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About these slides

I These are slides covered in the Academic Year 2015-2016

I They will a priori not be covered this year

I Best usage : scan content to know what is in there, and
consult later if you want to know more

I Please report any error / typo ! !

I Note that DLP algorithms is a very active research area
today, hence the slides may already be outdated
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Discrete logarithms

I Given a cyclic group (G , ◦) (written multiplicatively),
a generator g of G and a second element h ∈ G ,
compute k ∈ Z|G | such that g k = h

I Trivial if (G , ◦) = (Fp,+). Why ?

I Recently broken if (G , ◦) = (F∗2n , ∗)
(more generally if characteristic is not too big)

I Believed to be hard (to different extents) for G = F∗p
and for (well-chosen) elliptic/hyperelliptic curve groups
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Integer factorization

I Given a composite number n, compute its (unique)
factorization n =

∏
peii where pi are prime numbers

I Equivalently (why ?) : compute one non-trivial factor pi
I Trivial if n = pe

I Believed to be hard if n = pq for well-chosen p 6= q
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RSA and Diffie-Hellman

I DLP broken implies Diffie-Hellman broken

I Factorization broken implies RSA broken

I We don’t know whether DH broken implies DLP broken

I We don’t know whether RSA broken implies factorization
broken

I Nevertheless, the best attacks against DH and RSA today
are discrete log and factorization attacks
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Related assumptions

I The cryptography literature includes many other,
somewhat related assumptions

I Some of them are equivalent to DLP or factoring

I Some of them are strictly weaker/stronger

I Many interesting open problems

I These lectures : focus on DLP and factoring
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Outline

Generic DLP algorithms
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Quasi-polynomial DLP algorithm

Factoring algorithms

Elliptic Curve Discrete Logarithm Problem
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References and Credits

I Joux, Algorithmic Cryptanalysis, Chapters 3,7,14,15

I Joux-Odlyzko-Pierrot, The past, evolving present and
future of discrete logarithms
Nice DLP algorithm picture is taken from there
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Generic attacks

I DLP is trivial in some groups

I DLP seems harder in other groups

I Best attacks in a particular group often rely on
specific properties of the group

I Can we find better groups ?

I How hard can DLP be in the best (hardest) groups ?
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Group isomorphisms

I Any cyclic group (G , ◦) of order n can be seen as (Zn,+)
in the following sense : there exists an invertible map
ϕ : G → Zn such that ∀x , y ∈ G , we have

ϕ(x ◦ y) = ϕ(x) + ϕ(y)

I Remark ϕ does not need to be efficiently computable

I Example : let g of order p − 1 in Z∗p. Can define ϕ as

sending any h ∈ G to ϕ(h) ∈ Zp−1 such that h = gϕ(h).
I Let x ′ = ϕ(x) and y ′ = ϕ(y). We have

ϕ−1(x ′+y ′) = ϕ−1(ϕ(x)+ϕ(y)) = ϕ−1(ϕ(x◦y)) = x◦y = ϕ−1(x ′)◦ϕ−1(y ′)
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DLP in the generic group model

I A DLP instance is generated in (Zn,+), including a
generator g ∈ Zn and another element h = kg ∈ Zn

I A random invertible map θ : Zn → Zn is chosen

I The map defines a group (Zn, ◦) with

x ◦ y = θ
(
θ−1(x) + θ−1(y)

)
I The attacker is NOT given g , h nor θ
I The attacker is given θ(g), θ(h) and access to oracles

I O1 : on input x , y , return θ
(
θ−1(x) + θ−1(y)

)
I O2 : on input x , return θ(−θ−1(x))

I The attacker’s goal is to compute k
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Generic group model

I As θ is random, there is no special property of the group
that can be exploited

I n itself is often hidden, and the attacker just receives
bitstrings instead of Zn elements (the size of n cannot be
hidden)

I Some attacks are generic : they work for any group
This includes exhaustive search, BSGS, Pollard’s rho

I There exist much better attacks for finite fields

I Still no better attack for (well-chosen) elliptic curves
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Exhaustive search

I Given g , h ∈ G do the following

1: k ← 1; h′ ← g
2: if h′ = h then
3: return k
4: else
5: k ← k + 1 ; h′ ← h′g
6: Go to Step 2
7: end if

I Generic algorithm

I Time complexity |G | in the worst case, |G |/2 on average

I Can we do better ?
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Baby step, giant step (BSGS)

I Let h = g k . You want to compute k .

I Let N ′ = d
√
|G |e

I There exist 0 ≤ i , j < N ′ such that k = jN ′ + i

h = g jN′+i ⇔ hg−jN
′

= g i

I Compute LB := {g i |i = 0, . . . ,N ′ − 1}
I Compute LG := {hg−jN′|j = 0, . . . ,N ′ − 1}
I Attack requires time and memory O(

√
|G |)
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Birthday paradox

I Suppose there are N2 people in a room. What is the
probability that two people have the same birthday ?

I How many people needed to have a probability larger
than 50% ?

I Answer is 23 :

Pr[all distinct] = 1 · 364

365
· 363

365
· . . . · 365− 22

365
<

1

2
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Birthday paradox

I Suppose you choose N2 elements randomly in a set of N
elements. What is the probability that two elements are
equal ?

I How should N2 be wrt N to have a probability larger than
50% ?

I Answer is O(
√
N) :

Pr[all distinct] = 1 · N − 1

N
· N − 2

N
· . . . · N − N2 + 1

N

≈ e−
1
N · e−

2
N · . . . · e−

N2−1
N

≈ e−
N2(N2−1)

N

Taking N2 ≈
√
N ensures 1− Pr[all distinct] constant
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Pollard’s rho (iterative function)

I Define G1,G2,G3 of about the same size such that
G = G1 ∪ G2 ∪ G3 and Gi ∩ Gj = {}

I Over Z∗p, can choose
G1 = {0, . . . , bp/3c},
G2 = {bp/3c+ 1, . . . , b2p/3c},
G3 = {b2p/3c+ 1, . . . , p − 2}

I Define a function f : G → G such that
f (z) = zg z ∈ G1

f (z) = z2 z ∈ G2

f (z) = zh z ∈ G3

(original definition, other definitions possible)
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Pollard’s rho (intuition)

I Start from g0 := g and apply f
recursively to get gi

I By the way f is defined, we can
keep track of ai , bi such that
gi = g aihbi

I If f is “random enough”, obtain
random elements in G and a
collision after O(

√
|G |) elements

I Collision gives DLP solution
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Pollard’s rho (simplest version)

1: N ← d
√
|G |e

2: a← 1; b ← 0; h̃← g ; L← {(a, b, h̃)}
3: for k ∈ {2, . . . ,N} do
4: if h̃ ∈ G1 then a← a + 1; h̃← h̃g
5: if h̃ ∈ G2 then a← 2a; b ← 2b; h̃← (h̃)2

6: if h̃ ∈ G3 then b ← b + 1; h̃← h̃h
7: L← L ∪ {(a, b, h̃)}
8: end for
9: Find distinct (ai , bi , h̃) ∈ L, i = 1, 2

10: if no such elements then abort
11: return −(a1 − a2)/(b1 − b2) mod |G |
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Pollard’s rho analysis

I Correctness :
I Every (a, b, h̃) in the list satisfies h̃ = gahb

I ga1hb1 = ga2hb2 implies h = g
− a1−a2

b1−b2

I Time and memory costs N ≈
√
|G |

I Good probability of success by birthday’s paradox
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Pollard’s rho (improvement)

I Let (L1, L1 + L2) be the indices of
first collision

I Then (L1 + j , L1 + kL2 + j) also
collide

I For j , k such that L1 + j = kL2,
we have L1 + kL2 + j = 2(L1 + j)

I Now search for (ai , bi , h̃i) and
(a2i , b2i , h̃2i) such that h̃i = h̃2i

I Only requires constant size memory

 

Christophe Petit -Advanced Cryptography 23

Pohlig-Hellman

I Assume |G | = n1n2 and let g a generator of G

I h = g k implies hn1 = (gn1)k

where gn1 generates a subgroup of order n2
I Solving DLP in that subgroup gives k mod n2
I Repeating for each factor and using CRT gives k
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Pohlig-Hellman (example)

I Let G = Z∗13, let g = 2 and let h = 7

I We have |G | = 12 = 22 · 3
I Recover k mod 2 by solving (26)k = 76 mod 13⇔

(−1)k = −1 mod 13⇔ k = 1 mod 2

I Write k = 1 + 2k ′. Recover k mod 4 by solving
(23)1+2k ′ = 73 mod 13⇔ (−1)k

′
= −1 mod 13

⇔ k ′ = 1 mod 2⇔ k = 3 mod 4

I Recover k mod 3 by solving
(24)k = 74 mod 13⇔ (3)k = 9 mod 13⇔ k = 2 mod 3

I Use CRT to deduce k = 11 mod 12
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Discrete Logarithms over finite fields

I Discrete Logarithm Problem (DLP)
Given G a finite cyclic group, given g a generator of G ,
and given h ∈ G , find k such that h = g k

I Believed to be a hard problem when G is the
multiplicative group of a well-chosen field

I (Formal definition of “hard” involves families of fields,. . . )
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Fields used in cryptography

I F∗p where p is prime : most used, believed to be secure

I F∗pn where p is prime and n is small (typically up to 12) :
used in pairing applications

I F∗2n or F∗3n where n is a product of small primes :
should be avoided (Pohlig-Hellman attack)

I F∗2n or F∗3n for arbitrary n : should now also be avoided,
suggested before 2013 for efficiency reasons

I Remark : typically work over a prime order subgroup
of F∗p or F∗pn , otherwise problems such as decisional
Diffie-Helman are easy
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L notation

LQ(α; c) = exp(c(logQ)α(log logQ)1−α)

I Q is the size of the field

I α = 0⇒ LQ(α; c) = (logQ)c polynomial

I α = 1⇒ LQ(α; c) = Qc exponential

Christophe Petit -Advanced Cryptography 30

Playing with L notation

LQ(α; c) = exp(c(logQ)α(log logQ)1−α)

I Approximation : ignore constant and log log factors, write
LQ(α) (but beware they are very relevant in practice !)

I LQ(α)LQ(β) ≈ LQ(max(α, β))

I LQ(α, c)k = LQ(α, kc) if k is constant

I LQ(α, c)k = LQ(α + β, c) if k = (logQ)β
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State-of-the-art and History

I Write Q = qn (with q a prime power)

I State-of-the-art depends on relative size of q and n

I See Joux, Odlyzko, Pierrot. The past, evolving present
and future of discrete logarithms
www-polsys.lip6.fr/~pierrot/papers/Dlog.pdf
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DLP algorithms for finite fields

www-polsys.lip6.fr/~pierrot/papers/Dlog.pdf
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Index calculus

I Generic framework to solve discrete logarithm problems,
but some steps are group-specific

I Let g , h a DLP problem

I Define a factor basis F ⊂ G , ensuring F contains a
generator (most elements in G are generators)

I Can assume g ∈ F , otherwise do the following :
I Pick a generator g ′ ∈ F
I Compute a such that g = (g ′)a

I Compute b such that h = (g ′)b

I Compute k = b/a mod |G |
I Remark : size of F will be optimized for efficiency
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Index calculus

I Find about |F| relations between factor basis elements

Rj :
∏
fi∈F

f
ai,j
i = 1

(the algorithm to compute the relations is group-specific)
I Deduce ∑

fi∈F

ai ,j logg fi = 0

or  a1,1 . . . a|F|,1
...

...
a1,|F| . . . a|F|,|F|


 logg f1

...
logg f|F|

 =

0
...
0


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Index calculus

I Use linear algebra to compute all logg fi ,
the discrete logarithms of factor basis elements

I Deduce the discrete logarithm of h
(This part is group-specific and may involve several steps)

I Remarks :
I Relations often involve few elements,

hence linear algebra is sparse
I In some cases, h is included in the factor basis and the

last step is avoided : linear algebra produces logg h
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Leonard Adleman
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Example : a naive index calculus for F∗p

I DLP : given g , h ∈ F∗p, find k such that h = g k

I Factor basis made of small primes

FB := {primes pi ≤ B}

I Relation search
I Compute rj := gajhbj for random aj , bj ∈ {1, . . . , p − 1}
I If all factors of rj are ≤ B, we have a relation

gajhbj =
∏
pi∈F

p
ei,j
i

I Linear algebra produces g ahb = 1
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Size of the factor basis

I By the prime number theorem,

|{primes pi ≤ B}| ≈ B

lnB
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Smooth numbers

I An integer number is B-smooth if all its prime factors are
smaller than B

I Define Ψ(N ,B) = #{B-smooth numbers ≤ N}

I Let u = logN/ logB . We have

Ψ(N ,B)

N
= ρ(u) + O

(
1

logB

)
I Here ρ is the Dickman-de Bruijn function with

ρ(u) ≈ u−u
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Dickman-de Bruijn function ρ

I The Dickman-de Bruijn function ρ satisfies ρ(u) ≈ u−u

log ρ ≈ −u log u
(picture source : Wikipedia)
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Naive analysis of naive index calculus

I Choose logB ≈ (log p)1/2

I |F| ≈ B/ logB ≈ 2(log p)1/2−(log log p)−1/2 ≈ 2(log p)1/2

I u = log p/ logB ≈ (log p)1/2

I ρ(u) = (log p)−1/2(log p)
1/2 ≈ 2−1/2(log p)

1/2(log log p)

I Number of random trials to get |F| relations is

≈ |F|ρ(u)−1 ≈ 2(1/2+o(1))(log p)1/2(log log p)

I Each trial has polytime complexity in log p
I Linear algebra cost is |F|ω ≈ 2ω(log p)

1/2

I Total cost dominated by relation search
I B ≈ Lp(1/2; c) leads to slighly better cost Lp(1/2; c ′)
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Playing with L notation (2)

LQ(α; c) = exp(c(logQ)α(log logQ)1−α)

I Probability that an element of size L(α) is L(β) smooth is

(L(α− β))−1

I If c is constant, the probability that an element of size B
is B/c-smooth is constant
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Same algorithm for F∗2n

I DLP : given g , h ∈ F∗2n , find k such that h = g k

I Factor basis made of small “primes”

FB := {irreducible f (X ) ∈ F2[X ]| deg(f ) ≤ B}

I Relation search
I Compute rj := gajhbj for random aj , bj ∈ {1, . . . , p − 1}
I Factor rj ∈ F2[X ] with Berlekamp’s algorithm
I If all factors ∈ FB , we have a relation gahb =

∏
fi∈F f eii

I Linear algebra produces g ahb = 1
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Linear algebra

I Given matrix M and vector x , find all y such that My = x
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Gaussian elimination

I Observation : if My = x then for any invertible N ,
we have NMy = Nx

I In particular, this is true when N is a matrix which
I Swaps two rows of M
I Multiplies one row by an invertible constant
I Adds a multiple of one row of M to another row of M

I Gaussian elimination repeats these operations until the
resulting matrix is upper triangular
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Gaussian elimination

I Algorithm when M is invertible

1: for each column i , from i = 1 to n do
2: Find a nonzero element in this column
3: Swap the row of this element with row i
4: for each row j below row i do
5: Let c := −Mj ,i/Mi ,i

6: Add c times row i to row j
to erase the value in (j , i)

7: end for
8: end for

I Adapt step 2 otherwise
I Cost is O(n3) multiplications
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Resolution from Gaussian form

I Algorithm when M is invertible

1: for each column i from n to 1 do
2: Recover value of unknown i , using equation i and

all values of previously computed unknowns j > i
3: end for

I Adapt to determine the afine space of solutions v + kerM
otherwise

I Cost is O(n2) multiplications

I Can be used to invert M in O(n3) multiplications
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Sparse linear algebra

I A matrix is sparse if each row contains a small number of
nonzero elements

I Can store larger size matrices by storing only (i , j ,Mi ,j)
for nonzero elements Mi ,j

I Gaussian elimination will kill the sparsity quickly

I Two approaches for sparse matrices :
I Structured Gaussian elimination
I Algorithms based on matrix-vector multiplications
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Structured Gaussian elimination

I Consider the linear system My = x
I For the matrices M occurring in index calculus :

I Each row contains few elements
I The first columns contain much more elements than the

last ones

I Structured Gaussian elimination involves several tricks
such as removing variables that only appear once or twice

I Used as preprocessing to reduce the size in practice

I Heuristic
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Lanczos algorithm

I If M is invertible, My = x ⇔ M tMy = M tx
hence we can assume M is symmetric positive definite
defining a scalar product (x , y)M := xMy t

I Lanczos is iterative : over the real/complex numbers,
the algorithm can be stopped before the end with a
reasonable approximation of the solution

I First compute a basis {vi} of orthogonal vectors with
respect to the scalar product (∗, ∗)M ,

I Then compute
∑n

i=1(x , vi)vi =
∑n

i=1(y , vi)Mvi = y

I Second part involves O(n) matrix-vector multiplications,
each one at O(n) cost if each row contains O(1) elements
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Computing the orthogonal basis

I Start from a random w1 and v1 = w1/||w1||M
I Then heuristic modification of Gram-Schmidt algorithm

1. wi+1 = Mvi
2. w ′i+1 = wi+1 −

∑i
j=1(wi+1, vj)M · vj

3. vi+1 = w ′i+1/||w ′i+1||M

I Second step is in fact

w ′i+1 = wi+1 − (wi+1, vi)M · vi − (wi+1, vi−1)M · vi−1

I Likely to converge to a basis {v1, . . . , vn} over the reals ;
needs some adjustment for small characteristic finite fields
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Cornelius Lanczos
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Wiedemann algorithm

I Reconstruct the minimal polynomial of M :
smallest degree polynomial f such that f (M) = 0

I If f (α) =
∑d

i=0 fiα
i , then I = − 1

f0

∑d
i=1 fiM

i then

x = − 1

f0

d∑
i=1

fiM
ix = M

(
− 1

f0

d∑
i=1

fiM
i−1x

)
I We deduce y such that My = x
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Wiedemann algorithm (2)

I Main idea to compute minimal polynomial :
I Construct (a,M ix) for a random vector a and

i = 0, . . . , 2n − 1
I Use Berlekamp-Massey’s algorithm to compute the linear

recurrence in this sequence

I The whole algorithm requires O(n) matrix-vector products

I Recent discrete log records use Block Wiedemann
http://caramel.loria.fr/p180.txt

http://caramel.loria.fr/p180.txt
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Further subexponential DLP algorithms

Source : www-polsys.lip6.fr/~pierrot/papers/Dlog.pdf
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Don Coppersmith

www-polsys.lip6.fr/~pierrot/papers/Dlog.pdf
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Remember : basic algorithm for F∗2n

I DLP : given g , h ∈ F∗2n , find k such that h = g k

I Factor basis made of small “primes”

FB := {irreducible f (X ) ∈ F2[X ] | deg(f ) ≤ B}

I Relation search
I Compute rj := gajhbj for random aj , bj ∈ {1, . . . , p − 1}
I Factor rj ∈ F2[X ] with Berlekamp’s algorithm
I If all factors ∈ FB , we have a relation gahb =

∏
fi∈F f eii

I Linear algebra produces g ahb = 1
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Coppersmith’s algorithm for F2n

I Idea : reduce factor basis to polynomials of degree n1/3

(vs. n1/2) by ensuring all rj have degree n2/3 (vs. n)

I We have F2n ≈ F2[x ]/(p(x)) for any irreducible p
Choose p(x) = xn + q(x) where deg q ≤ n2/3

I Let k = 2e ≈ n1/3, let d ≈ n1/3

I Let h ≈ n2/3 least integer larger than n/k

I Let r(x) = xhk mod p(x) = q(x)xhk−n

with deg r < k + deg q ≈ n2/3
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Coppersmith’s algorithm for F2n

I Factor basis are elements with degree smaller than d ,
where d smallest integer ≥ n1/3

I Relations will be of the form d(x) = (c(x))k

for c , d smooth, where c constructed in a special way
I Relation search

I Take a(x) and b(x) coprime with degrees d
I Take c(x) = a(x)xh + b(x) degree O(n2/3)
I Take d(x) = (c(x))k mod p
I We have d(x) = r(x)(a(x))k + (b(x))k degree O(n2/3)
I If both c and d are smooth, we get a relation
I Probability O(2−n

1/3−ε)
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Individual logarithms

I For increasing i , until mi and ni are smooth enough
I Use continued fractions/ Euclide algorithm to write

h(x)x i = mi (x)/ni (x) with degmi , deg ni ≤ n/2
I Check smoothness of mi and ni
I Continue until both are O(n2/3) smooth

I For each factor m
I Choose a(x) and b(x) coprime random such that

m|c where c(x) = a(x)xh + b(x)
I Let d(x) = (c(x))k mod p(x) as above
I If d and c/m are smooth enough, we either iterate on all

(smaller degree) factors or we write m in the factor basis
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Function Field Sieves

Source : www-polsys.lip6.fr/~pierrot/papers/Dlog.pdf
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Adleman-Huang

I We want to solve DLP in Fpn , where p is constant

I Set smoothness bound d ≈ n1/3

I Define f (x) = xn + q(x) where deg q < n2/3

I Let k ≈ n1/3, let h least integer larger than n/k ,
and let δ = hk − n

I Let m(x) = xh and H(x , y) = y k + xδq(x)

I We have a homomorphism

Φ :
Fp[x , y ]

(H(x , y))
→ Fp[x ]

(f (x))
: (x , y)→ (x ,m(x))
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Factor basis and relations

I Factor basis is F = F1 ∪ F2 where

1. F1 contains all irreducible polynomials of degree at most
d over Fp,

2. F2 = {r + ms | N(r + ys) ∈ F1}
(Here N(r + ys) = rkH(x ,−s/r) is function field norm)

I To find a relation, take random couples of polynomials
(a, b) both of degrees about n1/3, until both

1. am + b is d-smooth
2. N(ay + b) is d-smooth

www-polsys.lip6.fr/~pierrot/papers/Dlog.pdf
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Adleman-Huang (2)

I From each such couple deduce a relation∑
Pi∈F1

ei logPi =
∑
Qi∈F2

fi logQi

I Remark : deg(am + b) ≈ degN(ay + b) ≈ n2/3 so
probability that a random couple (a, b) gives a relation is
about Lp(1/3)−1

I Individual logarithms as in Coppersmith’s algorithm
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Joux-Lercier

Source : www-polsys.lip6.fr/~pierrot/papers/Dlog.pdf
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Joux-Lercier

I We want to solve DLP in Fqn , where q = Lqn(1/3)

I Find polynomials g1, g2 of degrees d1, d2 ≈ n1/2 over Fq

s.t. g2(g1(x)) + x has an irreducible factor I of degree n

I Letting y = g1(x), we see that g1(−g2(y))− y has an
irreducible factor I ′ of degree n

I If α ∈ Fpn is a root of I then β = g1(α) is a root of I ′

I If β ∈ Fpn is a root of I ′ then α = −g2(β) is a root of I
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Joux-Lercier

I We have the following commutative diagram of
homomorphisms

Fq[x , y ]

Fq[y ] Fq[x ]

Fqn

x ← g2(y) y ← g1(x)

y ← β x ← α

www-polsys.lip6.fr/~pierrot/papers/Dlog.pdf
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Factor basis and relations

I Factor basis is F = F1 ∪ F2 where
I F1 = images of degree 1 polynomials in Fq[y ] by y ← β
I F2 = images of degree 1 polynomials in Fq[x ] by x ← α

I To find relations, pick random h(x , y) = xy + bx + cy + d
until both h(g2(y), y) and h(x , g1(x)) split completely

I Splitting probability 1
d1!
· 1
d2!
≈ 2−n

1/2 log n ≈ Lqn(1/3)

I Size of F is also Lqn(1/3)
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Individual logarithms

I Let h ∈ Fq[x ] for which we want to compute DL

I Compute x ih(x) until the result is moderately smooth
I For each factor h′, find a, b ∈ Fq[x ] such that

I Degrees not too large, about deg h′

I h′(x) | (a(x)g1(x) + b(x))
I (a(x)g1(x) + b(x)) / h′(x) smoother enough
I a(g2(y))y + b(g2(y)) smooth enough

I Alternatively decrease the factors on each side,
until all factors on both sides are linear
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Number Field Sieves

Source : www-polsys.lip6.fr/~pierrot/papers/Dlog.pdf
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Gordon

I We want to solve DLP in Fp, where p is prime

I Choose m ≈ Lp(2/3)

I Let p =
∑d

i=0 fim
i with d ≈ (log p)1/3

I Let f (x) =
∑d

i=0 fix
i

I We have a ring homomorphism

ϕ : Q[x ]/(f (x))→ Fp : x → m
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Factor basis and relations

I Let B ≈ Lp(1/3) be a smoothness bound
I Factor basis is F = F1 ∪ F2 where

I F1 = {primes smaller than B}
I F2 = {degree 1 prime ideals ν | N(ν) ∈ F1}

I Search for pairs (a, b) with a ≈ b ≈ Lp(1/3) such that
a + bm ∈ F1 and a + bx ∈ F2

I Note that
a + bm ≈ N(a + bx) = (−b)d f (−a/b) ≈ Lp(2/3)
so smoothness probability is Lp(1/3)
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Individual logarithms

I Suppose we want DL of a particular h

I First compute x ih until the result is Lp(2/3) smooth
I For each factor hi ,

I Generate Lp(1/3)-smooth `i ≈ hi , let mi = hi`i ,
let fi (x) such that fi (mi ) = 0 mod p,
until Ni (x) = fi (0) is Lp(1/3) smooth

I Search for pairs (a, b) with a ≈ b ≈ Lp(1/3) such that
a + bmi ∈ F1 and Ni (a + bx) is Lp(1/3) smooth.
Repeat and eliminate factors not in F1
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Technicalities

I Need to cancel units appearing in the relations
⇒ add these units to the factor bases

I If the class number of Q[x ]/(f (x)) is h > 1 then
need to remove non-principal ideals from the relations
⇒ implicitly take h powering of the equations to get
principal ideals
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Joux-Lercier-Smart-Vercauteren

Source : www-polsys.lip6.fr/~pierrot/papers/Dlog.pdf
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Joux-Lercier-Smart-Vercauteren

I We want to solve DLP in Fpn , where p = Lpn(2/3)

I Choose f1 ∈ Z[x ] of degree n with small coefficients,
with a root m modulo p

I Let f2 = f1 + p

I Define number fields Ki = Q[x ]/(fi(x))

I We have two homomorphisms

ϕi : Ki → Fpn : x → m
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Factor basis and relations

I Let B ≈ Lpn(1/3) be a smoothness bound

I Let F0 = {primes smaller than B}
I Factor basis is F = F1 ∪ F2 where

I F1 = {c + dm | N1(c + dx) = (−d)k f1(−c/d) ∈ F0}
I F2 = {c + dm | N2(c + dx) = (−d)k f2(−c/d) ∈ F0}

I Search for pairs (a, b) with a ≈ b ≈ Lpn(1/3) such that
both Ni(a + bx) ∈ F0

I Note that Ni(a + bx) ≈ Lpn(2/3) so smoothness
probability is Lp(1/3)
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Remarks

I Individual logarithms as in Gordon, alternating descent in
K1 and K2

I If Ki has a non-trivial automorphism group Aut(K )
(for example if it is Galois) then corresponding part of
factor basis can be reduced by a factor #Aut(K )

I Multiple number field sieve uses more than 2 number
fields in parallel

www-polsys.lip6.fr/~pierrot/papers/Dlog.pdf
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Quasi-polynomial DLP algorithm !

Source : www-polsys.lip6.fr/~pierrot/papers/Dlog.pdf
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Barbulescu, Gaudry, Joux, Thomé

Christophe Petit -Advanced Cryptography 88

Sparse medium subfield representation

I A finite field K admits a sparse medium subfield
representation if

I K = Fq2k for some prime power q
I There exist h0, h1 ∈ Fq2 [X ] with small degrees, such that

X qh1(X )− h0(X ) has a degree k irreducible factor I

I In practice we can find h1, h2 of degrees at most 2

I The polynomial I is used to define Fq2k = Fq2[X ]/(I (X ))

I Elements in such field will be seen as polynomials of
degree less than k over Fq2

www-polsys.lip6.fr/~pierrot/papers/Dlog.pdf
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Quasi-polynomial DLP algorithm !

I If K admits a sparse medium subfield representation then
(initially under various heuristics, now getting cleaner)
any discrete logarithm in K can be computed in time
bounded by max(q, k)O(log k)

I If q ≈ k then q = O(log |K |) hence complexity
qO(log q) = 2O((log log |K |)2) quasi-polynomial in log |K |

I If |K | = pn with characteristic p = (log |K |)O(1) then
set q = pdlogp ne and work in extension field L = Fq2n ,
still quasi-polynomial

I If q = Lq2k (α) then complexity Lq2k (α)O(log log q2k )
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Key proposition

Let K = Fq2k with a sparse medium subfield representation.
Under various heuristics,

1. There is an algorithm (polynomial time in q and k) which
given an element of K as a polynomial P ∈ Fq2[X ]
with 2 ≤ degP ≤ k − 1, returns an expression with at
most O(q2k) terms

logP = e0 log h1 +
∑

ei logPi

where degPi ≤ d12 degPe and ei ∈ Z
2. There is an algorithm (polynomial time in q and k) which

returns log h1 and log(X + a) for all a ∈ Fq2
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Using the Key proposition

I Given P ∈ K we use first part to obtain

logP = e0 log h1 +
∑

ei logPi

where degPi ≤ d12 degPe
I Apply first part recursively on each Pi

I Eventually

logP = e0 log h1 +
∑
a∈Fq2

ea log(X + a)

I Apply second part to get logP

Christophe Petit -Advanced Cryptography 92

Using the Key proposition (2)

I The procedure constructs a tree with arity O(q2k) and
O(log k) levels

I Number of nodes is (q2k)O(log k)

I Each node has a cost polynomial in k and q
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Main ideas in Key proposition

I Systematic equation

X q − X =
∏
α∈Fq

(X − α)

I Sparse field representation

I |(h1X q − h0)⇒ X q =
h0
h1

mod I

I Replace X by m · P in systematic equation, where

m · P =
aP + b

cP + d
and m =

(
a b
c d

)
∈ SL(2,Fq2)
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Sketch of the algorithm

I Given P , substitute X by m · P for various m, so that
products P(X )− α appear on the RHS

I Use the sparse field representation to reduce the degree
on the LHS to about the degree of P

I Keep the relation if all factors of the LHS have degree
smaller than d1

2
degPe

I Combine the relations with linear algebra to eliminate all
factors P(X )− β with β 6= 0

I For second part : take P(X ) = X
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Remarks

I Relations obtained are identical for all m = λm′ with
λ ∈ Fq2 and m ∈ SL(2,Fq), and more generally we pick
m in distinct cosets of PGL(Fq2)/PGL(Fq)

I Probability that a random polynomial of degree D is
D/2-smooth is constant

I Analysis involves several heuristic assumptions ;
they are likely to be fine, if not then we are likely to refine
them and deduce a better algorithm
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Integer factorization

I Given a composite number n, compute its (unique)
factorization n =

∏
peii where pi are prime numbers

I Equivalently : compute one non-trivial factor pi
I We will assume n = pq, where p and q are primes
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Factorization vs Discrete logarithms

I Discrete logarithm and factoring algorithms are similar
I Exceptions ( ?)

I Quasi-polynomial time algorithm for discrete logarithms
in small to medium characteristic

I Elliptic curve factorization method

I Hardness of large characteristic field discrete logarithms
and integer factorization is comparable today
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Sieve of Eratosthenes

I Compute all primes up to
√
n

using a sieve

I Try to factor n by each of them

I Complexity O(
√
n)

I Remark : sieve can also be used to quickly find
all smooth numbers in an interval
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Pollard’s rho

I Idea : find x and y such that gcd(x − y , n) = p
in other words x = y mod p but x 6= y mod n

I Define some “pseudorandom” iteration function f

I Compute iterates xi and x2i
I Simultaneously compute gcd(xi − x2i , n)

I By birthday’s paradox,
xi = x2i mod p after O(p1/2) trials on average, and
xi = x2i mod n after O(n1/2) trials on average

I Hence we succeed after O(p1/2) trials on average
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Pollard’s p − 1 method

I A number x =
∏

peii is B-powersmooth if peii < B

I The method assumes p − 1 is B-powersmooth

I Let s be the product of all peii < B

I By assumption (p − 1)|s, hence g s = 1 mod p

I We deduce gcd(g s − 1, n) = p

I Only works if some factor p such that p − 1 smooth !

I Compute gcd with square-and-multiply algorithm
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Carl Pomerance
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Quadratic Field Sieve : Rough version

I A congruence x2 = y 2 mod n such that x 6= ±y mod n
implies that gcd(x − y , n) is a non trivial factor of n

I Set a smoothness bound B ≈ Ln(1/2)

I Factor basis F = {primes smaller than B}
I Pick random xi until you find a relation

x2i mod n =
∏
sj∈F

s
eij
j

(probability is about Ln(1/2)−1)

I Repeat until you have |F| relations
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Quadratic Field Sieve : Rough version (2)

I For each i write the exponents eij in a row vector

I Perform linear algebra modulo 2 on these vectors to find
ai such that

∑n
i=1 eijai = 2bj even

I Deduce a congruence(∏
i

xaii

)2

=
∏
i

(
x2i
)ai =

∏
i

∏
sj∈F

s
eij
j

ai

=

∏
sj∈F

s
bj
j

2

I Only 2 congruences needed on average
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Improvements

I Choose x slightly bigger than
√
n such that

x2 mod n = x2 − n = (
√
n + t)2 − n = 2t

√
n + t2

is about the size of
√
n

I Sieving : instead of testing smoothness with trial
divisions, build a basis of smooth numbers of the form
x2 − n by extending the sieve of Erathostenes
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(General) Number Field Sieve

I Original idea by Pollard, later developed by many authors

I Eventually led to discrete logarithm algorithms as well

I Let d ≈ (log n)1/3 and m ≈ dn1/de
I Write n =

∑d
i=0 fim

i

I Let f (x) =
∑d

i=0 fix
i

I We have a ring homomorphism

ϕ :
Q(x)

(f (x))
→ Zn : x → m
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Factor basis and relations : rough idea

I Define smoothness bound B ≈ Ln(1/3)
I Define factor basis F = F1 ∪ F2 where

I F1 = set of primes smaller than B
I F2 = {a + bm | a, b ∈ Z,N(a + bx) ∈ F1}

(here N(a + bx) = (b)d f (a/b) is the number field norm)

I Generate pairs (a, b) with a, b ≈ Ln(1/3) until both
a + bm and N(a + bx) are B-smooth

I Deduce a relation from each such pair

I Use linear algebra to get x , y such that x2 = y 2 mod n

I Complexity ≈ Ln(1/3)
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Technicalities

I As such the number field side of equation may not be a
square after linear algebra : only its norm is a square

I Z[x ] may not be the full ring of integers

I Need to deal with units

I Need to deal with non-unique factorization /
ideal class group when class number h > 1

I All issues solved by Adleman :
I Fix a random set of O(log n) primes qi
I Consider multiplicative characters extending Legendre

symbols χqi (ax + b) =
(am+b

qi

)
I Include (χqi (ax + b))i in each exponent relation
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Remarks

I Instead of generating a, b randomly, fix random a values
and sieve on b for each fixed a

I Initially various heuristics, but now rigorous bound
for complexity of finding x2 = y 2 mod n
(yet we cannot prove x 6= ±y mod n !)

I Exact constant more efficient for Mersenne-like numbers
(Special Number Field Sieve) than arbitrary numbers
(General Number Field Sieve)

I Improved constant using several number fields in parallel
(Coppersmith’s trick)
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Further readings

I Pomerance, A Tale of Two Sieves

I Buhler, Lenstra, Pomerance, Factoring integers with the
Number Field Sieve
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Pollard’s p − 1 method

I A number x =
∏

peii is B-powersmooth if peii < B

I The method assumes p − 1 is B-powersmooth

I Let s be the product of all peii < B

I By assumption (p − 1)|s, hence g s = 1 mod p

I We deduce gcd(g s − 1, n) = p

I Only works if some factor p such that p − 1 smooth !
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Elliptic curve factorization method

I Idea : generalize previous method when
neither p − 1 nor q − 1 are smooth

I The group order #E (Fp) of an elliptic curve can be
smooth even when p − 1 is not !
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Elliptic curve addition law

I Let E : y 2 = x3 + a4x + a6
I Let P1 = (x1, y1), P2 = (x2, y2) two points on the curve

I The chord-and-tangent rules lead to addition law
formulae : for example we have P1 + P2 = (x3, y3) where
λ = y2−y1

x2−x1 , ν = y1x2−y2x1
x2−x1 ,

x3 = λ2 − x1 − x2, y3 = −λx3 − ν
I These formulae involve divisions

I Over Fp, a division by 0 means P3 is point at infinity

I Over Zn, a division fails if (x2 − x1) is not invertible

I A failure reveals a factor of n !
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Elliptic curve factorization method

1. Choose E and P = (x , y) ∈ E (Zn)

2. Let B be a smoothness bound on #E (Zp) for p|n
3. Compute s =

∏
peii where peii ≤ B

4. We have [s]P = 0 = “point at infinity” modulo p
but [s]P 6= 0 in Zn

5. Try to compute [s](P) : a division by p must occur and
produce an error

6. When a division by some d fails, compute

gcd(d , n) 6= 1
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Elliptic curve factorization method

I For a random curve, we expect #E (Fp) to be ±
uniformly distributed in

#E (Fp) ∈ [(p + 1)− 2
√
p, (p + 1) + 2

√
p]

I Let B ≈ Lp(1/2) so that smoothness probability is about
(Lp(1/2))−1

I Repeat with random curves until you get a factor

I Remark : runtime depends on the smallest factor

I In practice, the method is used as subroutine to factor
middle-size integers when log2 n ≈ 60− 80 bits
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Factorization in practice : Magma

I No Number Field Sieve involved by default
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Factorization in practice : Magma

I May require expert knowledge to use properly
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Factorization in practice : CADO-NFS

I Probably best available software today !
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Recommended key lengths

I Check www.keylength.com for updates !
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Elliptic curves

I Set of rational points satisfying some cubic equation
I Group structure given by chord and tangent rule

www.keylength.com


Christophe Petit -Advanced Cryptography 125

Elliptic curve discrete logarithm problem (ECDLP)

I Given E over a finite field K ,
Given P ∈ E (K ), given Q ∈ G :=< P >,
Find k ∈ Z such that Q = kP .

I In practice K is often a prime field, a binary field with
prime extension, or Fpn with n relatively small

I Common belief : best algorithms are generic ones
(at least for the parameters used in practice)
160-bit ECDLP ≈ 2048-bit DLP or factoring

Christophe Petit -Advanced Cryptography 126

Reductions to simpler DLP

I Idea : transfer ECDLP to a “simpler” DLP problem
through a group homorphism

I MOV reduction if |G | divides qm − 1 [MOV93]

Use pairings to transfer ECDLP to DLP on Km

I Polynomial time for anomalous curves [SA98,S98,S99]

Transfer ECDLP to a p-adic elliptic logarithm if |G | = |K |
I Weil descent for some curves over Fpn [GS99,GHS00]

Transfer ECDLP to the Jacobian of an hyperelliptic curve

I Only work for specific families
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Remember : Index calculus

I General method to solve discrete logarithm problems

1. Define a factor basis F ⊂ G
2. Relation search : find about |F| relations

aiP + biQ =
∑
Pj∈F

eijPj

3. Do linear algebra modulo |G | on the relations to get

aP + bQ = 0

I Define F s.t. there is an “efficient” algorithm for Step 2

I Balance relation search and linear algebra
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Index calculus : success stories

I Finite fields : Adleman [A79,A94], Coppersmith [C84],
Adleman and Huang [AH99], Joux [J13],
Barbulescu-Gaudry-Joux-Thomé [BGJT13]

Subexponential complexity for any field
Quasipolynomial for small to medium characteristic fields

I Hyperelliptic curves :
Adleman-DeMarrais-Huang [ADH94], Enge [E00],
Gaudry [G00], Gaudry-Thomé-Thériault-Diem [GTTD07]

Subexponential for large genus ; beats BSGS if g ≥ 3

I Elliptic curves : no algorithm at all until 2005
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Index calculus for elliptic curves

I For finite fields, small “primes” are a natural factor basis

I Every element factors uniquely as a product of primes
I “Good” probability that random elements are smooth

I Similarly for elliptic curves, we will need

1. A definition of “small” elements
2. An algorithm to decompose general elements into

(potentially) small elements

I First partial solutions given by Semaev [S04]
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Summation polynomials [S04]

I Relate the x-coordinates of points that sum to O

I Sr (x1, . . . , xr ) = 0
⇔ ∃(xi , yi) ∈ E (K̄ ) s.t. (x1, y1) + · · ·+ (xr , yr ) = O

I Recursive formulae :
S2(x1, x2) = x1 − x2
S3(x1, x2, x3) = ... (depends on E )

Sr (x1, . . . , xr ) =
ResX (Sr−k(x1, . . . , xm−k−1,X ), Sk+2(xr−k , . . . , xr ,X ))

I Sr has degree 2r−2 in each variable
Symmetric set of solutions
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Semaev’s variant of index calculus

I Semaev’s variant of index calculus :
I Factor basis :

define FV := {(x , y) ∈ E |x ∈ V} where V ⊂ K
I Relation search : for each relation,

Compute (Xi ,Yi ) := aiP + biQ for random ai , bi
Find xj ∈ V with Sm+1(x1, . . . , xm,Xi) = 0
Find the corresponding yj

I Semaev’s observation : ECDLP reduced to
solving summation’s polynomial with constraints xi ∈ V

I For K = Fp, Semaev proposed V := {x < B}
but he could not solve summation polynomials
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Focus on composite fields [G09,D11]

I For K := Fqn , Gaudry and Diem proposed V := Fq

I Finding relations amounts to finding xj ∈ Fq

with Sn+1(x1, . . . , xn,Xi) = 0

I See Fqn as a vector space over Fq

I See polynomial equation Sn+1 = 0 over Fqn as a system
of n polynomial equations in n variables over Fq

I System can be solved with generic algorithms using
complexity polynomial in Bézout bound O(2n2)

I Gives L(2/3) algorithm when n ≈
√

log q ≈ (log qn)1/3
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ECDLP : state-of-the-art

I We have an L(2/3) algorithm to solve ECDLP over
fields Fqn if q and n have the right size

I In applications we are interested in ECDLP over
either prime fields, or F2n with extension degree n prime

I Some algorithms have been suggested in those cases,
but their complexity is unknown

Christophe Petit -Advanced Cryptography 134

Binary case [D11b,FPPR12]

Let K := F2n . Fix n′ < n and m ≈ n/n′

I Factor basis :
Choose a vector subspace V of F2n with dimension n′

Define FV := {(x , y) ∈ E |x ∈ V }

I Relation search : find about 2n′ relations. For each one,
Compute (Xi ,Yi) := aiP + biQ for random ai , bi
Find xj ∈ V with Sm+1(x1, . . . , xm,Xi) = 0
Find the corresponding yj

I Linear algebra between the relations

Christophe Petit -Advanced Cryptography 135

Finding relations : Weil descent

I Finding relations amounts to
Finding xi ∈ V with Sm+1(x1, . . . , xm,X) = 0

I Let {v1, . . . , vn′} be a basis of V

Define xij ∈ F2 such that xi =
∑n′

j=1 xijvj

Sm+1

(
n′∑
j=1

x1jvj , . . . ,
n′∑
j=1

xn′jvj ,X

)
= 0

I See F2n as a vector space over F2

I The polynomial equation over F2n corresponds to
a system of polynomial equations over F2
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Complexity of characteristic 2 algorithm

I Computing Sm+1 with resultants : cost 2t1 where

t1 ≈ m(m + 1)

I Finding 2n′ relations : total cost 2t2 where

t2 ≈ n′ + logTR

where TR(m, n′, n) is time to compute one relation

I (Sparse) linear algebra on relations : cost 2ω
′t3 where

t3 ≈ logm + log n + ω′n′
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Complexity of characteristic 2 algorithm

I Conjectured to be subexponential based on a heuristic
assumption on Groebner Basis algorithms behavior
and experimental results [PQ12]

I Original assumption perhaps too optimistic

I Still an open problem
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ECDLP over Prime Fields

I No vector space available to define the factor basis

I Find a rational map L = ◦n′j=1Lj with a large zero set

I Define a factor basis F = {(x , y) ∈ E (K )|L(x) = 0}
I Each relation search now amounts to solving

Sm+1(x11, . . . , xm1,X ) = 0

xi ,j+1 = Lj(xi ,j) i = 1, . . . ,m; j = 1, . . . , n′ − 1

0 = Ln′(xi ,n′) i = 1, . . . ,m.

I Complexity is an open problem
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Outline

Generic DLP algorithms

Index Calculus for DLP : introduction

Subexponential DLP algorithms

Quasi-polynomial DLP algorithm

Factoring algorithms

Elliptic Curve Discrete Logarithm Problem
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Conclusion on (EC)DLP and factoring

I Very active field of research, with recent breakthroughs
I Research challenges

I Find new algorithms for these problems
I Analyze existing algorithms
I Consider related problems

I Come to me if interested in a project in the area

I Recommended key sizes : www.keylength.com

www.keylength.com
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