About these slides

Public Key Cryptanalysis

» Part of the Cryptanalysis course | taught at UCL in 2015 Algorithmic Number Theory Basics

for the Master in Information Security

» Contain background computer algebra algorithms useful . -
for both that course and this one Chrlstophe Petit

» The slides will not be covered during this course University College London

» Best usage : know what is in them and consult when
needed

Christophe Petit -COMPGA18/COMPMO068 Lecture 1 - Christophe Petit -COMPGA18/COMPMO068 Lecture 1 -

Secure communications Public key vs Private key cryptography

» Alice wants to send a private message to Bob over a
public channel
» Private key cryptography : Alice and Bob both have a key

N hared d needed with public k t
to some encryption box > No preshared password needed with public key crypto

» Security reduced to “"hard” number theory problems
vs. “ad hoc” security for block ciphers, hash functions
» Mathematical problems have independent interest,
so more scrutinized. . . for the best and the worst

» Typically ~ 1500 bits vs. ~ 160 bits

» Public key cryptography : Alice uses a lock of which only
Bob has the key

y--

i

Christophe Petit -COMPGA18/COMPMO068 Lecture 1 - Christophe Petit -COMPGA18/COMPMO068 Lecture 1 - 4

Module objectives Outline

Complexity measures

» Revise algorithmic number theory basics from IntroCrypto
.)) Algebra and number theory
» Revise Linear Algebra basics

» If time : learn root-finding algorithms First algorithmic number theory tools
» Lab & tutorial : discover SAGE and connect theory to
practice, play with some first attacks Linear algebra

Root-finding algorithms

Christophe Petit -COMPGA18/COMPMO068 Lecture 1 - Christophe Petit -COMPGA18/COMPMO068 Lecture 1 -

Reference book QOutline

Complexity measures

ALGORITHMIC
CRYPTANALYSIS

Antoine Joux

» Algorithmic Cryptanalysis,
Chapters 1-3

Christophe Petit -COMPGA18/COMPMO068 Lecture 1 - Christophe Petit -COMPGA18/COMPMO068 Lecture 1 -

What do we mean by “hard” problem ? Big Oh notation

» Let f,g: N — R. We say f = O(g) if there exist N and

sl T hard ? ¢ such that for all n > N, we have g(n) > cf(n).
» Is adding two integers hard ? " ExamplesO:(2)
. . . > X = X
» Is multiplying two integers hard ? » 10000000x = O(x)
» Is factoring integers hard ? what about 157 » x" = O(e) for any n
» Is inverting a matrix hard ? what if it has billions of rows > logx = O(x)

and columns?

Christophe Petit -COMPGA18/COMPMO068 Lecture 1 - Christophe Petit -COMPGA18/COMPMO068 Lecture 1 -

Measuring complexity (theory) Measuring complexity (theory)

» Consider the multiplication problem :

given two integers p and g, compute n = pq » Consider exhaustive search on a key of n bits
» Hardness is function of s := log, p + log, g, the input size » Hardness is function of n
» Trivial algorithm runs in time O(log, p - log, q) = O(s?) » Complexity is O(2") : try every possible key

multiply p by each bit of g, shift by appropriate powers of

" . . » Exponential complexity !
2, and make additions with carries P P y

» Best algorithms achieve O(slog s)

Christophe Petit -COMPGA18/COMPMO068 Lecture 1 - Christophe Petit -COMPGA18/COMPMO068 Lecture 1 - 12

Measuring complexity (theory)

» Consider the factorization problem : given a positive
composite integer n, find p and g such that n = pg

» Hardness is function of log, n, that is the size of input
» The best algorithms today run in subexponential time

Ln(c; ¢) = exp(c(log n)*(log log n)*™*)

with a« = 1/3

Christophe Petit -COMPGA18/COMPMO068 Lecture 1 -

In practice

» Hardness depends on your computer power, your time,
your memory

» Hard for you might be easy for NSA

» Compare with exhaustive search : 220 is certainly possible
on a laptop, 2% becomes very hard for most organizations

» See wuw.keylength.com for key sizes

Christophe Petit -COMPGA18/COMPMO068 Lecture 1 -

P and NP

» A problem is in P if it can be solved in polynomial time

(in other words, there is an integer n such that it can be

solved in time O(x") for an input of size x)
» Refinements to this : randomization, memory, etc.

» A problem is in NP if a solution can be checked in
polynomial time

» P=NP ? is worth a million dollards (and glory!)

» NP-complete problems are as hard as the hardest known

NP problems such as 3-SAT, graph coloring, traveling
salesman, etc
» Factorization, Dlog, are (probably) NOT NP-complete

Christophe Petit -COMPGA18/COMPMO068 Lecture 1 -

QOutline

Algebra and number theory

Christophe Petit -COMPGA18/COMPMO068 Lecture 1 -

16

www.keylength.com

Group Group examples

> A group (G, o) is a set G with some binary operation » (Z,+) is a group with neutral element 0
©:Gx 6 = G such that » (Q,+) is a group with neutral element 0
> Neutral element : there exists e € G such that for all . 0h .
X € G we have xoe—x — eox » (Q,) is not a group : 0 has no inverse
> Inverse : for all x € G, there exists y such that » (Q*,) is a group with neutral element 1
Xoy=e=yox Here Q" = Q\ {0}
> Associativity : for all x,y,z € G, we have > (Z,,+) is a group for any positive integer n
(xoy)ez=xo(ye2) Here Z, = Z/nZ are integers modulo n
» When o is implicit, we say G is a group » (Z;,) is a group for any prime number p
» A group is Abelian if for all x,y, we have xoy =y ox Here Z;, = Z, \ {0}
> A group is finite if |G| is finite -

Christophe Petit -COMPGA18/COMPMO068 Lecture 1 - Christophe Petit -COMPGA18/COMPMO068 Lecture 1 -

Rank of a group Lagrange theorem

» The rank of a group (G, +) is the minimal number of
elements needed to generate the whole group

v

Let (G, o) a finite group
» For any integer k and any g € G, we write g for
min{k : 35 ={g1,....8} C Gst. Vg e G,g:de,. with g, € S} gogo...og, k times

i » Lagrange's theorem : for any g € G, we have g'G‘ =e

» Example : (Z x Z, +) is a group of rank 2 with where e is the neutral element in the group

generating set {(1,0),(0,1)} » Fermat's small theorem : for any prime p and any
g # 0 mod p, we have g~ =1 mod p

» A group of rank 1 is called a cyclic group

Christophe Petit -COMPGA18/COMPMO068 Lecture 1 - Christophe Petit -COMPGA18/COMPMO068 Lecture 1 - 20

Field Field examples

» Afield (K, 4+, x) is a set K with two binary operations » (C,+, %) is a field with neutral elements 0 and 1
+:KxK— Kand x: Kx K — K such that for + and *
» (K,+) is an Abelian group > (Q,+, %) is a field with neutral elements 0 and 1
> (K*,x) is a group, where K* = K\ {e}, where e is the for + and *

neutral element of K for + > (Zp,+, %) is a finite field for any prime p

> Afield (K, +,) is finite if [K]| is finite This field is often denoted F,

Christophe Petit -COMPGA18/COMPMO068 Lecture 1 - Christophe Petit -COMPGA18/COMPMO068 Lecture 1 -

A more complicated example Vector space
> Let f be a polynomial of degree n with coefficients in Fp, » A vector space (V/,+, *) over some field K is a set
such that f has no factor of degree different than 0 or n. V D K with two operations +: V x V — V and
» Consider (K’ +, *) where *: K x V — V such that
» K = all polynomials over F, > (V,+) is a group
» 4+ and * are addition and multiplication modulo the » Forall a,be K and all v € V, we have

(a+b)xv=a*xv+bxv
» Forall ae K and v,w € V, we have
ax(v+w)=a*xvtaxw

polynomial f
» Then (K, +, %) is a finite field with p" elements
Example : let f(x) = x? + x + 1 € F,[x] then
Fy = T, [x]/(f(x)F2[x]) is a finite field with 4 elements
{0,1,x,x+ 1}

v

» The dimension of this vector space is the rank of (V,+)
» A basis of V is a set of (dim V) elements that generate V

Christophe Petit -COMPGA18/COMPMO068 Lecture 1 - Christophe Petit -COMPGA18/COMPMO068 Lecture 1 - 24

Ring Ring examples

» Aring (R, =+, %) is a set R with two operations » Let K be a field and let K[X] be the set of polynomials

+:RxR—= Rand : R x R — R such that with coefficients in K. Then (K[X],+,*) is a ring
» (R, +) is an Abelian group » Z, := Z/nZ (the integers modulo n) is a ring for any
» (R, «) is associative and has a neutral element n € N. It is a field if and only if n is prime.
(but some elements may have no inverse) » Let K be a field. Let f € K[X] and let K= K[X]/(f(X))

» Distributivity : for all a, b,c € R, we have
(a+b)xc=axc+bxc

be the set of polynomials over K “modulo f(x)
Then K is a ring. It is a field if and only if f is irreducible.

Christophe Petit -COMPGA18/COMPMO068 Lecture 1 - Christophe Petit -COMPGA18/COMPMO068 Lecture 1 -

Prime numbers The RSA ring

» Let p, g be two primes and let n = pq
> Let Z, := Z/nZ be the ring of integers modulo n

» 2,3,5,7,11,.. . are prime numbers. 4,6,8,9,10,... are not

> Any integer n can be decomposed uniquely has a product
of prime numbers

» There are infinitely many primes 0Ly — Lp X Ly : x — (x mod p, x mod q)

» Prime number theorem : the number of primes up to
some bound B is roughly equal to B/ log B

» Not a field : for any k, neither kp nor kq are invertible
» The map

is a ring isomorphism. Its inverse is given by

0 Ty xZy = 7y
(X0, %) — x,q(q~* mod p) + x,p(p~* mod q)

Christophe Petit -COMPGA18/COMPMO068 Lecture 1 - Christophe Petit -COMPGA18/COMPMO068 Lecture 1 - 28

Chinese remainder theorem Euler's theorem

> Let n= Hf\il p:’ where the p; are distinct primes

+ More generally if n — Hf\,:l p then the map » Define the Euler totient function
N
N _ L e—1
e(n) = || (pi — 1)p;
Ap:Zn—>HZP_e,-:x—>(xmodpf1,...,xmodp,’;,"’) ,11
i=1

v

Then for all x € Zj, we have
is a ring isomorphism
. . . x#(" =1 mod n
> In other words given all residue values, there exists a

unique value that corresponds to them modulo n » If n= pa prime’ then (p(n) =p— 1 and we recover
Fermat's small theorem xP~! =1 mod p

» If n = pq like in RSA, then ¢(n) = (p—1)(¢g — 1)

Christophe Petit -COMPGA18/COMPMO068 Lecture 1 - Christophe Petit -COMPGA18/COMPMO068 Lecture 1 -

Outline Addition in I,

> Let p be a prime and let K :=F, = Z/pZ
» Addition in K : given a and b, return a+ b mod p
1: c<a+b
2: if ¢ > p then
3: c+c—p
4. end if
5. return ¢

First algorithmic number theory tools

» Complexity O(log p) bit operations

Christophe Petit -COMPGA18/COMPMO068 Lecture 1 - Christophe Petit -COMPGA18/COMPMO068 Lecture 1 - 32

Multiplication in I, Modular exponentiation : Square-and-Multiply

» Let p be a prime and let K :=F, = Z/pZ

> Let p be a prime and let K :=F, =Z/pZ
» Multiplication in K : given a and b, return ab mod p

» Exponentiation in K : given a and k, return a* mod p

n i
L L,et b =2 bi2 L Let k=37 o k2
2: 3+ a;c+ ba | =0
. 2. a8 < a; c<+ ae
3: for i=1 to n do .
| , 3: for i=1 to n do
4: a' + 2a' mod p , P
, 4 a <+ a“modp
5 c<4 c+ bja@ mod p Nk
5 ¢ < ¢(a')* mod p
6: end for
6: end for

7: return ¢
7: return ¢

. 2N 2 . .
> Complexity O(n?) = O(log” p) bit operations » Complexity O(n) = O(log p) multiplications
» Best algorithms achieve O(log p log log p)

Christophe Petit -COMPGA18/COMPMO068 Lecture 1 - Christophe Petit -COMPGA18/COMPMO068 Lecture 1 -

Remark on elementary operations The discrete logarithm problem

> Let p be a prime and let K :=F, = Z/pZ
» Exponentiation in K in O(n) = O(log p) multiplications
» What about the inverse operation ?

» The above algorithms can be generalized to a great
extent to other fields, ring or group structures, with
similar complexities

» Discrete logarithm problem :
Given g and h = g* mod p, compute k

» Believed to be very hard : subexponential complexity
Lp(1/3,¢)

» More generally : given G, g € G and h = g¥, compute k

» Can be harder or easier depending on the group

Christophe Petit -COMPGA18/COMPMO068 Lecture 1 - Christophe Petit -COMPGA18/COMPMO068 Lecture 1 - 36

Diffie-Hellman algorithm Diffie-Hellman algorithm

» Public elements : G cyclic, g € G a generator

» Alice chooses random a and sends g° to Bob

» Bob chooses random b and sends g” to Alice

> H bya _ ab
» Designed by Diffie and Hellman in 1976 Alice computes (g7)7 = g

» Widely used today, e.g. in SSL

> Allows two parties to set up a common private key
over a public channel

» Bob computes (g?)° = g2

» Security requires hardness of discrete logarithm problem

Christophe Petit -COMPGA18/COMPMO068 Lecture 1 - Christophe Petit -COMPGA18/COMPMO068 Lecture 1 - 38

Diffie-Hellman security Primality testing

» Given an integer n, decide whether n is prime or not

» Solving discrete logarithm problem is sufficient to break > You can generate primes by picking random numbers
Diffie-Hellman key exchange smaller than B and checking whether they are prime :

» Solving discrete logarithm problem might not be need about log B trials by the prime number theorem

necessary to break Diffie-Hellman key exchange » There are deterministic algorithms for primality testing
» Additional stuff is required for authentication, for example (see AKS test)
certificates » In practice, we use probabilistic algorithms (having a
small probability to return prime for composite numbers)
that are much faster

Christophe Petit -COMPGA18/COMPMO068 Lecture 1 - Christophe Petit -COMPGA18/COMPMO068 Lecture 1 - 40

Fermat test Miller-Rabin test

» Observation : if n is prime, than the only x such that
x2 =1 mod n are £1 mod n whereas if n is composite,

» Observation : if n is prime then 3" = a mod n for all a there are more of them

(Fermat’s small theorem) » ldea : write n — 1 = 2kq, pick random a and compute
ap = a? mod n, then a; = a,{l mod n, etc, up to

> Idea : choose random a and check whether a” = a mod n. o1
ax=a""modn

If not then p is composite.

Bad) b Carmichael b » If nis prime : the sequence (ao, a1, . .., ax) will be
> Bad news : some num e_rs(armichael num ers) are (krtsorrrbs—1,1,...,1) where % £ +1
composite and satisfy this equation for all 0 < a < n! » If n is composite then it will be (,%,..., % 1,...,1)

for at least 3/4 of the values a

» Complexity O(— log¢) modular exponentiations,
where € is error probability

Christophe Petit -COMPGA18/COMPMO068 Lecture 1 - Christophe Petit -COMPGA18/COMPMO068 Lecture 1 -

RSA algorithm RSA encryption algorithm

» Let p, g two distinct odd primes, and let n = pg
» Let e with no common divisor with ¢(n) = (p—1)(g — 1)
» Public key is (n, e) and private key is (p, q)

» Given private key, can also compute d := e~! mod ¢(n)

» Encryption of mis ¢ = m® mod n

» Decryption of ¢ is m" = ¢? mod n

» Designed by Rivest-Shamir-Adleman in 1977 » Correctness follows from
» One of the most widely used algorithms today, for both J 4 mod (n) (6d—1) mod ()
signatures and public key encryption m' = (m®)% = m® " = mmed M = m mod n

» Security requires hardness of integer factorization by Euler's theorem

Christophe Petit -COMPGA18/COMPMO068 Lecture 1 - Christophe Petit -COMPGA18/COMPMO068 Lecture 1 - 44

RSA security RSA weak key generator attack

» Suppose Alice uses private key (p, g,) and Bob uses

» Solving the factorization problem is sufficient and private key (p, gp). Is it safe?
necessary to reconstruct the private key » Everybody sees n, := pg, and n, := pgq,
» Solving the factorization problem might not be necessary » Alice can compute g, = np,/p

for other goals, such as decrypting without the private key » Bob can compute g, = n,/p
a — a

» In fact, “textbook RSA" insecure wrt some goals :
for example given an encryption of m,
can compute an encryption of m? mod n

» Anyone can compute gcd(n,, np) = p and then g, and g,
» Attack demonstrated in practice

Lenstra et al. Ron was wrong, Whit is right
Show that 2/1000 RSA keys are insecure

Christophe Petit -COMPGA18/COMPMO068 Lecture 1 - Christophe Petit -COMPGA18/COMPMO068 Lecture 1 -

Euclide algorithm Example

» Goal : given integers a and b, find d = gcd(a, b)
> dla, d|bimply d|(a + kb) for any integer k
Require: a > b
Ensure: gecd(a, b)

1: if b|a then ged(36,16) = ged(16,36 — 2 - 32)
2 return b = gcd(16,4)

3: else = 4

4 Compute g such that 0 <a—gb< b

5 return ged(b, a — gb)

6: end if
» Complexity O(]a|?); best algorithms achieve O(|a| log|a|)

Christophe Petit -COMPGA18/COMPMO068 Lecture 1 - Christophe Petit -COMPGA18/COMPMO068 Lecture 1 - 48

Extended Euclide algorithm Example

» Goal : compute r and s such that ra + sb = gcd(a, b)
Require: a > b

EI’ISEII'E: d = ged(a, b) and r, s, such that ar + bs = d ged(36,16) = ged(16,36 — 2 - 32)
1. if b|a then — ocd(16.4

2: return a,0,1 = ged(16,4)

3: else 4

4 Compute g such that 0 <a—gb< b

5: d,r,s < gcd(b,a — gb)

6 .return d,s,r—gqs 4 = 0-16+1-4

7: end if

= 1-36+(0—2-1)16
> Indeed if rb + s(a — gb) = d then sa+ (r — gb)b=d
» Complexity O(|al?); best algorithms achieve O(|a| log|a|)

Christophe Petit -COMPGA18/COMPMO068 Lecture 1 - Christophe Petit -COMPGA18/COMPMO068 Lecture 1 -

Outline Main goals in linear algebra

» Multiply two square matrices
> Inverse a square invertible matrix
» Solve linear systems of equations

Linear algebra

Christophe Petit -COMPGA18/COMPMO068 Lecture 1 - Christophe Petit -COMPGA18/COMPMO068 Lecture 1 -

Complexity of linear algebra Scalar product

» All these tasks have roughly the same complexity
» For an n x n matrix, complexity O(n*) multiplications

where » Given two vectors a = (ay,...,a,) and b= (b, ..., b,),
» Lower bound w > 2 compute their scalar product ¢ = (a,b) = > [, aib;
> Gauss elimination w < 3 » Complexity : n multiplications

» Strassen w < log, 7 ~ 2.8074

> In 2015 we know w < 2.3728639 (but not practical)
» Conjecture : for any € > 0, we could have w =2+ ¢
» w may be smaller for specific matrices

Christophe Petit -COMPGA18/COMPMO068 Lecture 1 - Christophe Petit -COMPGA18/COMPMO068 Lecture 1 -

Matrix multiplication Strassen algorithm

» |ldea : trade some multiplications for additions
» Compute a product of 2n x 2n matrices using 7

» Given two n X n matrices A and B compute C = AB (instead of 8) products of n x n matrices
» See A and B as row and column matrices respectively » To compute MM’ where M = (2§) and M = (il' sl’)'
compute
ai
A:(:) B:(b1 .,Ab,,) Pr=(atc)(ad+b), Po=(b+d)(c+d), P3=(b+c)c V)
an Pi=c(d+c), Ps=bt+d), Ps=(c—d), Pr=(a—b)b

MM = (PP=Papr | Pt

» n? scalar products (ai, bj), so n® multiplications in total Py Py P Pyt Py

» Complexity :

T(2n) =7-T(n)+0(n*) = T(n)= n&7 = n>807

Christophe Petit -COMPGA18/COMPMO068 Lecture 1 - Christophe Petit -COMPGA18/COMPMO068 Lecture 1 -

Best asymptotic algorithms From inversion to multiplication

» Coppersmith-Winograd w < 2.375477

L A Q0 l, —A AB
» Between 2010 and 2014 : w decreased to 2.3728639 D=0 1, B -~ p 0 I, -B
» Those fast asymptotic algorithms are not used in practice 0 0 I, o 0 I
because of large constants involved
» Conjecture : w=2+¢ » If inversion takes O(n“) then so does multiplication

Christophe Petit -COMPGA18/COMPMO068 Lecture 1 - Christophe Petit -COMPGA18/COMPMO068 Lecture 1 -

From multiplication to inversion Gaussian elimination

o
» We have MN = (5 §) for S:= A— BD71C

» Given M = (25) toinvert, let N:= (_p1.9)
(» Observation : if My = x then for any invertible N,
1

» We have (MN)™! = (5; *SEEDA) we have NMy = Nx
» Compute D! then —D~1C » In particular, this is true when N is a matrix which
» Compute S then S~! then —S~1BD™! > Swaps two rows of M .
o . » Multiplies one row by an invertible constant
» Compute M~* = N(MN) » Adds a multiple of one row of M to another row of M
» Cost :

» Gaussian elimination repeats these operations until the

Tin(27) = 2T (1) + 8 Torur(n) + O(n?) resulting matrix is upper triangular

> If multiplication takes O(n“) then so does inversion

Christophe Petit -COMPGA18/COMPMO068 Lecture 1 - Christophe Petit -COMPGA18/COMPMO068 Lecture 1 -

Gaussian elimination Resolution from Gaussian form

» Algorithm when M is invertible

v

1: for each column i, from i =1 to n do Algorithm when M is invertible

2: Find a nonzero element in this column 1: for each column /i from nto 1 do

3 Swap the row of this element with row i 2: Recover value of unknown i, using equation i and

4: for each row j below row / do all values of previously computed unknowns j > i

5 Let ¢ .= —M;;/M;; 3: end for

6 Add ¢ times row i to row j » Adapt to determine the afine space of solutions v + ker M
to erase the value in (j, /) otherwise

7 end for

6 end for » Cost is O(n?) multiplications

» Adapt step 2 otherwise » Can be used to invert M in O(n®) multiplications

» Cost is O(n®) multiplications

Christophe Petit -COMPGA18/COMPMO068 Lecture 1 - Christophe Petit -COMPGA18/COMPMO068 Lecture 1 -

Hermite normal form Hermite normal form

> If the matrices are defined over a ring (not a field) then

not all elements are invertible > A matrix is in Hermite normal form if it is upper

» Elimination in each column will be done with a kind of triangular, has positive elements on the diagonal, and
GCD algorithm : moreover all non-diagonal elements are non-negative and
1: for each column i, with i € {0 n} do smaller than the diagonal elements in their column
: , ey
2: while some element below (i, i) is non zero do » Last condition ensured by completing previous algorithm
3: Find the smallest nonzero element in this with
column))) 1. for each column i, with i from 1 to n do
Swap the row ,Of this e.Iement with row i) 2: For each row j above /, remove as many times
5: For each row j below /i, remove as many times

row i as needed to have element (j, /) larger
than 0 and smaller than element (i, i)
3: end for

row i as needed to have element (j, /) between
0 and element (i, /)
6: end while
7: end for
Christophe Petit -COMPGA18/COMPMO068 Lecture 1 - Christophe Petit -COMPGA18/COMPMO068 Lecture 1 - 64

Sparse linear algebra

A matrix is sparse if each row contains a small number of
nonzero elements

Very useful in index calculus algorithms (see topic 2)

and many other contexts

Can store larger size matrices by storing only (7, }, M;)
for nonzero elements M, ;

Gaussian elimination will kill the sparsity quickly

Two approaches for sparse matrices :

» Structured Gaussian elimination
» Algorithms based on matrix-vector multiplications

Christophe Petit -COMPGA18/COMPMO068 Lecture 1 -

Lanczos algorithm

v

v

If M is invertible, My = x & M*My = M'x

hence we can assume M is symmetric

defining a scalar product (x,y)n = xMy*

Lanczos is iterative : over the real/complex numbers,
the algorithm can be stopped before the end with a
reasonable approximation of the solution

First compute a basis {v;} of orthogonal vectors with
respect to the scalar product (*,*)y (see topic 3),
then compute x = Y7, (x, vi)mvi

First part involves O(n) matrix-vector multiplications,
each one at O(n) cost if each row contains O(1) elements

Christophe Petit -COMPGA18/COMPMO068 Lecture 1 -

Structured Gaussian elimination

Consider the linear system My = x
For the matrices M occurring in index calculus :

» Each row contain few elements
» The first columns contain much more elements than the
last ones

Structured Gaussian elimination involves several tricks
such as removing variables that only appear once or twice

Used as preprocessing ro reduce the size in practice
Heuristic

Christophe Petit -COMPGA18/COMPMO068 Lecture 1 -

Wiedemann algorithm

Reconstruct the minimal polynomial of M :
smallest degree polynomial f such that f(M) =0

If f(a) = S, fia, then | = —£ 3", M’ then

1 Zd 1 Zd
_ iy i—1
i=1 i=1

We deduce y such that My = x
The algorithm requires O(n) matrix-vector products

Recent discrete log records use Block Wiedemann
http://caramel.loria.fr/pl180.txt

Christophe Petit -COMPGA18/COMPMO068 Lecture 1 - 68

http://caramel.loria.fr/p180.txt

Outline Root-finding algorithms

» Problem : given a polynomial f € Fg[x],

find all x € F, such that f(x) =0

Note that f(a) =0 < (x — «)|f(x)

> First compute the square-free split part of f :
the unique monic polynomial f|f such that f has only
linear factors, all distinct

v

- . » Then successively split f into smaller polynomials
Root-finding algorithms

Christophe Petit -COMPGA18/COMPMO068 Lecture 1 - Christophe Petit -COMPGA18/COMPMO068 Lecture 1 -

Square-free split part Breaking out f

> If g odd we have
» We have a9 = o for all o € F, so

x9—x= H (x—a) » Computing
€k ged (f, X7+ 1)

> Therefore likely to break f into two parts

f(x) = ged(x? — x, f(x))

contains only factors of degree 1, no factor twice » Also notice that x9 —x = (x —a)9 — (x — a) for all a € F,
» Compute x9 mod f(x) with a square-and-multiply » Pick a random a and compute
algorithm, substract x, and compute ged - _
& pute ged (f,(xfa)qu:tl)

Christophe Petit -COMPGA18/COMPMO068 Lecture 1 - Christophe Petit -COMPGA18/COMPMO068 Lecture 1 - 72

Remarks

» Several other algorithms
» Polynomial time in deg f and log g
» Can be adapted when g is even

» Can be generalized to find other factors of f,
not just degree 1 factors

Christophe Petit -COMPGA18/COMPMO068 Lecture 1 -

	Complexity measures
	Algebra and number theory
	First algorithmic number theory tools
	Linear algebra
	Root-finding algorithms

