption

I Security requires hardness of integer factorization

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 44

RSA encryption algorithm

I Let p, q two distinct odd primes, and let n = pq

I Let e with no common divisor with ϕ(n) = (p− 1)(q− 1)

I Public key is (n, e) and private key is (p, q)

I Given private key, can also compute d := e−1 mod ϕ(n)

I Encryption of m is c = me mod n

I Decryption of c is m′ = cd mod n

I Correctness follows from

m′ = (me)d = med mod ϕ(n) = mm(ed−1) mod ϕ(n) = m mod n

by Euler’s theorem

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 45

RSA security

I Solving the factorization problem is sufficient and
necessary to reconstruct the private key

I Solving the factorization problem might not be necessary
for other goals, such as decrypting without the private key

I In fact, “textbook RSA” insecure wrt some goals :
for example given an encryption of m,
can compute an encryption of m2 mod n

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 46

RSA weak key generator attack

I Suppose Alice uses private key (p, qa) and Bob uses
private key (p, qb). Is it safe ?

I Everybody sees na := pqa and nb := pqb
I Alice can compute qb = nb/p

I Bob can compute qa = na/p

I Anyone can compute gcd(na, nb) = p and then qa and qb
I Attack demonstrated in practice

Lenstra et al. Ron was wrong, Whit is right
Show that 2/1000 RSA keys are insecure

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 47

Euclide algorithm

I Goal : given integers a and b, find d = gcd(a, b)

I d |a, d |b imply d |(a + kb) for any integer k

Require: a ≥ b
Ensure: gcd(a, b)

1: if b|a then
2: return b
3: else
4: Compute q such that 0 < a − qb < b
5: return gcd(b, a − qb)
6: end if

I Complexity O(|a|2) ; best algorithms achieve O(|a| log |a|)

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 48

Example

gcd(36, 16) = gcd(16, 36− 2 · 32)

= gcd(16, 4)

= 4

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 49

Extended Euclide algorithm

I Goal : compute r and s such that ra + sb = gcd(a, b)

Require: a ≥ b
Ensure: d = gcd(a, b) and r , s, such that ar + bs = d

1: if b|a then
2: return a, 0, 1
3: else
4: Compute q such that 0 < a − qb < b
5: d , r , s ← gcd(b, a − qb)
6: return d , s, r − qs
7: end if

I Indeed if rb + s(a − qb) = d then sa + (r − qb)b = d
I Complexity O(|a|2) ; best algorithms achieve O(|a| log |a|)

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 50

Example

gcd(36, 16) = gcd(16, 36− 2 · 32)

= gcd(16, 4)

= 4

4 = 0 · 16 + 1 · 4
= 1 · 36 + (0− 2 · 1)16

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 51

Outline

Complexity measures

Algebra and number theory

First algorithmic number theory tools

Linear algebra

Root-finding algorithms

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 52

Main goals in linear algebra

I Multiply two square matrices

I Inverse a square invertible matrix

I Solve linear systems of equations

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 53

Complexity of linear algebra

I All these tasks have roughly the same complexity
I For an n × n matrix, complexity O(nω) multiplications

where
I Lower bound ω ≥ 2
I Gauss elimination ω ≤ 3
I Strassen ω ≤ log2 7 ≈ 2.8074
I In 2015 we know ω ≤ 2.3728639 (but not practical)
I Conjecture : for any ε > 0, we could have ω = 2 + ε
I ω may be smaller for specific matrices

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 54

Scalar product

I Given two vectors a = (a1, . . . , an) and b = (b1, . . . , bn),
compute their scalar product c = (a, b) =

∑n
i=1 aibi

I Complexity : n multiplications

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 55

Matrix multiplication

I Given two n × n matrices A and B compute C = AB

I See A and B as row and column matrices respectively

A =

(a1
...
an

)
B = (b1 ... bn)

I n2 scalar products (ai , bj), so n3 multiplications in total

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 56

Strassen algorithm

I Idea : trade some multiplications for additions
I Compute a product of 2n × 2n matrices using 7

(instead of 8) products of n × n matrices
I To compute MM ′ where M = (a b

c d) and M =
(
a′ b′

c ′ d ′

)
,

compute

P1 = (a + c)(a′ + b′), P2 = (b + d)(c ′ + d ′), P3 = (b + c)(c ′ − b′)

P4 = c(a′ + c ′), P5 = b(b′ + d ′), P6 = (c − d)c ′, P7 = (a− b)b′

M ·M ′ =
(
P1+P3−P4−P7 P5+P7

P4−P6 P2−P3−P5+P6

)
I Complexity :

T (2n) = 7 ·T (n)+O(n2) =⇒ T (n) = nlog2 7 = n2.807

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 57

Best asymptotic algorithms

I Coppersmith-Winograd ω < 2.375477

I Between 2010 and 2014 : ω decreased to 2.3728639

I Those fast asymptotic algorithms are not used in practice
because of large constants involved

I Conjecture : ω = 2 + ε

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 58

From inversion to multiplication

D :=

In A 0
0 In B
0 0 In

 ⇒ D−1 =

In −A AB
0 In −B
0 0 In


I If inversion takes O(nω) then so does multiplication

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 59

From multiplication to inversion

I Given M = (A B
C D) to invert, let N :=

(
I 0

−D−1C I

)
I We have MN = (S B

0 D) for S := A− BD−1C

I We have (MN)−1 =
(

S−1 −S−1BD−1

0 D−1

)
I Compute D−1 then −D−1C
I Compute S then S−1 then −S−1BD−1
I Compute M−1 = N(MN)−1

I Cost :

Tinv (2n) = 2Tinv (n) + 8Tmul(n) + O(n2)

I If multiplication takes O(nω) then so does inversion

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 60

Gaussian elimination

I Observation : if My = x then for any invertible N ,
we have NMy = Nx

I In particular, this is true when N is a matrix which
I Swaps two rows of M
I Multiplies one row by an invertible constant
I Adds a multiple of one row of M to another row of M

I Gaussian elimination repeats these operations until the
resulting matrix is upper triangular

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 61

Gaussian elimination

I Algorithm when M is invertible

1: for each column i , from i = 1 to n do
2: Find a nonzero element in this column
3: Swap the row of this element with row i
4: for each row j below row i do
5: Let c := −Mj ,i/Mi ,i

6: Add c times row i to row j
to erase the value in (j , i)

7: end for
8: end for

I Adapt step 2 otherwise
I Cost is O(n3) multiplications

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 62

Resolution from Gaussian form

I Algorithm when M is invertible

1: for each column i from n to 1 do
2: Recover value of unknown i , using equation i and

all values of previously computed unknowns j > i
3: end for

I Adapt to determine the afine space of solutions v + kerM
otherwise

I Cost is O(n2) multiplications

I Can be used to invert M in O(n3) multiplications

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 63

Hermite normal form

I If the matrices are defined over a ring (not a field) then
not all elements are invertible

I Elimination in each column will be done with a kind of
GCD algorithm :

1: for each column i , with i ∈ {0, . . . , n} do
2: while some element below (i , i) is non zero do
3: Find the smallest nonzero element in this

column
4: Swap the row of this element with row i
5: For each row j below i , remove as many times

row i as needed to have element (j , i) between
0 and element (i , i)

6: end while
7: end for

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 64

Hermite normal form

I A matrix is in Hermite normal form if it is upper
triangular, has positive elements on the diagonal, and
moreover all non-diagonal elements are non-negative and
smaller than the diagonal elements in their column

I Last condition ensured by completing previous algorithm
with

1: for each column i , with i from 1 to n do
2: For each row j above i , remove as many times

row i as needed to have element (j , i) larger
than 0 and smaller than element (i , i)

3: end for

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 65

Sparse linear algebra

I A matrix is sparse if each row contains a small number of
nonzero elements

I Very useful in index calculus algorithms (see topic 2)
and many other contexts

I Can store larger size matrices by storing only (i , j ,Mi ,j)
for nonzero elements Mi ,j

I Gaussian elimination will kill the sparsity quickly
I Two approaches for sparse matrices :

I Structured Gaussian elimination
I Algorithms based on matrix-vector multiplications

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 66

Structured Gaussian elimination

I Consider the linear system My = x
I For the matrices M occurring in index calculus :

I Each row contain few elements
I The first columns contain much more elements than the

last ones

I Structured Gaussian elimination involves several tricks
such as removing variables that only appear once or twice

I Used as preprocessing ro reduce the size in practice

I Heuristic

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 67

Lanczos algorithm

I If M is invertible, My = x ⇔ M tMy = M tx
hence we can assume M is symmetric
defining a scalar product (x , y)M := xMy t

I Lanczos is iterative : over the real/complex numbers,
the algorithm can be stopped before the end with a
reasonable approximation of the solution

I First compute a basis {vi} of orthogonal vectors with
respect to the scalar product (∗, ∗)M (see topic 3),
then compute x =

∑n
i=1(x , vi)Mvi

I First part involves O(n) matrix-vector multiplications,
each one at O(n) cost if each row contains O(1) elements

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 68

Wiedemann algorithm

I Reconstruct the minimal polynomial of M :
smallest degree polynomial f such that f (M) = 0

I If f (α) =
∑d

i=0 fiα
i , then I = − 1

f0

∑d
i=1 fiM

i then

x = − 1

f0

d∑
i=1

fiM
ix = M

(
− 1

f0

d∑
i=1

fiM
i−1x

)
I We deduce y such that My = x

I The algorithm requires O(n) matrix-vector products

I Recent discrete log records use Block Wiedemann
http://caramel.loria.fr/p180.txt

http://caramel.loria.fr/p180.txt

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 69

Outline

Complexity measures

Algebra and number theory

First algorithmic number theory tools

Linear algebra

Root-finding algorithms

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 70

Root-finding algorithms

I Problem : given a polynomial f ∈ Fq[x],
find all x ∈ Fq such that f (x) = 0

I Note that f (α) = 0⇔ (x − α)|f (x)

I First compute the square-free split part of f :
the unique monic polynomial f̃ |f such that f̃ has only
linear factors, all distinct

I Then successively split f̃ into smaller polynomials

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 71

Square-free split part

I We have αq = α for all α ∈ Fq so

xq − x =
∏
α∈Fq

(x − α)

I Therefore
f̃ (x) = gcd(xq − x , f (x))

contains only factors of degree 1, no factor twice

I Compute xq mod f (x) with a square-and-multiply
algorithm, substract x , and compute gcd

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 72

Breaking out f̃

I If q odd we have

xq − x = x(x
q−1
2 + 1)(x

q−1
2 − 1)

I Computing

gcd
(
f̃ , x

q−1
2 ± 1

)
likely to break f̃ into two parts

I Also notice that xq− x = (x − a)q− (x − a) for all a ∈ Fq

I Pick a random a and compute

gcd
(
f̃ , (x − a)

q−1
2 ± 1

)

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 73

Remarks

I Several other algorithms

I Polynomial time in deg f and log q

I Can be adapted when q is even

I Can be generalized to find other factors of f ,
not just degree 1 factors

	Complexity measures
	Algebra and number theory
	First algorithmic number theory tools
	Linear algebra
	Root-finding algorithms

