About these slides

- Part of the Cryptanalysis course I taught at UCL in 2015 for the Master in Information Security
- Contain background computer algebra algorithms useful for both that course and this one
- The slides will not be covered during this course
- Best usage : know what is in them and consult when needed

Christophe Petit -COMPGA18/COMPM068 Lecture 1

Public Key Cryptanalysis

Algorithmic Number Theory Basics

Christophe Petit University College London

Christophe Petit -COMPGA18/COMPM068 Lecture 1 -

Secure communications

- Alice wants to send a private message to Bob over a public channel
- Private key cryptography : Alice and Bob both have a key to some encryption box

 Public key cryptography : Alice uses a lock of which only Bob has the key

Christophe Petit -COMPGA18/COMPM068 Lecture 1

Public key vs Private key cryptography

- No preshared password needed with public key crypto
- Security reduced to "hard" number theory problems vs. "ad hoc" security for block ciphers, hash functions
- Mathematical problems have independent interest, so more scrutinized... for the best and the worst
- \blacktriangleright Typically \sim 1500 bits vs. \sim 160 bits

Module objectives

- Revise algorithmic number theory basics from IntroCrypto
- ► Revise Linear Algebra basics
- If time : learn root-finding algorithms
- Lab & tutorial : discover SAGE and connect theory to practice, play with some first attacks

Outline

Complexity measures

Algebra and number theory

First algorithmic number theory tools

Linear algebra

Root-finding algorithms

Christophe Petit -COMPGA18/COMPM068 Lecture 1

Christophe Petit -COMPGA18/COMPM068 Lecture 1 -

Reference book

 Algorithmic Cryptanalysis, Chapters 1-3

Outline

Complexity measures

Algebra and number theory

First algorithmic number theory tools

Linear algebra

Root-finding algorithms

What do we mean by "hard" problem?

Is hard?

- Is adding two integers hard?
- Is multiplying two integers hard?
- Is factoring integers hard? what about 15?
- Is inverting a matrix hard? what if it has billions of rows and columns?

Christophe Petit -COMPGA18/COMPM068 Lecture 1

Big Oh notation

- ▶ Let $f, g : \mathbb{N} \to \mathbb{R}$. We say f = O(g) if there exist N and c such that for all n > N, we have $g(n) \ge cf(n)$.
- Examples :
 - $x = O(x^2)$
 - ► $1000000x = O(x^2)$
 - $x^n = O(e^x)$ for any n
 - $\log x = O(x)$

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 10

Measuring complexity (theory)

- Consider the multiplication problem : given two integers p and q, compute n = pq
- Hardness is function of $s := \log_2 p + \log_2 q$, the input size
- ► Trivial algorithm runs in time O(log₂ p · log₂ q) = O(s²) : multiply p by each bit of q, shift by appropriate powers of 2, and make additions with carries
- Best algorithms achieve $O(s \log s)$

Measuring complexity (theory)

- Consider exhaustive search on a key of n bits
- Hardness is function of n
- Complexity is $O(2^n)$: try every possible key
- Exponential complexity !

Measuring complexity (theory)

- Consider the factorization problem : given a positive composite integer n, find p and q such that n = pq
- ► Hardness is function of log₂ *n*, that is the size of input
- The best algorithms today run in subexponential time

$$L_n(\alpha; c) = \exp(c(\log n)^{\alpha}(\log \log n)^{1-\alpha})$$

with $\alpha = 1/3$

Christophe Petit -COMPGA18/COMPM068 Lecture 1

P and NP

- ► A problem is in P if it can be solved in polynomial time (in other words, there is an integer n such that it can be solved in time O(xⁿ) for an input of size x)
- ▶ Refinements to this : randomization, memory, etc.
- A problem is in NP if a solution can be checked in polynomial time
- P=NP? is worth a million dollards (and glory !)
- NP-complete problems are as hard as the hardest known NP problems such as 3-SAT, graph coloring, traveling salesman, etc
- ► Factorization, Dlog, are (probably) NOT NP-complete

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 14

In practice

- Hardness depends on your computer power, your time, your memory
- Hard for you might be easy for NSA
- Compare with exhaustive search : 2²⁰ is certainly possible on a laptop, 2⁶⁰ becomes very hard for most organizations
- See www.keylength.com for key sizes

Outline

Complexity measures

Algebra and number theory

First algorithmic number theory tools

Linear algebra

Root-finding algorithms

Group

- ▶ A group (G, \circ) is a set *G* with some binary operation $\circ : G \times G \rightarrow G$ such that
 - Neutral element : there exists $e \in G$ such that for all $x \in G$, we have $x \circ e = x = e \circ x$
 - Inverse : for all $x \in G$, there exists y such that $x \circ y = e = y \circ x$
 - Associativity : for all $x, y, z \in G$, we have $(x \circ y) \circ z = x \circ (y \circ z)$
- When \circ is implicit, we say G is a group
- A group is Abelian if for all x, y, we have $x \circ y = y \circ x$
- A group is finite if |G| is finite

Christophe Petit -COMPGA18/COMPM068 Lecture 1 -

Group examples

- ($\mathbb{Z},+$) is a group with neutral element 0
- \blacktriangleright ($\mathbb{Q},+)$ is a group with neutral element 0
- $(\mathbb{Q}, *)$ is not a group : 0 has no inverse
- $(\mathbb{Q}^*, *)$ is a group with neutral element 1 Here $\mathbb{Q}^* = \mathbb{Q} \setminus \{0\}$
- (Z_n, +) is a group for any positive integer n Here Z_n = Z/nZ are integers modulo n
- (ℤ_p^{*}, *) is a group for any prime number p Here ℤ_p^{*} = ℤ_p \ {0}
- ►

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 18

Rank of a group

► The rank of a group (G, +) is the minimal number of elements needed to generate the whole group

 $\min\{k: \exists S = \{g_1, \dots, g_k\} \subset G \text{ s.t. } \forall g \in G, g = \sum_i g_{e_i} \text{ with } g_{e_i} \in S\}$

- Example : $(\mathbb{Z} \times \mathbb{Z}, +)$ is a group of rank 2 with generating set $\{(1, 0), (0, 1)\}$
- A group of rank 1 is called a cyclic group

Lagrange theorem

- Let (G, \circ) a finite group
- For any integer k and any $g \in G$, we write g^k for $g \circ g \circ \ldots \circ g$, k times
- Lagrange's theorem : for any g ∈ G, we have g^{|G|} = e where e is the neutral element in the group
- \blacktriangleright Fermat's small theorem : for any prime p and any $g \neq 0 \bmod p,$ we have $g^{p-1} = 1 \bmod p$

Field

Field examples

- A field (K, +, *) is a set K with two binary operations $+: K \times K \rightarrow K$ and $*: K \times K \rightarrow K$ such that
 - (K, +) is an Abelian group

 - $(K^*, *)$ is a group, where $K^* = K \setminus \{e\}$, where e is the neutral element of K for +

Christophe Petit -COMPGA18/COMPM068 Lecture 1 -

• A field (K, +, *) is finite if |K| is finite

- $(\mathbb{C}, +, *)$ is a field with neutral elements 0 and 1 for + and *
- $(\mathbb{Q},+,*)$ is a field with neutral elements 0 and 1 for + and *
- $(\mathbb{Z}_p, +, *)$ is a finite field for any prime p This field is often denoted \mathbb{F}_p

Christophe Petit -COMPGA18/COMPM068 Lecture 1

A more complicated example

- Let f be a polynomial of degree n with coefficients in \mathbb{F}_{p} , such that f has no factor of degree different than 0 or n.
- Consider (K, +, *) where
 - K =all polynomials over \mathbb{F}_p
 - + and * are addition and multiplication modulo the polynomial f
- Then (K, +, *) is a finite field with p^n elements
- Example : let $f(x) = x^2 + x + 1 \in \mathbb{F}_2[x]$ then $\mathbb{F}_4 = \mathbb{F}_2[x]/(f(x)\mathbb{F}_2[x])$ is a finite field with 4 elements $\{0, 1, x, x+1\}$

Vector space

- A vector space (V, +, *) over some field K is a set $V \supset K$ with two operations $+: V \times V \rightarrow V$ and
 - $*: K \times V \rightarrow V$ such that
 - (V, +) is a group
 - For all $a, b \in K$ and all $v \in V$, we have
 - (a+b) * v = a * v + b * v
 - For all $a \in K$ and $v, w \in V$, we have a * (v + w) = a * v + a * w
- The dimension of this vector space is the rank of (V, +)
- A basis of V is a set of $(\dim V)$ elements that generate V

Ring **Ring examples** • Let K be a field and let K[X] be the set of polynomials • A ring (R, +, *) is a set R with two operations with coefficients in K. Then (K[X], +, *) is a ring $+: R \times R \rightarrow R$ and $*: R \times R \rightarrow R$ such that • $\mathbb{Z}_n := \mathbb{Z}/n\mathbb{Z}$ (the integers modulo *n*) is a ring for any • (R, +) is an Abelian group ▶ (R,*) is associative and has a neutral element $n \in \mathbb{N}$. It is a field if and only if *n* is prime. (but some elements may have no inverse) ▶ Let K be a field. Let $f \in K[X]$ and let $\tilde{K} = K[X]/(f(X))$ • Distributivity : for all $a, b, c \in R$, we have be the set of polynomials over K "modulo f(x)". (a+b)*c = a*c + b*cThen \tilde{K} is a ring. It is a field if and only if f is irreducible. Christophe Petit -COMPGA18/COMPM068 Lecture 1 -Christophe Petit -COMPGA18/COMPM068 Lecture 1 26

Prime numbers

- ▶ 2,3,5,7,11,... are prime numbers. 4,6,8,9,10,... are not
- ► Any integer *n* can be decomposed uniquely has a product of prime numbers
- There are infinitely many primes
- ▶ Prime number theorem : the number of primes up to some bound *B* is roughly equal to *B*/log *B*

The RSA ring

- Let p, q be two primes and let n = pq
- Let $\mathbb{Z}_n := \mathbb{Z}/n\mathbb{Z}$ be the ring of integers modulo n
- ▶ Not a field : for any k, neither kp nor kq are invertible
- ► The map

$$\varphi: \mathbb{Z}_p \to \mathbb{Z}_p \times \mathbb{Z}_q: x \to (x \bmod p, x \bmod q)$$

is a ring isomorphism. Its inverse is given by

$$\begin{array}{rcl} \varphi^{-1}:\mathbb{Z}_p\times\mathbb{Z}_q & \to & \mathbb{Z}_n \\ & (x_p,x_q) & \to & x_pq(q^{-1} \bmod p) + x_qp(p^{-1} \bmod q) \end{array}$$

Chinese remainder theorem

• More generally if $n = \prod_{i=1}^{N} p_i^{e_i}$ then the map

$$arphi:\mathbb{Z}_n
ightarrow\prod_{i=1}^N\mathbb{Z}_{p_i^{e_i}}:x
ightarrow(x ext{ mod }p_1^{e_1},\ldots,x ext{ mod }p_N^{e_N})$$

is a ring isomorphism

In other words given all residue values, there exists a unique value that corresponds to them modulo \boldsymbol{n}

Christophe Petit -COMPGA18/COMPM068 Lecture 1 -

Euler's theorem

- Let n = ∏^N_{i=1} p^{e_i}_i where the p_i are distinct primes
 Define the Euler totient function

$$\varphi(n) = \prod_{i=1}^{N} (p_i - 1) p_i^{e_i - 1}$$

• Then for all $x \in \mathbb{Z}_n^*$, we have

$$x^{\varphi(n)} = 1 \mod n$$

- If n = p a prime, then φ(n) = p − 1 and we recover Fermat's small theorem x^{p−1} = 1 mod p
- If n = pq like in RSA, then $\varphi(n) = (p-1)(q-1)$
 - Christophe Petit -COMPGA18/COMPM068 Lecture 1 -

Outline	Addition in \mathbb{F}_p
Complexity measures	 Let p be a prime and let K := 𝔽_p = ℤ/pℤ Addition in K : given a and b, return a + b mod p 1: c ← a + b 2: if c > p then 3: c ← c - p 4: end if
Algebra and number theory	
First algorithmic number theory tools	
Root-finding algorithms	5: return c▶ Complexity O(log p) bit operations
Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 31	Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 32

Multiplication in \mathbb{F}_p

- Let p be a prime and let $K := \mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$
- Multiplication in K : given a and b, return $ab \mod p$

1: Let $b = \sum_{i=0}^{n} b_i 2^i$

- 2: $a' \leftarrow a$; $c \leftarrow b_0 a$
- 3: **for** i=1 **to** n **do**
- 4: $a' \leftarrow 2a' \mod p$
- 5: $c \leftarrow c + b_i a' \mod p$
- 6: end for
- 7: return c
- Complexity $O(n^2) = O(\log^2 p)$ bit operations
- Best algorithms achieve O(log p log log p)

Christophe Petit -COMPGA18/COMPM068 Lecture 1 -

Modular exponentiation : Square-and-Multiply

- Let p be a prime and let $K := \mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$
- Exponentiation in K : given a and k, return $a^k \mod p$
 - 1: Let $k = \sum_{i=0}^{n} k_i 2^i$
 - 2: $a' \leftarrow a$; $c \leftarrow a^{k_0}$
 - 3: for i=1 to n do
 - 4: $a' \leftarrow a'^2 \mod p$
 - 5: $c \leftarrow c(a')^{k_i} \mod p$
 - 6: **end for**
 - 7: **return** *c*
- Complexity $O(n) = O(\log p)$ multiplications

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 34

Remark on elementary operations

 The above algorithms can be generalized to a great extent to other fields, ring or group structures, with similar complexities

The discrete logarithm problem

- Let p be a prime and let $K := \mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$
- Exponentiation in K in $O(n) = O(\log p)$ multiplications
- ► What about the inverse operation?
- Discrete logarithm problem : Given g and $h = g^k \mod p$, compute k
- Believed to be very hard : subexponential complexity $L_p(1/3, c)$
- More generally : given $G, g \in G$ and $h = g^k$, compute k
- Can be harder or easier depending on the group

Diffie-Hellman algorithm

- Designed by Diffie and Hellman in 1976
- Widely used today, e.g. in SSL
- Allows two parties to set up a common private key over a public channel
- Security requires hardness of discrete logarithm problem

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 37

- Public elements : G cyclic, $g \in G$ a generator
- Alice chooses random a and sends g^a to Bob
- ▶ Bob chooses random b and sends g^b to Alice
- ► Alice computes (g^b)^a = g^{ab}
- Bob computes $(g^a)^b = g^{ab}$

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 38

Diffie-Hellman security

- Solving discrete logarithm problem is sufficient to break Diffie-Hellman key exchange
- Solving discrete logarithm problem might not be necessary to break Diffie-Hellman key exchange
- Additional stuff is required for authentication, for example certificates

Primality testing

- Given an integer n, decide whether n is prime or not
- You can generate primes by picking random numbers smaller than B and checking whether they are prime : need about log B trials by the prime number theorem
- There are deterministic algorithms for primality testing (see AKS test)
- In practice, we use probabilistic algorithms (having a small probability to return prime for composite numbers) that are much faster

Fermat test

- Observation : if n is prime then aⁿ = a mod n for all a (Fermat's small theorem)
- Idea : choose random a and check whether aⁿ = a mod n.
 If not then p is composite.
- Bad news : some numbers (Carmichael numbers) are composite and satisfy this equation for all 0 < a < n !</p>

Christophe Petit -COMPGA18/COMPM068 Lecture 1

Miller-Rabin test

- Observation : if n is prime, than the only x such that x² = 1 mod n are ±1 mod n whereas if n is composite, there are more of them
- ▶ Idea : write $n 1 = 2^k q$, pick random *a* and compute $a_0 = a^q \mod n$, then $a_i = a_{i-1}^2 \mod n$, etc, up to $a_k = a^{n-1} \mod n$
 - ▶ If *n* is prime : the sequence (a_0, a_1, \ldots, a_k) will be $(*, *, \ldots, *, -1, 1, \ldots, 1)$ where $* \neq \pm 1$
 - If n is composite then it will be $(*, *, \ldots, *, *, 1, \ldots, 1)$ for at least 3/4 of the values a
- Complexity O(-log ε) modular exponentiations, where ε is error probability

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 42

RSA algorithm

- Designed by Rivest-Shamir-Adleman in 1977
- One of the most widely used algorithms today, for both signatures and public key encryption
- Security requires hardness of integer factorization

43

RSA encryption algorithm

- Let p, q two distinct odd primes, and let n = pq
- Let *e* with no common divisor with $\varphi(n) = (p-1)(q-1)$
- Public key is (n, e) and private key is (p, q)
- Given private key, can also compute $d := e^{-1} \mod \varphi(n)$
- Encryption of m is $c = m^e \mod n$
- Decryption of c is $m' = c^d \mod n$
- Correctness follows from

 $m' = (m^e)^d = m^{ed \mod \varphi(n)} = mm^{(ed-1) \mod \varphi(n)} = m \mod n$

by Euler's theorem

RSA security

- Solving the factorization problem is sufficient and necessary to reconstruct the private key
- Solving the factorization problem *might not be necessary* for other goals, such as decrypting without the private key
- ► In fact, "textbook RSA" insecure wrt some goals : for example given an encryption of m, can compute an encryption of $m^2 \mod n$

Christophe Petit -COMPGA18/COMPM068 Lecture 1 -

RSA weak key generator attack

- Suppose Alice uses private key (p, q_a) and Bob uses private key (p, q_b) . Is it safe?
- Everybody sees $n_a := pq_a$ and $n_b := pq_b$
- Alice can compute $q_b = n_b/p$
- Bob can compute $q_a = n_a/p$
- **Anyone** can compute $gcd(n_a, n_b) = p$ and then q_a and q_b
- Attack demonstrated in practice Lenstra et al. Ron was wrong, Whit is right Show that 2/1000 RSA keys are insecure

Christophe Petit -COMPGA18/COMPM068 Lecture 1 46

Euclide algorithm Example

- Goal : given integers a and b, find d = gcd(a, b)
- d|a, d|b imply d|(a + kb) for any integer k

Require: a > b**Ensure:** gcd(a, b)

1: if b|a then return b 2:

- 3: **else**
- 4:
- Compute q such that 0 < a qb < breturn gcd(b, a - qb)5:
- 6: end if
- Complexity $O(|a|^2)$; best algorithms achieve $O(|a|\log |a|)$

Christophe Petit -COMPGA18/COMPM068 Lecture 1

$$gcd(36, 16) = gcd(16, 36 - 2 \cdot 32)$$

= $gcd(16, 4)$
= 4

Christophe Petit -COMPGA18/COMPM068 Lecture 1 48

Extended Euclide algorithm

- > Goal : compute r and s such that ra + sb = gcd(a, b)Require: a ≥ bEnsure: d = gcd(a, b) and r, s, such that ar + bs = d1: if b|a then 2: return a, 0, 1 3: else 4: Compute q such that 0 < a - qb < b5: $d, r, s \leftarrow gcd(b, a - qb)$ 6: return d, s, r - qs7: end if > Indeed if rb + s(a - qb) = d then sa + (r - qb)b = d
- Complexity $O(|a|^2)$; best algorithms achieve $O(|a| \log |a|)$
 - Christophe Petit -COMPGA18/COMPM068 Lecture 1 49

Example

$$gcd(36, 16) = gcd(16, 36 - 2 \cdot 32)$$

= $gcd(16, 4)$
= 4
 $4 = 0 \cdot 16 + 1 \cdot 4$

 $= 1 \cdot 36 + (0 - 2 \cdot 1)16$

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 50

Complexity of linear algebra

Scalar product

- All these tasks have roughly the same complexity
- For an $n \times n$ matrix, complexity $O(n^{\omega})$ multiplications where
 - Lower bound $\omega \ge 2$
 - Gauss elimination $\omega \leq 3$
 - Strassen $\omega \leq \log_2 7 \approx 2.8074$
 - \blacktriangleright In 2015 we know $\omega \leq$ 2.3728639 (but not practical)
 - ▶ Conjecture : for any $\epsilon > 0$, we could have $\omega = 2 + \epsilon$ ▶ ω may be smaller for specific matrices

Christophe Petit -COMPGA18/COMPM068 Lecture 1 -

- Given two vectors a = (a₁,..., a_n) and b = (b₁,..., b_n), compute their scalar product c = (a, b) = ∑ⁿ_{i=1} a_ib_i
- Complexity : *n* multiplications

Christophe Petit -COMPGA18/COMPM068 Lecture 1 -

Matrix multiplication

- Given two $n \times n$ matrices A and B compute C = AB
- ▶ See A and B as row and column matrices respectively

$$A = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \qquad B = (b_1 \dots b_n)$$

• n^2 scalar products (a_i, b_j) , so n^3 multiplications in total

Strassen algorithm

- Idea : trade some multiplications for additions
- Compute a product of $2n \times 2n$ matrices using 7 (instead of 8) products of $n \times n$ matrices
- ▶ To compute MM' where $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and $M = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$, compute

$$\begin{split} P_1 &= (a+c)(a'+b'), \quad P_2 &= (b+d)(c'+d'), \quad P_3 &= (b+c)(c'-b') \\ P_4 &= c(a'+c'), \quad P_5 &= b(b'+d'), \quad P_6 &= (c-d)c', \quad P_7 &= (a-b)b' \\ \mathcal{M} \cdot \mathcal{M}' &= \begin{pmatrix} P_1 + P_3 - P_4 - P_7 & P_3 + P_7 \\ P_4 - P_6 & P_2 - P_3 - P_5 + P_6 \end{pmatrix} \end{split}$$

Complexity :

 $T(2n) = 7 \cdot T(n) + O(n^2) \implies T(n) = n^{\log_2 7} = n^{2.807}$

Best asymptotic algorithms

From inversion to multiplication

- Coppersmith-Winograd $\omega < 2.375477$
- Between 2010 and 2014 : ω decreased to 2.3728639
- Those fast asymptotic algorithms are not used in practice because of large constants involved
- Conjecture : $\omega = 2 + \epsilon$

$$D := \begin{pmatrix} I_n & A & 0 \\ 0 & I_n & B \\ 0 & 0 & I_n \end{pmatrix} \Rightarrow D^{-1} = \begin{pmatrix} I_n & -A & AB \\ 0 & I_n & -B \\ 0 & 0 & I_n \end{pmatrix}$$

• If inversion takes $O(n^{\omega})$ then so does multiplication

Christophe Petit -COMPGA18/COMPM068 Lecture 1

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 58

From multiplication to inversion

- Given $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ to invert, let $N := \begin{pmatrix} I & 0 \\ -D^{-1}C & I \end{pmatrix}$
- We have $MN = \begin{pmatrix} S & B \\ 0 & D \end{pmatrix}$ for $S := A BD^{-1}C$
- We have $(MN)^{-1} = \begin{pmatrix} S^{-1} & -S^{-1}BD^{-1} \\ 0 & D^{-1} \end{pmatrix}$
- Compute D^{-1} then $-D^{-1}C$
- Compute S then S^{-1} then $-S^{-1}BD^{-1}$
- Compute $M^{-1} = N(MN)^{-1}$
- ► Cost :

$$T_{inv}(2n) = 2T_{inv}(n) + 8T_{mul}(n) + O(n^2)$$

• If multiplication takes $O(n^{\omega})$ then so does inversion

Christophe Petit -COMPGA18/COMPM068 Lecture 1 -

Gaussian elimination

- Observation : if My = x then for any invertible N, we have NMy = Nx
- \blacktriangleright In particular, this is true when N is a matrix which
 - Swaps two rows of M
 - Multiplies one row by an invertible constant
 - Adds a multiple of one row of M to another row of M
- Gaussian elimination repeats these operations until the resulting matrix is upper triangular

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 60

Gaussian elimination

- Algorithm when M is invertible
 - 1: for each column *i*, from i = 1 to *n* do
 - 2: Find a nonzero element in this column
 - 3: Swap the row of this element with row i
 - 4: **for** each row j below row i **do**
 - 5: Let $c := -M_{j,i}/M_{i,i}$
 - Add c times row i to row j
 - to erase the value in (j, i)
 - 7: end for
 - 8: end for

6:

- Adapt step 2 otherwise
- Cost is $O(n^3)$ multiplications

Christophe Petit -COMPGA18/COMPM068 Lecture 1 -

Resolution from Gaussian form

- Algorithm when *M* is invertible
 - 1: **for** each column *i* from *n* to 1 **do**
 - Recover value of unknown *i*, using equation *i* and all values of previously computed unknowns *j* > *i* end for
- Adapt to determine the afine space of solutions $v + \ker M$ otherwise
- ▶ Cost is O(n²) multiplications
- Can be used to invert M in $O(n^3)$ multiplications

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 62

Hermite normal form

- If the matrices are defined over a ring (not a field) then not all elements are invertible
- Elimination in each column will be done with a kind of GCD algorithm :
 - 1: for each column *i*, with $i \in \{0, \ldots, n\}$ do
 - 2: while some element below (i, i) is non zero do
 - 3: Find the smallest nonzero element in this column
 - 4: Swap the row of this element with row *i*
 - For each row j below i, remove as many times row i as needed to have element (j, i) between 0 and element (i, i)
 - 6: end while
 - 7: end for

Christophe Petit -COMPGA18/COMPM068 Lecture 1

63

A matrix is in Hermite normal form if it is upper triangular, has positive elements on the diagonal, and moreover all non-diagonal elements are non-negative and smaller than the diagonal elements in their column

Hermite normal form

- Last condition ensured by completing previous algorithm with
 - 1: **for** each column *i*, with *i* from 1 to *n* **do**
 - 2: For each row *j* above *i*, remove as many times row *i* as needed to have element (*j*, *i*) larger than 0 and smaller than element (*i*, *i*)

3: end for

Sparse linear algebra

- A matrix is sparse if each row contains a small number of nonzero elements
- Very useful in index calculus algorithms (see topic 2) and many other contexts
- ► Can store larger size matrices by storing only (*i*, *j*, *M*_{*i*,*j*}) for nonzero elements *M*_{*i*,*j*}
- Gaussian elimination will kill the sparsity quickly
- Two approaches for sparse matrices :
 - Structured Gaussian elimination
 - Algorithms based on matrix-vector multiplications

Christophe Petit -COMPGA18/COMPM068 Lecture 1 -

Structured Gaussian elimination

- Consider the linear system My = x
- ► For the matrices *M* occurring in index calculus :
 - Each row contain few elements
 - The first columns contain much more elements than the last ones
- Structured Gaussian elimination involves several tricks such as removing variables that only appear once or twice
- Used as preprocessing ro reduce the size in practice
- Heuristic

Christophe Petit -COMPGA18/COMPM068 Lecture 1 - 66

Lanczos algorithm

- If M is invertible, My = x ⇔ M^tMy = M^tx hence we can assume M is symmetric defining a scalar product (x, y)_M := xMy^t
- Lanczos is iterative : over the real/complex numbers, the algorithm can be stopped before the end with a reasonable approximation of the solution
- ▶ First compute a basis $\{v_i\}$ of orthogonal vectors with respect to the scalar product $(*, *)_M$ (see topic 3), then compute $x = \sum_{i=1}^n (x, v_i)_M v_i$
- ▶ First part involves O(n) matrix-vector multiplications, each one at O(n) cost if each row contains O(1) elements

Wiedemann algorithm

- Reconstruct the minimal polynomial of M : smallest degree polynomial f such that f(M) = 0
- If $f(\alpha) = \sum_{i=0}^{d} f_i \alpha^i$, then $I = -\frac{1}{f_0} \sum_{i=1}^{d} f_i M^i$ then

$$x = -\frac{1}{f_0} \sum_{i=1}^{d} f_i M^i x = M\left(-\frac{1}{f_0} \sum_{i=1}^{d} f_i M^{i-1} x\right)$$

- We deduce y such that My = x
- The algorithm requires O(n) matrix-vector products
- Recent discrete log records use Block Wiedemann http://caramel.loria.fr/p180.txt

Square-free split part

 \blacktriangleright We have $\alpha^{q}=\alpha$ for all $\alpha\in\mathbb{F}_{q}$ so

$$x^q - x = \prod_{\alpha \in \mathbb{F}_q} (x - \alpha)$$

► Therefore

 $\tilde{f}(x) = \gcd(x^q - x, f(x))$

contains only factors of degree 1, no factor twice

- Compute $x^q \mod f(x)$ with a square-and-multiply
 - algorithm, substract x, and compute gcd

Breaking out \tilde{f}

► If q odd we have

$$x^{q} - x = x(x^{\frac{q-1}{2}} + 1)(x^{\frac{q-1}{2}} - 1)$$

Computing

$$\gcd\left(ilde{f},x^{rac{q-1}{2}}\pm 1
ight)$$

likely to break \tilde{f} into two parts

▶ Also notice that $x^q - x = (x - a)^q - (x - a)$ for all $a \in \mathbb{F}_q$

$$\operatorname{gcd}\left(\widetilde{f},\left(x-a\right)^{rac{q-1}{2}}\pm 1
ight)$$

Remarks

- Several other algorithms
- Polynomial time in deg f and log q
- Can be adapted when *q* is even
- Can be generalized to find other factors of *f*, not just degree 1 factors

Christophe Petit -COMPGA18/COMPM068 Lecture 1 -