About these slides

Advanced Cryptography

» These are slides covered in the Academic Year 2015-2016 DLP and Factoring /-\Igorithms

» They will a priori not be covered this year

» Best usage : scan content to know what is in there, and Christophe Petit
consult later if you want to know more
» Please report any error / typo!! University of Oxford

» Note that DLP algorithms is a very active research area
today, hence the slides may already be outdated
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Discrete logarithms Integer factorization

» Given a cyclic group (G, o) (written multiplicatively),
a generator g of G and a second element h € G,
compute k € Zjg| such that g = h

» Trivial if (G,0) = (F,, +). Why?

» Recently broken if (G, o) = (IF3., %)

(more generally if characteristic is not too big)

» Believed to be hard (to different extents) for G = IF;

and for (well-chosen) elliptic/hyperelliptic curve groups

» Given a composite number n, compute its (unique)
factorization n = [ p; where p; are prime numbers

» Equivalently (why?) : compute one non-trivial factor p;
» Trivial if n = p¢

» Believed to be hard if n = pg for well-chosen p # g
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RSA and Diffie-Hellman Related assumptions

> DLP broken implies Diffie-Hellman broken » The cryptography literature includes many other,

» Factorization broken implies RSA broken somewhat related assumptions

» We don’t know whether DH broken implies DLP broken » Some of them are equivalent to DLP or factoring

» We don’t know whether RSA broken implies factorization » Some of them are strictly weaker/stronger
broken

» Many interesting open problems
» Nevertheless, the best attacks against DH and RSA today

. L » These lectures : focus on DLP and factoring
are discrete log and factorization attacks
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Outline References and Credits

Generic DLP algorithms

Index Calculus for DLP : introducti
naex alculus for introduction » Joux, Algorithmic Cryptanalysis, Chapters 3,7,14,15

» Joux-Odlyzko-Pierrot, The past, evolving present and
future of discrete logarithms
Nice DLP algorithm picture is taken from there

Subexponential DLP algorithms
Quasi-polynomial DLP algorithm
Factoring algorithms

Elliptic Curve Discrete Logarithm Problem
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Outline Generic attacks

Generic DLP algorithms

» DLP is trivial in some groups

» DLP seems harder in other groups

» Best attacks in a particular group often rely on
specific properties of the group

» Can we find better groups?

» How hard can DLP be in the best (hardest) groups?
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Group isomorphisms DLP in the generic group model
» Any cyclic group (G, o) of order n can be seen as (Z,, +) » A DLP instance is generated in (Z,, +), including a
in the following sense : there exists an invertible map generator g € Z, and another element h = kg € Z,
¢ : G — Z, such that Vx,y € G, we have » A random invertible map 6 : Z, — Z, is chosen

» The map defines a group (Z,, o) with

xoy=0(071(x)+0"(y))

p(xoy) = p(x) +»(y)

» Remark ¢ does not need to be efficiently computable

» Example : let g of order p — 1 in Zj. Can define ¢ as » The attacker is NOT given g, h nor ¢
sending any h € G to @(h) € Z, ;1 such that h = g#(". » The attacker is given 6(g), 6(h) and access to oracles
» Let X' = p(x) and y’ = p(y). We have » O1 :oninput x,y, return 6 (0~1(x) + 671(y))

» Oy : on input x, return (—071(x))

e Hy) = o p()He(y)) = ¢ H(e(xoy)) = xoy = o (X )op H(¥") » The attacker's goal is to compute k
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Generic group model Exhaustive search

» Given g, h € G do the following

» As 0 is random, there is no special property of the group L ke 1H g

that can be exploited

2: if ¥ = h then

» n itself is often hidden, and the attacker just receives 3 return k

bitstrings instead of Z,, elements (the size of n cannot be 4 else

hidden) 5 k<« k+1;H+ Hg
» Some attacks are generic : they work for any group 6 Go to Step 2

This includes exhaustive search, BSGS, Pollard’s rho 7: end if
» There exist much better attacks for finite fields » Generic algorithm
» Still no better attack for (well-chosen) elliptic curves » Time complexity |G| in the worst case, |G|/2 on average

» Can we do better?

% UNIVERSITY OF UNIVERSITY OF

XFORD Christophe Petit -Advanced Cryptography ¥) OXFORD Christophe Petit -Advanced Cryptography

Baby step, giant step (BSGS) Birthday paradox

» Let h=gk. Y tt te k. : .
€ g - Tou want to compute » Suppose there are N, people in a room. What is the

Let N' = [/]G[] probability that two people have the same birthday ?
» There exist 0 < /,j < N’ such that k = jN' + i

A\

» How many people needed to have a probability larger

L Y . han 50% 7
h=gNt o hg V' =g 5
£ € € » Answer is 23 :
» Compute Lg :={g/|li=0,...,N' -1} - . 364 363 365 —22 1
> Compute LG = {hgiJN ‘J:O,N’*l} r[a IStht]i ﬁﬁ 365 <§

» Attack requires time and memory O(+/|G]|)
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Birthday paradox Pollard’s rho (iterative function)

» Suppose you choose N, elements randomly in a set of N » Define Gi, G, G3 of about the same size such that
elements. What is the probability that two elements are G=GUGUG;and GNG ={}
equal ? » Over Z, can choose
» How should N, be wrt N to have a probability larger than G =1{0,...,|p/3]}.
50%? G ={lp/3] +1,....[2p/3]},
» Answer is O(v/N) : Gy =A{|2p/3] +1,...,p—2}
prfall distinct] — 1. N—1 . N—2 . N—Ny+1 » Define a function f : G — G such that
N N N f(z)=2zg z€ G
~ e N.e N e flz)=22 z€ G
P A f(z)=zh ze G
Taking Ny =~ +/N ensures 1 — Prfall distinct] constant (original definition, other definitions possible)
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Pollard’s rho (intuition) Pollard’s rho (simplest version)

N [VIGTT )

a+1,b+ 0;h« g;L< {(a b, h)}

s for ke {2,...,N} do
if he G then a< a+1;h« hg
if h e G, then a < 2a; b < 2b; h + (h)?
if he G;then b+« b+1;h+«+ hh
L+ LU{(a,b,h)}

end for

. Find distinct (a;, b, h) e L, i =1,2

. if no such elements then abort

: return —(a; — a2)/(b1 — bp) mod |G|

v

Start from gy := g and apply f
recursively to get g;
» By the way f is defined, we can
keep track of a;, b; such that
g = gh"
» If f is “random enough”, obtain
random elements in G and a
collision after O(/]G]) elements

Collision gives DLP solution
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Pollard’s rho analysis Pollard’s rho (improvement)

» Let (L1, L1 + L) be the indices of

first collision
» Correctness : » Then (L; +j, Ly + kLy + ) also
» Every (a, b, h) in the list satisfies h = g2hP collide
» gh = g2h" implies h = gfzij’i » For j, k such that Ly +j = kL,
» Time and memory costs N = /|G| we have Ly + kL, +j = 2(Ly + )

» Good probability of success by birthday's paradox » Now search for (a;, b; ,“,,) and

(82,'7 by;, i?z,') such that 71,' = i)g,'

» Only requires constant size memory
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Pohlig-Hellman Pohlig-Hellman (example)

> Let G =7Zj;, letg=2andlet h=7
» We have |G| =12=22.3

» Assume |G| = nynp and let g a generator of G » Recover k mod 2 by solving (26)% = 76 mod 13 <

» h=g" implies h™ = (g™)* (=1) = —1 mod 13 < k = 1 mod 2

where g™ generates a subgroup of order » Write k = 1 + 2k’. Recover k mod 4 by solving
» Solving DLP in that subgroup gives k mod n, (23)12 = 73 mod 13 & (—1)¥ = —1 mod 13
» Repeating for each factor and using CRT gives k & k'=1mod2 & k=3 mod 4

» Recover k mod 3 by solving
(24)* = 7* mod 13 & (3)k =9 mod 13 < k = 2 mod 3
» Use CRT to deduce k = 11 mod 12
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Outline QOutline

Index Calculus for DLP : introduction Index Calculus for DLP : introduction
Overview Overview
Example : Adleman'’s algorithm
The linear algebra part
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Discrete Logarithms over finite fields Fields used in cryptography

> I, where p is prime : most used, believed to be secure

» 5, where p is prime and n is small (typically up to 12) :

» Discrete Logarithm Problem (DLP) used in pairing applications

Given G a finite cyclic group, given g a generator of G,
and given h € G, find k such that h = g*

» Believed to be a hard problem when G is the
multiplicative group of a well-chosen field

> 3, or F5, where n is a product of small primes :
should be avoided (Pohlig-Hellman attack)

» I, or I3, for arbitrary n : should now also be avoided,

) ] suggested before 2013 for efficiency reasons
» (Formal definition of “hard” involves families of fields,. . .)

» Remark : typically work over a prime order subgroup
of I, or [, otherwise problems such as decisional
Diffie-Helman are easy
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L notation Playing with L notation

Lo(a; ¢) = exp(c(log Q)*(log log Q)* )
Lo(a; ) = exp(c(log Q)*(log log Q)'*)

v

Approximation : ignore constant and log log factors, write
Lo(«) (but beware they are very relevant in practice!)

Lo(@)Lo(P) = Lo(max(a, 5))
Lo(a, €)* = Lo(a, ke) if k is constant
Lo(a, c)f = Lo(a+ B, c) if k = (log Q)°

> Q is the size of the field
» a=0= Lo(a; c) = (log Q)¢ polynomial

v

» a=1= Lo(a; c) = Q° exponential

v

v
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State-of-the-art and History DLP algorithms for finite fields

» Write @ = g" (with g a prime power)
» State-of-the-art depends on relative size of g and n
» See Joux, Odlyzko, Pierrot. The past, evolving present

and future of discrete logarithms
www-polsys.lip6.fr/~pierrot/papers/Dlog.pdf
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www-polsys.lip6.fr/~pierrot/papers/Dlog.pdf
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Index calculus

» Generic framework to solve discrete logarithm problems,
but some steps are group-specific

» Let g, h a DLP problem

» Define a factor basis F C G, ensuring F contains a
generator (most elements in G are generators)

» Can assume g € F, otherwise do the following :

» Pick a generator g’ € F

» Compute a such that g = (g’)
» Compute b such that h = (g’)?
» Compute k = b/a mod |G|

» Remark : size of F will be optimized for efficiency

a
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Index calculus

> Use linear algebra to compute all log, f;,
the discrete logarithms of factor basis elements

» Deduce the discrete logarithm of h

(This part is group-specific and may involve several steps)

» Remarks :
» Relations often involve few elements,
hence linear algebra is sparse

» In some cases, h is included in the factor basis and the

last step is avoided : linear algebra produces log, h
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Index calculus

» Find about |F| relations between factor basis elements
Rp: I =1
fieF

(the algorithm to compute the relations is group-specific)

» Deduce
Z ajjlog, ;=0
fieF
or
aii e a‘;‘,l |Ogg fl 0
aLiF - ArF) \logg fix 0
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Index Calculus for DLP : introduction

Example : Adleman'’s algorithm
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Leonard Adleman Example : a naive index calculus for I,

» DLP : given g, h € [}, find k such that h = gk
» Factor basis made of small primes

Fg := {primes p; < B}
» Relation search

» Compute r; := g% h¥ for random aj, b; € {1,...,p— 1}

» If all factors of r; are < B, we have a relation

gajhb' _ H pl_ei,j

piEF

» Linear algebra produces g?h? =1
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Size of the factor basis Smooth numbers

v

An integer number is B-smooth if all its prime factors are
smaller than B

Define W(N, B) = #{B-smooth numbers < N}

v

» By the prime number theorem,

v

Let u = log N/ log B. We have

. B
[{primes p; < BY| ~ {5 YIN-B) o (1
N log B

v

Here p is the Dickman-de Bruijn function with
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Dickman-de Bruijn function p Naive analysis of naive index calculus

1/2

v

Choose log B ~ (log p)
» |F|l~B/log B~ 2(log p)t/2—(loglog p) /2, H(log p)*/?

» u=logp/logB = (log p)'/?
p(u) = (log p)—l/?(logp)l/2 ~ 2—1/2(log p)*/?(loglog p)

» The Dickman-de Bruijn function p satisfies p(u) ~ u™"

v

» Number of random trials to get |F| relations is

~ |Flp(u) ™ ~ 2(1/2+0(1))(log p)'/?(log log p)

» Each trial has polytime complexity in log p

B . . 1/2
+ ; 3 w ~ ow(logp)

e lkmar-a i non oot an i sl 3 » Linear algebra cost is |F|* ~ 2

Mot steba s o s oaws  |og p A2 —u log U

the function. The graph nearly makes a downward line on the logarithmic > - . » Total cost dominated by relation search
(picture source : Wikipedia)

» B~ L,(1/2; c) leads to slighly better cost L,(1/2;c’)

scale, demonstrating that the logarithm of the function is quasilinear
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Playing with L notation (2) Same algorithm for 3,

» DLP : given g, h € F3,, find k such that h = g*
Lo(cv; ) = exp(c(log Q)*(log log @)*~*) » Factor basis made of small “primes”

Fg := {irreducible f(X) € F,[X]| deg(f) < B}
» Probability that an element of size L(«) is L(/3) smooth is
L > Relation search
(L(a = B))" » Compute rj ;= g% h? for random aj, b; € {1,...,p— 1}
» Factor rj € Fo[X] with Berlekamp's algorithm

» If ¢ is constant, the probability that an element of size B » If all factors € Fg, we have a relation g?h® =[] fei
' — Hfer’i

is B/c-smooth is constant . b
» Linear algebra produces g?h® =1
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Outline Linear algebra

Index Calculus for DLP : introduction

The linear algebra part » Given matrix M and vector x, find all y such that My = x
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Gaussian elimination Gaussian elimination

» Algorithm when M is invertible

» Observation : if My = x then for any invertible N, L: for each column j, from /=1 to n do

we have NMy — Nx 2: Find a nonzero eIen_1ent in this <‘to|umn .
. o ) . ) 3 Swap the row of this element with row /i
» In particular, this is true when N is a matrix which 4 for each row j below row i do
» Swaps two rows of M 5 Let ¢ := —M;;/M;;
» Multiplies one row by an invertible constant 6 Add c times row i to row j
» Adds a multiple of one row of M to another row of M to erase the value in (j, /)
» Gaussian elimination repeats these operations until the 7. end for
resulting matrix is upper triangular s end for

» Adapt step 2 otherwise
» Cost is O(n®) multiplications

UNIVERSITY OF UNIVERSITY OF

OXFORD Christophe Petit -Advanced Cryptography { XEORD Christophe Petit -Advanced Cryptography




Resolution from Gaussian form Sparse linear algebra

> Algorithm when M is invertible » A matrix is sparse if each row contains a small number of

1: for each column i from nto 1 do nonzero elements
2: Recover value of unknown i, using equation i and

all values of previously computed unknowns j > i
3: end for

» Can store larger size matrices by storing only (i, j, M; )
for nonzero elements M; ;

. . ) » Gaussian elimination will kill the sparsity quickly

» Adapt to determine the afine space of solutions v + ker M
otherwise » Two approaches for sparse matrices :

» Cost is O(n?) multiplications » Structured Gaussian elimination

. . e Algorithms based on matrix-vector multiplications
» Can be used to invert M in O(n®) multiplications - e ey uitiphicatt
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Structured Gaussian elimination Lanczos algorithm

» If M is invertible, My = x < MMy = Mtx

» Consider the linear system My = x hence we can assume M is symmetric positive definite
» For the matrices M occurring in index calculus : defining a scalar product (x, y)m := xMy*

» Each row contains few elements » Lanczos is iterative : over the real/complex numbers,

» The first columns contain much more elements than the the algorithm can be stopped before the end with a

last ones reasonable approximation of the solution
» Structured Gaussian elimination involves several tricks » First compute a basis {v;} of orthogonal vectors with
such as removing variables that only appear once or twice respect to the scalar product (, ¥)u,

» Used as preprocessing to reduce the size in practice » Then compute 37, (x, vi)v; = S0, (v, vi)mvi = y
> Heuristic » Second part involves O(n) matrix-vector multiplications,

each one at O(n) cost if each row contains O(1) elements
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Computing the orthogonal basis Cornelius Lanczos

» Start from a random wy and v = wy/||wi||m

Then heuristic modification of Gram-Schmidt algorithm
1. wit1 = My; )
2. Wiy = wiv1 — 2 (Wit v - )
3. vigr = wi g /|w 4l lm

v

» Second step is in fact
/! —
Wi1 = Wiy1 — (Wi+17 Vi)M cVi— (Wi+17 Vi—l)M s Vicl

» Likely to converge to a basis {v1,...,v,} over the reals;
needs some adjustment for small characteristic finite fields
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Wiedemann algorithm Wiedemann algorithm (2)
» Reconstruct the minimal polynomial of M : » Main idea to compute minimal polynomial :
smallest degree polynomial f such that f(M) =0 » Construct (a, M'x) for a random vector a and
P g i=0,....2n-1
» If f(a) = > i, fia!, then | = —% i1 fiM' then » Use Berlekamp-Massey's algorithm to compute the linear

recurrence in this sequence

d d
1 ; 1 .
X=-= E fiM'x =M <_f E f,-M’1x> » The whole algorithm requires O(n) matrix-vector products
0 =1 0 =1 » Recent discrete log records use Block Wiedemann

» We deduce y such that My = x http://caramel.loria.fr/p180.txt
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http://caramel.loria.fr/p180.txt

Outline Further subexponential DLP algorithms

Jows - Lare

C(128/9)
Multiple Number Field Sieve
4

Subexponential DLP algorithms

Coppersmith 98 Special Number | co/9)
Function Field Sieves Lo (3) C(32/9) ! C((02+ 26VTB)/21) |
. . in cara. 2, i I Schirokauer Gord.,
\ ., C(64(deg P+1)/(9deg P)) | ]
Number Field Sieves I .cuon;neldsme5 | CEEDRRIRRETRD | | SNES
o BEERID | o | C(32/9) 1
Joux 2015 § | 0 | Gon
bqura | | i ]
i+ o0 when p = 1) | ; -
0 1 H H Lo
© small p 4 medium p 3 highp Iy
fixed p ‘ iuxzui prime

Source : www-polsys.1ip6.fr/-pierrot/papers/Dlog.pdf
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Outline Don Coppersmith

Subexponential DLP algorithms
Coppersmith
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www-polsys.lip6.fr/~pierrot/papers/Dlog.pdf

Remember : basic algorithm for 5, Coppersmith's algorithm for Fyn

o . _ ok
> DLP : given g, h € F3,, find k such that h = g » Idea : reduce factor basis to polynomials of degree n'/3

» Factor basis made of small “primes” (vs. n*/2) by ensuring all r; have degree n?/3 (vs. n)

» We have Fan = F[x]/(p(x)) for any irreducible p

Fg := {irreducible f(X) € F,[X] | deg(f) < B} Choose p(x) — x" -+ q(x) where deg g < n?/3

» Relation search Let k = 2¢ ~ n'/3, let d ~ n'/3
» Compute rj := g% h? for random a;, b; € {1,...,p— 1}
» Factor rj € Fo[X] with Berlekamp's algorithm » e
» If all factors € Fg, we have a relation g?h? = [ier £ » Let r(x) = x"™ mod p(x) = g(x)x

' with deg r < k + deg g =~ n?/3

» Let h = n?? least integer larger than n/k

» Linear algebra produces g?h® =1

% UNIVERSITY OF UNIVERSITY OF
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Coppersmith's algorithm for Fyn Individual logarithms
» Factor basis are elements with degree smaller than d, » For increasing 7, until m; and n; are smooth enough
where d smallest integer > n'/3 » Use continued fractions/ Euclide algorithm to write
» Relations will be of the form d(x) = (c(x))* h(x)x" = mj(x)/ni(x) with deg m;,deg n; < n/2
for ¢, d smooth, where ¢ constructed in a special way > Check smoothness of m; and n;

» Continue until both are O(n?/3) smooth

» For each factor m

> Relation search
» Take a(x) and b(x) coprime with degrees d

» Take c(x) = a(x)x" + b(x) degree O(n?/3) » Choose a(x) and b(x) coprime random such that

» Take d(x) = (c(x))* mod p m|c where c(x) = a(x)x" + b(x)

» We have d(x) = r(x)(a(x))* + (b(x))¥ degree O(n*/3) > Let d(x) = (c(x))* mod p(x) as above

» If both ¢ and d are smooth, we get a relation » If d and ¢/m are smooth enough, we either iterate on all
» Probability O(2=""°~¢) (smaller degree) factors or we write m in the factor basis
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Outline Function Field Sieves

; o277 /3)
O p I
I
1984 !
Lq (_li) : ©(32/9) Joux - Pierrot
in cara. 2:
i b | C(64(deg P+ 1)/ (9 deg P))
Function Field Sieve |
1999 | 2006 (gllzllh!f'
Function Field Sieves Adleman (IS - ]‘ullly r:ummt:

Caudry - Joux - Thomé

Special Number Field Sieve

Subexponential DLP algorithms

Joux
Lg(1/4)

Ley(e + o(1)) when p = Lg(a)

i |
G m——mm e m—

i
i
i
U
f
T
I
I
i small p medium p
I

I

I

fixed p

Source : www-polsys.1ip6.fr/-pierrot/papers/Dlog.pdf
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Adleman-Huang Factor basis and relations

» We want to solve DLP in [F,», where p is constant

Set smoothness bound d ~ nt/3 » Factor basis is 7 = F; U F, where

g . 1. Fi contains all irreducible polynomials of degree at most
» Define f(x) = x" + q(x) where deg g < n*/3 d over I,
» Let k ~ n'/3, let h least integer larger than n/k, 2. Fo={r+ms| N(r+ys)e F}

and let 6 = hk — n (Here N(r + ys) = rkH(x, —s/r) is function field norm)

» Let m(x) = x" and H(x,y) = y* + x%q(x)

» To find a relation, take random couples of polynomials
» We have a homomorphism

(a, b) both of degrees about n'/3, until both
1. am+ b is d-smooth
Foly] . Fplx] :
: — S (x,y) = (x, m(x)) 2. N(ay + b) is d-smooth
(Hxy)) — (f(x))
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www-polsys.lip6.fr/~pierrot/papers/Dlog.pdf

Adleman-Huang (2) Joux-Lercier

: Gza)
O p I
. I
» From each such couple deduce a relation 1981 Special Number Field Sieve
I ]

{

(32/9)

LQ (_5) Joux - Pierrot
Z €; |Og P,‘ = Z f; |Og Q,‘ in cara. 23

C(64(deg P + 1)/(9deg P))
PieFy QieF Function Field Sieve 3 |
1999 | 2006 Quasi-
23 ‘g:::‘lg“ | ]‘1:|yn(nnin”
» Remark : deg(am + b) =~ deg N(ay + b) =~ n*/? so Joux Al
probability that a random couple (a, b) gives a relation is et

i
l
|
LQ:(-. | 0(1)) when p = Lg(a)
T
I
|
I
I
I
I

about L,(1/3)7*

» Individual logarithms as in Coppersmith’s algorithm

i |
G m——mm e m—

small p medium p
fixed p

Source : www-polsys.1ip6.fr/-pierrot/papers/Dlog.pdf
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Joux-Lercier Joux-Lercier

» We have the following commutative diagram of

> We want to solve DLP in Fgn, where g = Lgn(1/3) homomorphisms

» Find polynomials g1, g of degrees dy, d» =~ n'/? over F,
s.t. g@(g1(x)) + x has an irreducible factor I of degree n

» Letting y = g1(x), we see that g;(—ga(y)) — y has an X = 32V \Kj_ &1(x)

irreducible factor /" of degree n

» If @ € Fpn is a root of [ then 8 = gi(a) is a root of I’
» If 5 € Fynis a root of /" then oo = —g»(/5) is a root of | y eN X«
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Factor basis and relations Individual logarithms

» Factor basis is F = F; U F, where » Let h € Fy[x] for which we want to compute DL
» Fi = images of degree 1 polynomials in F[y] by y « § » Compute xih(x) until the result is moderately smooth
» F, = images of degree 1 polynomials in F4[x] by x + « » For each factor I, find a, b € F,[x] such that

» To find relations, pick random h(x,y) = xy + bx+cy +d » Degrees not too large, about deg A’

v

W (x) | (a(x)g1(x) + b(x))
(a(x)g1(x) + b(x)) / H(x) smoother enough

A 2R n o | 0 (1/3) > a(g2(y))y + b(g2(y)) smooth enough
» Alternatively decrease the factors on each side,
until all factors on both sides are linear

until both h(gz2(y), y) and h(x, g1(x)) split completely

v

» Splitting probability d%! .

1
&l
» Size of F is also L4 (1/3)

UNIVERSITY OF UNIVERSITY OF
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Outline Number Field Sieves

C©(128/9)
Multiple Nu
-
Subexponential DLP algorithms c@*/30)
Special Number Iisld/Siavaltt c©1/9) NES
b C((92+26V13)/27) !
Number Field Sieves | C(64(deg P+ 1)/(9 deg P))

C(32/9)

highp 1
fixed, prime
Ve field

medium p

Source : www-polsys.1ip6.fr/-pierrot/papers/Dlog.pdf
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Gordon Factor basis and relations

» Let B~ L,(1/3) be a smoothness bound
» Factor basis is F = F; U F, where
» F1 = {primes smaller than B}

» We want to solve DLP in [F,,, where p is prime
» Choose m ~ L,(2/3)

> Let p= 27:0 fim' with d ~ (log p)'/* > F, = {degree 1 prime ideals v | N(v) € F1}
» Let f(x) = 30 fix! » Search for pairs (a, b) with a = b~ L,(1/3) such that
» We have a ring homomorphism a+bme Fianda+bxeF
> Note that
¢ QI]/(f(x)) = Fp - x = m a+bm~ N(a+ bx) = (—b)¥f(—a/b) ~ L,(2/3)

so smoothness probability is L,(1/3)

% UNIVERSITY OF UNIVERSITY OF
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Individual logarithms Technicalities

» Suppose we want DL of a particular h

» First compute x'h until the result is L,(2/3) smooth » Need to cancel units appearing in the relations
» For each factor h;, = add these units to the factor bases
» Generate L,(1/3)-smooth ¢; = hj, let m; = h;{;, » If the class number of Q[x]/(f(x)) is h > 1 then
let f;(x) such that f;(m;) = 0 mod p, need to remove non-principal ideals from the relations
until N;i(x) = £;(0) is L,(1/3) smooth = implicitly take h powering of the equations to get
» Search for pairs (a, b) with a = b~ L,(1/3) such that principal ideals

a+ bm; € F1 and Ni(a+ bx) is L,(1/3) smooth.
Repeat and eliminate factors not in F3
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Joux-Lercier-Smart-Vercauteren Joux-Lercier-Smart-Vercauteren

» We want to solve DLP in F,», where p = L,x(2/3)

» Choose f; € Z[x] of degree n with small coefficients,
with a root m modulo p

»leth=f+p
» Define number fields K; = Q[x]/(fi(x))
» We have two homomorphisms

C(128/9)
Multiple

feve | o) | onis
| C((92+26v13)/27) + 19
| CE(egP+ 1)/ deg P) | e

Spec

C(32/9)

o K= Fpix—m

Source : www-polsys.1ip6.fr/-pierrot/papers/Dlog.pdf
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Factor basis and relations Remarks

» Let B~ L;n(1/3) be a smoothness bound

» Let F, = {primes smaller than B} » Individual logarithms as in Gordon, alternating descent in
» Factor basis is F = F; U F, where Ki and K;

» Fi={c+dm| Ni(c+dx) = (—d)*hi(—c/d) € Fo} » If K; has a non-trivial automorphism group Aut(K)

» Fo={c+dm| Nao(c+ dx) = (—d)*hH(—c/d) € Fo} (for example if it is Galois) then corresponding part of
» Search for pairs (a, b) with a = b ~ Lpn(1/3) such that factor basis can be reduced by a factor #Aut(K)

both N;(a + bx) € Fo » Multiple number field sieve uses more than 2 number

» Note that N;(a + bx) =~ L,»(2/3) so smoothness fields in parallel
probability is L,(1/3)
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Outline Quasi-polynomial DLP algorithm !

CErs)
Copper

1984

Lq (%)

Special Number Field Sieve

C(32/9) 2013

'
|
I
!
|
|
I
1 Joux - Pierrot

in cara. 2,
\ b \ C(64(deg P+ 1)/(9 deg P))
Futnction}F ield Sieve |

999 | 2006 Quasi-

A g, Polynomial

Quasi-polynomial DLP algorithm Joux 2013 85 gaudry - Joux - Thoms |
Lgo(i/a) !

]
fl(‘\:(n + o(1)) when p = Lg(a)
T

B

|
|
T
) 1
! 3 .
i small p medium p
I
fixed p
|

Source : www-polsys.1ip6.fr/-pierrot/papers/Dlog.pdf
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Barbulescu, Gaudry, Joux, Thomé Sparse medium subfield representation

v

A finite field K admits a sparse medium subfield
representation if

> K = F p« for some prime power q
» There exist ho, h1 € Fg2[X] with small degrees, such that
X%h1(X) — ho(X) has a degree k irreducible factor /
In practice we can find hy, hy of degrees at most 2
The polynomial / is used to define F,o = F2[X]/(/(X))
Elements in such field will be seen as polynomials of
degree less than k over F .

v

v

v
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Quasi-polynomial DLP algorithm ! Key proposition

Let K = o« with a sparse medium subfield representation.
» If K admits a sparse medium subfield representation then Under various heuristics,

(initially under various heuristics, now getting cleaner)
any discrete logarithm in K can be computed in time
bounded by max(g, k)°(og#)

1. There is an algorithm (polynomial time in g and k) which
given an element of K as a polynomial P € F,[X]
with 2 < deg P < k — 1, returns an expression with at

» If g = k then g = O(log |K]) hence complexity most O(g?k) terms
qOlleea) = 20((leglog|K1)*) quasi-polynomial in log |K|
» If |K| = p" with characteristic p = (log |K|)°*) then log P = e log iy + Z &ilog P;
set g = p/°& " and work in extension field L = Fan,
still quasi-polynomial where deg P; < [2deg P] and e, € Z
» If ¢ = L,«(c) then complexity LqZk(a)O('°g'°gq2k) 2. There is an algorithm (polynomial time in ¢ and k) which

returns log hy and log(X + a) for all a € F

% UNIVERSITY OF UNIVERSITY OF
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Using the Key proposition Using the Key proposition (2)

» Given P € K we use first part to obtain

log P = eglog hy + Z eilog P;
» The procedure constructs a tree with arity O(q%k) and

where deg P; < [ deg P] O(log k) levels
» Apply first part recursively on each P; » Number of nodes is (qQk)O(logk)
» Eventually » Each node has a cost polynomial in k and g

log P = eglog hy + Z e, log(X + a)

aE]qu

» Apply second part to get log P
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Main ideas in Key proposition Sketch of the algorithm

» Systematic equation
» Given P, substitute X by m- P for various m, so that

X=X = H (X —a) products P(X) — « appear on the RHS
ke » Use the sparse field representation to reduce the degree
» Sparse field representation on the LHS to about the degree of P
ho » Keep the relation if all factors of the LHS have degree
N(hXT — h) = X7 = ™ mod / smaller than [} deg P]
. . . » Combine the relations with linear algebra to eliminate all
» Replace X by m- P in systematic equation, where factors P(X) — 3 with 8 # 0
aP+b a b » For second part : take P(X) = X
m-P = P d and m= ( d) € SL(2,Fp)

NIVERSITY OF
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Remarks QOutline

» Relations obtained are identical for all m = Am’ with
A €F, and m e SL(2,F,), and more generally we pick
m in distinct cosets of PGL(FF,2)/PGL(F)
» Probability that a random polynomial of degree D is
D/2-smooth is constant
» Analysis involves several heuristic assumptions ; Factoring aleorith
they are likely to be fine, if not .then we are likely to refine acg’;?f:ég:::haz and Quadratic Field Sieve
them and deduce a better algorithm (General) Number Field Sieve
Elliptic Curve Factorization Method
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Integer factorization Factorization vs Discrete logarithms

» Discrete logarithm and factoring algorithms are similar

» Given a composite number n, compute its (unique) » Exceptions (?)

factorization n =[] p{ where p; are prime numbers » Quasi-polynomial time algorithm for discrete logarithms
in small to medium characteristic

» Equivalently : compute one non-trivial factor p; + Elliptic curve factorization method

» We will assume n = pq, where p and q are primes
» Hardness of large characteristic field discrete logarithms
and integer factorization is comparable today
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Outline Sieve of Eratosthenes

» Compute all primes up to v/n
using a sieve
» Try to factor n by each of them

» Complexity O(y/n)

Factoring algorithms

Basic Algorith d dratic Field Si . . .
asic Algorithms and Quadratic Field Sieve » Remark : sieve can also be used to quickly find

all smooth numbers in an interval
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Pollard’s rho Pollard's p — 1 method

> Idea : find x and y such that gcd(x —y,n) = p o . I
in other words x = y mod p but x # y mod n » A number x =[] p;" is B-powersmooth if p’ < B

. " _— ) . » The method assumes p — 1 is B-powersmooth
» Define some “pseudorandom” iteration function f

» Compute iterates x; and x; > Let s be the product of all pj" < B
» Simultaneously compute ged(x; — xa;, n) » By assumption (p —1)|s, hence g°=1mod p

» We deduce gcd(g® — 1,n) =
» By birthday's paradox, ged(g )=r

X; = Xo; mod p after O(p'/?) trials on average, and » Only works if some factor p such that p — 1 smooth!
Xi = xo; mod n after O(n"/?) trials on average » Compute gcd with square-and-multiply algorithm
» Hence we succeed after O(p'/?) trials on average

Christophe Petit -Advanced Cryptography - Christophe Petit -Advanced Cryptography

Carl Pomerance Quadratic Field Sieve : Rough version

» A congruence x> = y? mod n such that x # 4y mod n
implies that ged(x — y, n) is a non trivial factor of n

» Set a smoothness bound B ~ L,(1/2)

» Factor basis F = {primes smaller than B}

» Pick random x; until you find a relation

e
x? mod n = H s’

s;eF

(probability is about L,(1/2)7!)
» Repeat until you have |F]| relations

Christophe Petit -Advanced Cryptography 3o Christophe Petit -Advanced Cryptography




Quadratic Field Sieve : Rough version (2) Improvements

» For each i write the exponents e; in a row vector ] ]
» Choose x slightly bigger than y/n such that

» Perform linear algebra modulo 2 on these vectors to find
n
aj such that > | eja; = 2b; even xtmodn=x%—n=(vn+t)?—n=2t/n+ ¢
» Deduce a congruence

s is about the size of v/n
a

2
<H Xia;> _ H (Xi2>3f _ H H sje” _ H sfj » Sieving : instead of testing smoothness with trial
i

divisions, build a basis of smooth numbers of the form

x? — n by extending the sieve of Erathostenes

i i s;eF s;eF

» Only 2 congruences needed on average
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Outline (General) Number Field Sieve

v

Original idea by Pollard, later developed by many authors

v

Eventually led to discrete logarithm algorithms as well
» Let d =~ (log n)'/3 and m =~ [n'/9]
» Write n = 30 fim

Let f(x) = 0, fix’

» We have a ring homomorphism
Q(x) — Zn
(f(x))

v

Factoring algorithms

(General) Number Field Sieve

X —m

UNIVERSITY OF

Christophe Petit -Advanced Cryptography OXFEORD Christophe Petit -Advanced Cryptography
),

UNIVERSITY OF




Factor basis and relations : rough idea Technicalities

» As such the number field side of equation may not be a

> Defi th bound B =~ L,(1/3 . . .
etine smoothness boun (1/3) square after linear algebra : only its norm is a square

» Define factor basis F = F; U F, where

» Fy = set of primes smaller than B » Z[x] may not be the full ring of integers

» Fo={a+bm|abeZ Na+bx) e Fi} » Need to deal with units
(here N(a+ bx) = (b)?f(a/b) is the number field norm) » Need to deal with non-unique factorization /
» Generate pairs (a, b) with a, b ~ L,(1/3) until both ideal class group when class number f > 1
a+ bm and N(a + bx) are B-smooth » All issues solved by Adleman :
» Deduce a relation from each such pair » Fix a random set of O(log n) primes q;
» Use linear algebra to get x, y such that x> = y?> mod n » Consider multiplicative characters extending Legendre
» Complexity =~ L,(1/3) symbols xq,(ax + b) = (a"c];b

» Include (xgq;(ax + b)); in each exponent relation

NIVERSITYOF Christophe Petit -Advanced Cryptography 7 Iy Christophe Petit -Advanced Cryptography

Remarks Further readings

» Instead of generating a, b randomly, fix random a values
and sieve on b for each fixed a

» Initially various heuristics, but now rigorous bound
for complexity of finding x2 = y? mod n
(yet we cannot prove x # +y mod n !) » Buhler, Lenstra, Pomerance, Factoring integers with the

» Pomerance, A Tale of Two Sieves

» Exact constant more efficient for Mersenne-like numbers Number Field Sieve
(Special Number Field Sieve) than arbitrary numbers
(General Number Field Sieve)

» Improved constant using several number fields in parallel
(Coppersmith'’s trick)
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Outline Pollard’s p — 1 method

» A number x =[] p{" is B-powersmooth if p" < B

» The method assumes p — 1 is B-powersmooth

» Let s be the product of all pf' < B
» By assumption (p — 1)|s, hence g°=1mod p
» We deduce ged(g® —1,n) = p

Factoring algorithms
» Only works if some factor p such that p — 1 smooth !

Elliptic Curve Factorization Method

UNIVERSITY OF UNIVERSITY OF
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Elliptic curve factorization method Elliptic curve addition law

» Let E:y? =x34 asx + ag
> Let Py = (x1,%1), P2 = (x2,y2) two points on the curve

» The chord-and-tangent rules lead to addition law

formulae : for example we have P; + P, = (x3, y3) where
A= Lon g, esyx
xo—x1' Xo—x1 7

X3:)\2—X1—X2, y3=—Ax3 — v

> Idea : generalize previous method when > These formulae involve divisions

neither p — 1 nor g — 1 are smooth » Over F,, a division by 0 means P; is point at infinity
» The group order #E(Fp) of an elliptic curve can be » Over Z,, a division fails if (X2 — Xl) is not invertible

smooth even when p — 1 is not! .
P » A failure reveals a factor of n!
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Elliptic curve factorization method Elliptic curve factorization method

Choose E and P = (x,y) € E(Z,) » For a random curve, we expect #E(F,) to be £

Let B be a smoothness bound on #E(Z,) for p|n uniformly distributed in

Compute s = [[p" where p' < B #E(F,) € [(p+1) — 2V (p+1) + 2V7]

We have [s]P = 0 = “point at infinity” modulo p

but [s]P # 0 in Z, > Let B~ L,(1/2) so that smoothness probability is about

5. Try to compute [s](P) : a division by p must occur and (Lp(1/2))7
produce an error » Repeat with random curves until you get a factor

A

6. When a division by some d fails, compute » Remark : runtime depends on the smallest factor

d(d 1 » In practice, the method is used as subroutine to factor
ged(d, n) # middle-size integers when log, n ~ 60 — 80 bits
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Factorization in practice : Magma Factorization in practice : Magma

The Magma Number Field Sieve Implementation

The general Factorization function is designed to give close to optimal performance for the factorization of integers that may be
et e oo ot To sty oo lors th et seoionn s o ot etk e h Mg NS, 1 o i v s i of o . T o
primality proving algorithm is invoked (unless a flag is set to avoid this - see below). See the previous node for compositeness NFS implementation also requires a significant amount of memory and disk space to be available for the
g o o s g sera oyl uraton of o airgaton, ot avampe facorzaton o an 8.6 numbe oy et t o2t 64
the general factorization techniques is employed, tis checked whether |n] s of the special form b+-1, in which case an intelligent megabytes of RAM and half a gigabyte of disk space.
o s o It g o st s o1 w3 ot Magmals NS implamentaion usas aneinear poynomil (e “atonlside) an cn poyomil of her
small primes (by defaut up to 10000). Afe this t s checked whether the remaining composite number is the povier of a posiive degree (the "algebraic side"). At the time of writing this is not a major restriction, since the best methods for
Ineie o sprptes ot o et e i Ple’ oo gk g 99! Hrsns o o o dearee (e lgerac sider) At e ofwilng i ot major etiction, snce e estmethods o
oo o o aith o o sl by s Sl prs T4 SIOES ko0 eecingpoyromils for facorzaon of umbers of mor han 100 s ol onenear anc oe e
PollardRhol imit. Itis possible, from this point on, that several composite factors still need factorization. The description below polyr gma pr g a g lge polyr
applies to each of these. the factorization of a particular number, following the ideas of Montgomery and Murphy in [Mur99).
The final two algorithms deployed are usually indicated by ECM (for Elliptic Curve Method) and MPQS (for Multiple Polynomial Magma provides two methods for using the NFS implementation. The first is the one-step function NFS, which
Quadratic Sieve). By default, ECM (which s likely to find “smaller' factors if they exist)is used with parameters that depend on the provides a naive NFS factorization attempt using default algorithm parameters.
e e s compona e o o ot 35 e i, WPOR s b
method available for factoring integers of more than about 40 decimal digits especially for products of two primes of roughly equal The second, more powerful method is to work with an NFS process object, splitting the algorithm into four
;‘" ‘” the 'E‘"‘"”"‘g “""‘VV‘:‘"‘E s "“‘”"""‘a" 25 digits, ECM is '9:‘” ;\:k;ﬂ ""Wd‘" an ‘”da"':‘“’ loop untila ":“" s found. ‘stages: Sieving, Auxiliary data, Linear algebra and Final factorization. This approach allows greater control over
0 oo o et s et It ot o ECI s suin g CPin. T o vt 1ot 00— he sigorihm, a8 the user may supply thelr own aorih perameter value. t iso skows the user o isrute
ECMLimit are set as optional parameters by the users, the algorithm will continue until the complete factorization has been the computationally intensive sieving and final factorization stages over several machines or processors.
completed - - e [ PR

» No Number Field Sieve involved by default » May require expert knowledge to use properly
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Factorization in practice : CADO-NFS Recommended key lengths

CADO-NFS

Crible Algébrique: Distribution, Optimisation - Number Field Sieve

Introduction

Download Introduction
« Supported Platforms
= Required Software

Rea CADO-NFS is a complete implementation in C/C++ of the Number Field Sieve
ools

. (NFS) algorithm for factoring integers. It consists in various programs
Who Used Cado-Nfs corresponding to all the phases of the algorithm, and a general script that runs them,
Features possibly in parallel over a network of computers. Starting with version 2.0 there are
Known Bugs some functionalities for computing discrete logarithms in finite fields. CADO-NFS

Contact/Support is distributed under the Gnu Lesser General Public License (LGPL) version 2.1 (or

any later version).

» Probably best available software today !
» Check www.keylength. com for updates!

UNIVERSITY OF
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Outline Elliptic curves

» Set of rational points satisfying some cubic equation
» Group structure given by chord and tangent rule

e

R=P+Q
Elliptic Curve Discrete Logarithm Problem
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www.keylength.com

Elliptic curve discrete logarithm problem (ECDLP) Reductions to simpler DLP

» |dea : transfer ECDLP to a “simpler” DLP problem

» Given E over a finite field K, through a group homorphism
Given P € E(K), given Q € G ;=< P >,
Find k € Z such that Q = kP. » MOV reduction if |G| divides ¢" —1 [MOV93]

Use pairings to transfer ECDLP to DLP on K™

» Polynomial time for anomalous curves [SA98,598,599]

» Common belief : best algorithms are generic ones Trarjsfer ECDLP to a p-adic elliptic logarithm if |G| = |K|
(at least for the parameters used in practice) » Weil descent for some curves over Fp” [GS99,GHS00]
160-bit ECDLP ~ 2048-bit DLP or factoring Transfer ECDLP to the Jacobian of an hyperelliptic curve

» In practice K is often a prime field, a binary field with
prime extension, or IF,» with n relatively small

» Only work for specific families

UNIVERSITY OF
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Remember : Index calculus Index calculus : success stories

» General method to solve discrete logarithm problems » Finite fields : Adleman [A79,A94], Coppersmith [C84]

L Deﬁne. a factor basis 7 C ¢ . Adleman and Huang [AH99], Joux [J13],
2. Relation search : find about | F| relations Barbulescu-Gaudry-Joux-Thomé [BGJT13]
2P+ bQ = Z &P Subexponential complexity for any field

ey Quasipolynomial for small to medium characteristic fields
J

» Hyperelliptic curves :

Adleman-DeMarrais-Huang [ADH94], Enge [E00],
aP+bQ=0 Gaudry [G00], Gaudry-Thomé-Thériault-Diem [GTTDO7]
Subexponential for large genus; beats BSGS if g > 3

3. Do linear algebra modulo |G| on the relations to get

» Define F s.t. there is an “efficient” algorithm for Step 2 L . .
) ) » Elliptic curves : no algorithm at all until 2005
» Balance relation search and linear algebra
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Index calculus for elliptic curves Summation polynomials [so4]

» Relate the x-coordinates of points that sum to O
> Sr(Xh R aXr) = 0

» Every element factors uniquely as a product of primes o I(x. vy _
< vi) € E(K) st (xi,y1)+ -+ (x,0) =0
» “Good" probability that random elements are smooth G 1) (K) ( ) G i)

» For finite fields, small “primes” are a natural factor basis

» Recursive formulae :

» Similarly for elliptic curves, we will need So(x1, %) = x1 — X2
1. A definition of “small” elements S3(x1, %2, X3) = ... (depends on E)
2. An algorithm to decompose general elements into Si(xt, -y x) =
(potentially) small elements Resx (Sr—k(X1y -+ s Xm—k—1, X)y Sk2(Xr—ks - -+, X, X))
» First partial solutions given by Semaev [S04] » S, has degree 2"=2 in each variable

Symmetric set of solutions

NIVERSITY OF
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Semaev's variant of index calculus Focus on composite fields [Goo,D11]

» Semaev’s variant of index calculus :

» Factor basis - » For K := [Fgn, Gaudry and Diem proposed V :=F,

define Fy := {(x,y) € E|x € V} where V C K » Finding relations amounts to finding x; € Fq
» Relation search : for each relation, with Spi1(X1,. .., %0, Xi) =0
Compute (X;, Y;) := a;P + b;Q for random a;, b; » See F,» as a vector space over F,

> See polynomial equation S,;; = 0 over [Fy» as a system

Find the corresponding y; . . . .
P &Y of n polynomial equations in n variables over [

» Semaev’s observation : ECDLP reduced to » System can be solved with generic algorithms using
solving summation’s polynomial with constraints x; € V complexity polynomial in Bézout bound 0(2"2)
» For K =F,, Semaev proposed V := {x < B} » Gives L(2/3) algorithm when n =~ \/log q ~ (log ¢")*/3

but he could not solve summation polynomials

% UNIVERSITY OF
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ECDLP : state-of-the-art Binary case [D11b,FPPRI2]

Let K :=Fon. Fix n < nand m~n/n’

» Factor basis :
Choose a vector subspace V of Fy: with dimension n’/
Define Fv :={(x,y) € E|x € V}

> We have an L(2/3) algorithm to solve ECDLP over
fields Fgn if g and n have the right size

» In applications we are interested in ECDLP over
either prime fields, or Fo» with extension degree n prime » Relation search : find about 2" relations. For each one,

Compute (X;, Y;) := a;P + b;Q for random a;, b;

Find x; € V with Spy1(x1, ..., Xm, X;) =0

Find the corresponding y;

» Some algorithms have been suggested in those cases,
but their complexity is unknown

» Linear algebra between the relations

NIVERSITY OF
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Finding relations : Weil descent Complexity of characteristic 2 algorithm

» Finding relations amounts to » Computing S,,;1 with resultants : cost 2% where
Finding x; € V with S, 1(x1,...,Xm, X) =0
) t =~ m(m+1)
> Let {v1,..., vy} be a basis of V

/

Define x; € F such that x; = 37, x;v; » Finding 2" relations : total cost 22 where
il ” t ~ n' + log Tr
5m+1 lejvjy"'rzxn’jth =0
= =1 where Tg(m, ', n) is time to compute one relation

. . N
» See Fyn as a vector space over [y » (Sparse) linear algebra on relations : cost 2“'** where

» The polynomial equation over [F,» corresponds to

. . rQ'./I | /s
a system of polynomial equations over F, tz ~logm+logn+wn

X UNIVERSITY OF 2 UNIVERSITY OF
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Complexity of characteristic 2 algorithm ECDLP over Prime Fields

v

No vector space available to define the factor basis

v

Find a rational map L = oj’-":le with a large zero set
Define a factor basis F = {(x,y) € E(K)|L(x) =0}
Each relation search now amounts to solving

» Conjectured to be subexponential based on a heuristic
assumption on Groebner Basis algorithms behavior
and experimental results [PQ12]

v

v

» Original assumption perhaps too optimistic Smi1(X11, - -y Xm1, X) =0
» Still an open problem xiji1 = Li(x:)) i=1,....mj=1....n—1
O: Ln’(XI',n’) I: 17...7m4

v

Complexity is an open problem

UNIVERSITY OF UNIVERSITY OF
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Outline Conclusion on (EC)DLP and factoring

» Very active field of research, with recent breakthroughs

v

Research challenges
» Find new algorithms for these problems
» Analyze existing algorithms
» Consider related problems

v

Come to me if interested in a project in the area

v

Recommended key sizes : www.keylength. com

UNIVERSITY OF

UNIVERSITY OF

Christophe Petit -Advanced Cryptography OXFEORD Christophe Petit -Advanced Cryptography
),



www.keylength.com

	Generic DLP algorithms
	Index Calculus for DLP: introduction
	Overview
	Example: Adleman's algorithm
	The linear algebra part

	Subexponential DLP algorithms
	Coppersmith
	Function Field Sieves
	Number Field Sieves

	Quasi-polynomial DLP algorithm
	Factoring algorithms
	Basic Algorithms and Quadratic Field Sieve
	(General) Number Field Sieve
	Elliptic Curve Factorization Method

	Elliptic Curve Discrete Logarithm Problem

