About these slides

- ► These are slides covered in the Academic Year 2015-2016
- They will a priori not be covered this year
- Best usage : scan content to know what is in there, and consult later if you want to know more
- Please report any error / typo ! !
- Note that DLP algorithms is a very active research area today, hence the slides may already be outdated

Christophe Petit -Advanced Cryptography

Advanced Cryptography

DLP and Factoring Algorithms

Christophe Petit University of Oxford

Christophe Petit -Advanced Cryptography

Discrete logarithms

- Given a cyclic group (G, ◦) (written multiplicatively), a generator g of G and a second element h ∈ G, compute k ∈ Z_{|G|} such that g^k = h
- Trivial if $(G, \circ) = (\mathbb{F}_p, +)$. Why?
- ▶ Recently broken if (G, ○) = (𝔽^{*}_{2ⁿ}, *) (more generally if characteristic is not too big)
- Believed to be hard (to different extents) for G = ℝ^{*}_p and for (well-chosen) elliptic/hyperelliptic curve groups

Christophe Petit -Advanced Cryptography

Integer factorization

- Given a composite number *n*, compute its (unique) factorization $n = \prod p_i^{e_i}$ where p_i are prime numbers
- Equivalently (why?) : compute one non-trivial factor p_i
- Trivial if $n = p^e$
- ▶ Believed to be hard if n = pq for well-chosen $p \neq q$

RSA and Diffie-Hellman

Related assumptions

- DLP broken implies Diffie-Hellman broken
- Factorization broken implies RSA broken
- ► We don't know whether DH broken implies DLP broken
- We don't know whether RSA broken implies factorization broken
- Nevertheless, the best attacks against DH and RSA today are discrete log and factorization attacks

Christophe Petit -Advanced Cryptography

Outline

5

- The cryptography literature includes many other, somewhat related assumptions
- Some of them are equivalent to DLP or factoring
- Some of them are strictly weaker/stronger
- Many interesting open problems
- ► These lectures : focus on DLP and factoring

UNIVERSITY OF	Christen has Datit. A draw and Communication
	Christophe Petit -Advanced Cryptography
S OMORD	

References and Credits
 Joux, Algorithmic Cryptanalysis, Chapters 3,7,14,15
 Joux-Odlyzko-Pierrot, The past, evolving present and future of discrete logarithms

Nice DLP algorithm picture is taken from there

Factoring algorithms

Generic DLP algorithms

Index Calculus for DLP : introduction

Subexponential DLP algorithms

Quasi-polynomial DLP algorithm

Elliptic Curve Discrete Logarithm Problem

Christophe Petit -Advanced Cryptography

Christophe Petit -Advanced Cryptography

Outline	Generic attacks
Generic DLP algorithms	
Index Calculus for DLP : introduction	 DLP is trivial in some groups
	 DLP seems harder in other groups
Subexponential DLP algorithms	 Best attacks in a particular group often rely on
Quasi-polynomial DLP algorithm	specific properties of the group
Quasi-polynomial DEP algorithm	Can we find better groups?
Factoring algorithms	How hard can DLP be in the best (hardest) groups?
Elliptic Curve Discrete Logarithm Problem	
UNIVERSITY OF Christophe Petit -Advanced Cryptography 9	

Group isomorphisms

 Any cyclic group (G, ∘) of order n can be seen as (Z_n, +) in the following sense : there exists an invertible map φ : G → Z_n such that ∀x, y ∈ G, we have

$$\varphi(x \circ y) = \varphi(x) + \varphi(y)$$

- \blacktriangleright Remark φ does not need to be efficiently computable
- Example : let g of order p − 1 in Z^{*}_p. Can define φ as sending any h ∈ G to φ(h) ∈ Z_{p−1} such that h = g^{φ(h)}.
- Let $x' = \varphi(x)$ and $y' = \varphi(y)$. We have

$$\varphi^{-1}(x'+y') = \varphi^{-1}(\varphi(x)+\varphi(y)) = \varphi^{-1}(\varphi(x\circ y)) = x\circ y = \varphi^{-1}(x')\circ\varphi^{-1}(y')$$

Christophe Petit -Advanced Cryptography

DLP in the generic group model

- A DLP instance is generated in (Z_n, +), including a generator g ∈ Z_n and another element h = kg ∈ Z_n
- A random invertible map $\theta : \mathbb{Z}_n \to \mathbb{Z}_n$ is chosen
- The map defines a group (\mathbb{Z}_n, \circ) with

$$x \circ y = \theta \left(\theta^{-1}(x) + \theta^{-1}(y) \right)$$

- The attacker is NOT given g, h nor θ
- The attacker is given θ(g), θ(h) and access to oracles
 O₁ : on input x, y, return θ (θ⁻¹(x) + θ⁻¹(y))
 - \mathcal{O}_2 : on input x, return $\theta(-\theta^{-1}(x))$
- The attacker's goal is to compute k

Generic group model

- As θ is random, there is no special property of the group that can be exploited
- ► *n* itself is often hidden, and the attacker just receives bitstrings instead of \mathbb{Z}_n elements (the size of *n* cannot be hidden)
- ► Some attacks are generic : they work for any group This includes exhaustive search, BSGS, Pollard's rho
- There exist much better attacks for finite fields
- Still no better attack for (well-chosen) elliptic curves

A744 B	UNIVERSITY OF
	OXFORD
~~~~	UAPURD

Christophe Petit -Advanced Cryptography

#### Exhaustive search

- Given  $g, h \in G$  do the following
  - 1:  $k \leftarrow 1$ ;  $h' \leftarrow g$ 2: if h' = h then 3: return k
  - 4: else

5: 
$$k \leftarrow k+1; h' \leftarrow h'g$$

- Generic algorithm
- Time complexity |G| in the worst case, |G|/2 on average
- Can we do better?

UNIVERSITY OF	Christophe Petit -Advanced Cryptography	14

# Baby step, giant step (BSGS)

• Let  $h = g^k$ . You want to compute k.

.

- Let  $N' = \lceil \sqrt{|G|} \rceil$
- There exist  $0 \le i, j < N'$  such that k = jN' + i

$$h = g^{jN'+i} \Leftrightarrow hg^{-jN'} = g^i$$

- Compute  $L_B := \{g^i | i = 0, ..., N' 1\}$
- Compute  $L_{\mathcal{G}} := \{hg^{-jN'}| j = 0, \dots, N' 1\}$
- Attack requires time and memory  $O(\sqrt{|G|})$

UNIVERSITY OF OXFORD

Christophe Petit -Advanced Cryptography



- Suppose there are  $N_2$  people in a room. What is the probability that two people have the same birthday?
- How many people needed to have a probability larger than 50%?
- Answer is 23 :

$$\mathsf{Pr}[\mathsf{all \ distinct}] = 1 \cdot \frac{364}{365} \cdot \frac{363}{365} \cdot \ldots \cdot \frac{365 - 22}{365} < \frac{1}{2}$$

#### Birthday paradox

- ► Suppose you choose N₂ elements randomly in a set of N elements. What is the probability that two elements are equal ?
- ▶ How should  $N_2$  be wrt N to have a probability larger than 50%?
- Answer is  $O(\sqrt{N})$  :

 $\begin{aligned} \mathsf{Pr}[\mathsf{all distinct}] &= 1 \cdot \frac{N-1}{N} \cdot \frac{N-2}{N} \cdot \ldots \cdot \frac{N-N_2+1}{N} \\ &\approx e^{-\frac{1}{N} \cdot e^{-\frac{2}{N}} \cdot \ldots \cdot e^{-\frac{N_2-1}{N}}} \\ &\approx e^{-\frac{N_2(N_2-1)}{N}} \end{aligned}$ 

Taking 
$$N_2 \approx \sqrt{N}$$
 ensures  $1 - \Pr[\text{all distinct}]$  constant

## Pollard's rho (iterative function)

• Define 
$$G_1, G_2, G_3$$
 of about the same size such that  
 $G = G_1 \cup G_2 \cup G_3$  and  $G_i \cap G_j = \{\}$   
• Over  $\mathbb{Z}_p^*$ , can choose  
 $G_1 = \{0, \dots, \lfloor p/3 \rfloor\},\$   
 $G_2 = \{\lfloor p/3 \rfloor + 1, \dots, \lfloor 2p/3 \rfloor\},\$   
 $G_3 = \{\lfloor 2p/3 \rfloor + 1, \dots, p-2\}$   
• Define a function  $f : G \to G$  such that  
 $\begin{cases} f(z) = zg \quad z \in G_1 \\ f(z) = z^2 \quad z \in G_2 \\ f(z) = zh \quad z \in G_3 \end{cases}$   
(original definition, other definitions possible)

# Pollard's rho (intuition)

- Start from g₀ := g and apply f recursively to get g_i
- ▶ By the way f is defined, we can keep track of a_i, b_i such that g_i = g^{a_i}h^{b_i}
- If f is "random enough", obtain random elements in G and a collision after O(√|G|) elements
- Collision gives DLP solution

Pollard's rho (simplest version)

1:  $N \leftarrow \lceil \sqrt{|G|} \rceil$ 2:  $a \leftarrow 1; b \leftarrow 0; \tilde{h} \leftarrow g; L \leftarrow \{(a, b, \tilde{h})\}$ 3: for  $k \in \{2, ..., N\}$  do 4: if  $\tilde{h} \in G_1$  then  $a \leftarrow a + 1; \tilde{h} \leftarrow \tilde{h}g$ 5: if  $\tilde{h} \in G_2$  then  $a \leftarrow 2a; b \leftarrow 2b; \tilde{h} \leftarrow (\tilde{h})^2$ 6: if  $\tilde{h} \in G_3$  then  $b \leftarrow b + 1; \tilde{h} \leftarrow \tilde{h}h$ 7:  $L \leftarrow L \cup \{(a, b, \tilde{h})\}$ 8: end for 9: Find distinct  $(a_i, b_i, \tilde{h}) \in L, i = 1, 2$ 10: if no such elements then abort 11: return  $-(a_1 - a_2)/(b_1 - b_2) \mod |G|$ 

#### Pollard's rho analysis

- Correctness :
  - Every  $(a, b, \tilde{h})$  in the list satisfies  $\tilde{h} = g^a h^b$
  - $g^{a_1}h^{b_1} = g^{a_2}h^{b_2}$  implies  $h = g^{-\frac{a_1-a_2}{b_1-b_2}}$
- Time and memory costs  $N \approx \sqrt{|G|}$
- Good probability of success by birthday's paradox

Christophe Petit -Advanced Cryptography

# Pollard's rho (improvement)

- ► Let (L₁, L₁ + L₂) be the indices of first collision
- Then  $(L_1 + j, L_1 + kL_2 + j)$  also collide
- For j, k such that  $L_1 + j = kL_2$ , we have  $L_1 + kL_2 + j = 2(L_1 + j)$
- Now search for  $(a_i, b_i, \tilde{h}_i)$  and  $(a_{2i}, b_{2i}, \tilde{h}_{2i})$  such that  $\tilde{h}_i = \tilde{h}_{2i}$
- Only requires constant size memory

S	UNIVERSITY OF
13.000月	OXFORD
	UAFURD.

#### Pohlig-Hellman

- Assume  $|G| = n_1 n_2$  and let g a generator of G
- $h = g^k$  implies  $h^{n_1} = (g^{n_1})^k$
- where  $g^{n_1}$  generates a subgroup of order  $n_2$
- Solving DLP in that subgroup gives  $k \mod n_2$
- Repeating for each factor and using CRT gives k

# Pohlig-Hellman (example)

- Let  $G = \mathbb{Z}_{13}^*$ , let g = 2 and let h = 7
- We have  $|G| = 12 = 2^2 \cdot 3$
- ► Recover k mod 2 by solving  $(2^6)^k = 7^6 \mod 13 \Leftrightarrow (-1)^k = -1 \mod 13 \Leftrightarrow k = 1 \mod 2$
- Write k = 1 + 2k'. Recover  $k \mod 4$  by solving  $(2^3)^{1+2k'} = 7^3 \mod 13 \Leftrightarrow (-1)^{k'} = -1 \mod 13$  $\Leftrightarrow k' = 1 \mod 2 \Leftrightarrow k = 3 \mod 4$
- Recover k mod 3 by solving  $(2^4)^k = 7^4 \mod 13 \Leftrightarrow (3)^k = 9 \mod 13 \Leftrightarrow k = 2 \mod 3$
- Use CRT to deduce  $k = 11 \mod 12$

Outline	Outline
Generic DLP algorithms	Generic DLP algorithms
Index Calculus for DLP : introduction Overview Example : Adleman's algorithm The linear algebra part	Index Calculus for DLP : introduction Overview Example : Adleman's algorithm The linear algebra part
Subexponential DLP algorithms	Subexponential DLP algorithms
Quasi-polynomial DLP algorithm	Quasi-polynomial DLP algorithm
Factoring algorithms	Factoring algorithms
Elliptic Curve Discrete Logarithm Problem	Elliptic Curve Discrete Logarithm Problem
OXFORD Christophe Petit -Advanced Cryptography	25 Christophe Petit -Advanced Cryptography

# Discrete Logarithms over finite fields

- ► Discrete Logarithm Problem (DLP) Given G a finite cyclic group, given g a generator of G, and given h ∈ G, find k such that h = g^k
- Believed to be a hard problem when *G* is the multiplicative group of a well-chosen field
- ► (Formal definition of "hard" involves families of fields,...)

# Fields used in cryptography

- $\mathbb{F}_p^*$  where p is prime : most used, believed to be secure
- $\mathbb{F}_{p^n}^*$  where p is prime and n is small (typically up to 12) : used in *pairing* applications
- $\mathbb{F}_{2^n}^*$  or  $\mathbb{F}_{3^n}^*$  where *n* is a product of small primes : should be avoided (Pohlig-Hellman attack)
- ▶ ℝ^{*}_{2ⁿ} or ℝ^{*}_{3ⁿ} for arbitrary n : should now also be avoided, suggested before 2013 for efficiency reasons
- ▶ Remark : typically work over a prime order subgroup of F^{*}_p or F^{*}_p, otherwise problems such as *decisional Diffie-Helman* are easy

# L notation

$$L_Q(\alpha; c) = \exp(c(\log Q)^{\alpha}(\log \log Q)^{1-\alpha})$$

- Q is the size of the field
- $\alpha = 0 \Rightarrow L_Q(\alpha; c) = (\log Q)^c$  polynomial
- $\alpha = 1 \Rightarrow L_Q(\alpha; c) = Q^c$  exponential

Christophe Petit -Adva

ced Cryptography

# Playing with L notation

 $L_Q(\alpha; c) = \exp(c(\log Q)^{\alpha} (\log \log Q)^{1-\alpha})$ 

- Approximation : ignore constant and log log factors, write  $L_Q(\alpha)$  (but beware they are very relevant in practice!)
- $L_Q(\alpha)L_Q(\beta) \approx L_Q(\max(\alpha,\beta))$
- $L_Q(\alpha, c)^k = L_Q(\alpha, kc)$  if k is constant
- $L_Q(\alpha, c)^k = L_Q(\alpha + \beta, c)$  if  $k = (\log Q)^{\beta}$

UNIVERSITY OF OXFORD	Christophe Petit -Advanced Cryptography	30
-------------------------	-----------------------------------------	----

# State-of-the-art and History

- Write  $Q = q^n$  (with q a prime power)
- State-of-the-art depends on relative size of q and n
- ► See Joux, Odlyzko, Pierrot. The past, evolving present and future of discrete logarithms www-polsys.lip6.fr/~pierrot/papers/Dlog.pdf

Christophe Petit -Advanced Cryptography



DLP algorithms for finite fields

#### Index calculus

- Generic framework to solve discrete logarithm problems, but some steps are group-specific
- Let g, h a DLP problem
- Define a factor basis *F* ⊂ *G*, ensuring *F* contains a generator (most elements in *G* are generators)
- Can assume  $g \in \mathcal{F}$ , otherwise do the following :
  - Pick a generator  $g' \in \mathcal{F}$
  - Compute *a* such that  $g = (g')^a$
  - Compute *b* such that  $h = (g')^b$
  - Compute  $k = b/a \mod |G|$
- Remark : size of  $\mathcal{F}$  will be optimized for efficiency

OXFORD Christophe Petit -Advanced Cryptography

#### Index calculus

 $\blacktriangleright$  Find about  $|\mathcal{F}|$  relations between factor basis elements

$$\mathcal{R}_j: \prod_{f_i \in \mathcal{F}} f_i^{a_{i,j}} = 1$$

(the algorithm to compute the relations is group-specific)

Christophe Petit -Advanced Cryptography

► Deduce  

$$\sum_{f_i \in \mathcal{F}} a_{i,j} \log_g f_i = 0$$
or
$$\begin{pmatrix} a_{1,1} & \dots & a_{|\mathcal{F}|,1} \\ \vdots & & \vdots \\ a_{1,|\mathcal{F}|} & \dots & a_{|\mathcal{F}|,|\mathcal{F}|} \end{pmatrix} \begin{pmatrix} \log_g f_1 \\ \vdots \\ \log_g f_{|\mathcal{F}|} \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

OXFORD

Outline

#### Index calculus

- ► Use linear algebra to compute all log_g f_i, the discrete logarithms of factor basis elements
- Deduce the discrete logarithm of h (This part is group-specific and may involve several steps)
- ► Remarks :
  - Relations often involve few elements, hence linear algebra is sparse
  - In some cases, h is included in the factor basis and the last step is avoided : linear algebra produces log_g h

Christophe Petit -Advanced Cryptography

#### Generic DLP algorithms

#### Index Calculus for $\mathsf{DLP}$ : introduction

Example : Adleman's algorithm

The linear algebra part

Subexponential DLP algorithms

Quasi-polynomial DLP algorithm

Factoring algorithms

Elliptic Curve Discrete Logarithm Problem

OXFORD Christophe Petit -Advanced Cryptography

# Leonard Adleman



UNIVERSITY OF OXFORD         Christophe Petit -Advanced Cryptography         37		
	Christophe Petit -Advanced Cryptography	37

# Example : a naive index calculus for $\mathbb{F}_p^*$

- DLP : given  $g, h \in \mathbb{F}_p^*$ , find k such that  $h = g^k$
- Factor basis made of small primes

$$\mathcal{F}_B := \{ \text{primes } p_i \leq B \}$$

# ► Relation search

1

- Compute  $r_j := g^{a_j} h^{b_j}$  for random  $a_j, b_j \in \{1, \dots, p-1\}$
- ▶ If all factors of  $r_j$  are  $\leq B$ , we have a relation

$$g^{a_j}h^{b_j}=\prod_{p_i\in\mathcal{F}}p_i^{e_i}$$

• Linear algebra produces  $g^a h^b = 1$ 

UNIVERSITY OF	Christophe Petit -Advanced Cryptography	38

Size of the factor basis

► By the prime number theorem,

$$|\{\text{primes } p_i \leq B\}| \approx \frac{B}{\ln B}$$

Smooth numbers

- An integer number is *B*-smooth if all its prime factors are smaller than *B*
- Define  $\Psi(N, B) = \#\{B \text{-smooth numbers} \le N\}$
- Let  $u = \log N / \log B$ . We have

$$\frac{\Psi(N,B)}{N} = \rho(u) + O\left(\frac{1}{\log B}\right)$$

• Here  $\rho$  is the *Dickman-de Bruijn* function with

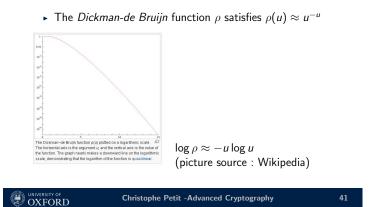
$$\rho(u) \approx u^{-u}$$

Christophe Petit -Advanced Cryptography

# 

Christophe Petit -Advanced Cryptography

# Dickman-de Bruijn function $\rho$



# Naive analysis of naive index calculus

- Choose log  $B \approx (\log p)^{1/2}$
- $|\mathcal{F}| \approx B/\log B \approx 2^{(\log p)^{1/2} (\log \log p)^{-1/2}} \approx 2^{(\log p)^{1/2}}$

- $u = \log p / \log B \approx (\log p)^{1/2}$   $\rho(u) = (\log p)^{-1/2(\log p)^{1/2}} \approx 2^{-1/2(\log p)^{1/2}(\log \log p)}$
- Number of random trials to get  $|\mathcal{F}|$  relations is

 $pprox |\mathcal{F}| 
ho(u)^{-1} pprox 2^{(1/2+o(1))(\log p)^{1/2}(\log \log p)}$ 

- Each trial has polytime complexity in log p
- Linear algebra cost is  $|\mathcal{F}|^\omega pprox 2^{\omega(\log p)^{1/2}}$
- Total cost dominated by relation search
- $B \approx L_p(1/2; c)$  leads to slighly better cost  $L_p(1/2; c')$

Christophe Petit -Advanced Cryptography

Playing with L notation (2)

- $L_Q(\alpha; c) = \exp(c(\log Q)^{\alpha}(\log \log Q)^{1-\alpha})$
- Probability that an element of size  $L(\alpha)$  is  $L(\beta)$  smooth is

$$(L(\alpha - \beta))^{-1}$$

▶ If c is constant, the probability that an element of size B is B/c-smooth is constant

Christophe Petit -Advanced Cryptography

Same algorithm for  $\mathbb{F}_{2^n}^*$ 

- DLP : given  $g, h \in \mathbb{F}_{2^n}^*$ , find k such that  $h = g^k$
- ► Factor basis made of small "primes"

$$\mathcal{F}_B := \{ \text{irreducible } f(X) \in \mathbb{F}_2[X] | \deg(f) \leq B \}$$

- Relation search
  - Compute  $r_i := g^{a_j} h^{b_j}$  for random  $a_i, b_i \in \{1, \dots, p-1\}$
  - ▶ Factor  $r_i \in \mathbb{F}_2[X]$  with Berlekamp's algorithm
  - If all factors  $\in \mathcal{F}_B$ , we have a relation  $g^a h^b = \prod_{f_i \in \mathcal{F}} f_i^{e_i}$
- Linear algebra produces  $g^a h^b = 1$

44

Outline	Linear algebra
Generic DLP algorithms	· · · · · · · · · · · · · · · · · · ·
Index Calculus for DLP : introduction Overview Example : Adleman's algorithm The linear algebra part	• Given matrix <i>M</i> and vector <i>x</i> , find all <i>y</i> such that $My = x$
Subexponential DLP algorithms	
Quasi-polynomial DLP algorithm	
Factoring algorithms	
Elliptic Curve Discrete Logarithm Problem	
OXFORD Christophe Petit -Advanced Cryptography	45 WINVERSITY OF Christophe Petit - Advanced Cryptography 46

# Gaussian elimination

- Observation : if My = x then for any invertible N, we have NMy = Nx
- In particular, this is true when N is a matrix which
  - ► Swaps two rows of *M*
  - Multiplies one row by an invertible constant
  - Adds a multiple of one row of M to another row of M
- Gaussian elimination repeats these operations until the resulting matrix is upper triangular

Christophe Petit -Advanced Cryptography

Gaussian elimination

- Algorithm when *M* is invertible
  - 1: for each column *i*, from i = 1 to *n* do
  - 2: Find a nonzero element in this column
  - 3: Swap the row of this element with row i
  - 4: **for** each row *j* below row *i* **do** 
    - Let  $c := -M_{j,i}/M_{i,i}$
  - 6: Add c times row i to row j
    - to erase the value in (j, i)
  - 7: end for
  - 8: end for

5:

- Adapt step 2 otherwise
- Cost is  $O(n^3)$  multiplications
- OXFORD Christop

# Resolution from Gaussian form

- Algorithm when *M* is invertible
  - 1: **for** each column *i* from *n* to 1 **do**
  - Recover value of unknown *i*, using equation *i* and all values of previously computed unknowns *j* > *i* end for
- ► Adapt to determine the afine space of solutions v + ker M otherwise
- ▶ Cost is O(n²) multiplications
- Can be used to invert M in  $O(n^3)$  multiplications

Christophe Petit -Advanced Cryptography

# Sparse linear algebra

- A matrix is sparse if each row contains a small number of nonzero elements
- ► Can store larger size matrices by storing only (i, j, M_{i,j}) for nonzero elements M_{i,j}
- Gaussian elimination will kill the sparsity quickly
- Two approaches for sparse matrices :
  - Structured Gaussian elimination
  - Algorithms based on matrix-vector multiplications

See.	UNIVERSITY OF
	OVEODD
100	OXFORD

49

Christophe Petit -Advanced Cryptography

# Structured Gaussian elimination

- Consider the linear system My = x
- For the matrices *M* occurring in index calculus :
  - Each row contains few elements
  - The first columns contain much more elements than the last ones
- Structured Gaussian elimination involves several tricks such as removing variables that only appear once or twice
- Used as preprocessing to reduce the size in practice
- Heuristic

# Lanczos algorithm

- If M is invertible, My = x ⇔ M^tMy = M^tx hence we can assume M is symmetric positive definite defining a scalar product (x, y)_M := xMy^t
- Lanczos is iterative : over the real/complex numbers, the algorithm can be stopped before the end with a reasonable approximation of the solution
- First compute a basis {v_i} of orthogonal vectors with respect to the scalar product (*,*)_M,
- Then compute  $\sum_{i=1}^{n} (x, v_i) v_i = \sum_{i=1}^{n} (y, v_i)_M v_i = y$
- Second part involves O(n) matrix-vector multiplications, each one at O(n) cost if each row contains O(1) elements

## Computing the orthogonal basis

- Start from a random  $w_1$  and  $v_1 = w_1/||w_1||_M$
- Then heuristic modification of Gram-Schmidt algorithm

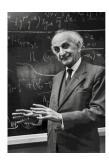
  - 1.  $w_{i+1} = Mv_i$ 2.  $w'_{i+1} = w_{i+1} \sum_{j=1}^{i} (w_{i+1}, v_j)_M \cdot v_j$ 3.  $v_{i+1} = w'_{i+1} / ||w'_{i+1}||_M$
- Second step is in fact

 $w'_{i+1} = w_{i+1} - (w_{i+1}, v_i)_M \cdot v_i - (w_{i+1}, v_{i-1})_M \cdot v_{i-1}$ 

• Likely to converge to a basis  $\{v_1, \ldots, v_n\}$  over the reals; needs some adjustment for small characteristic finite fields

	Christophe Petit -Advanced Cryptography
--	-----------------------------------------

#### Cornelius Lanczos



UNIVERSITY OF	Christen ha Dath, Advanced Countermenter	
OXFORD	Christophe Petit -Advanced Cryptography	

#### Wiedemann algorithm

- Reconstruct the **minimal polynomial** of M: smallest degree polynomial f such that f(M) = 0
- If  $f(\alpha) = \sum_{i=0}^{d} f_i \alpha^i$ , then  $I = -\frac{1}{f_0} \sum_{i=1}^{d} f_i M^i$  then

$$x = -\frac{1}{f_0} \sum_{i=1}^d f_i M^i x = M \left( -\frac{1}{f_0} \sum_{i=1}^d f_i M^{i-1} x \right)$$

• We deduce y such that My = x

Christophe Petit -Advanced Cryptography

Wiedemann algorithm (2)

- Main idea to compute minimal polynomial :
  - Construct  $(a, M^i x)$  for a random vector a and  $i=0,\ldots,2n-1$
  - Use Berlekamp-Massey's algorithm to compute the linear recurrence in this sequence
- The whole algorithm requires O(n) matrix-vector products
- ► Recent discrete log records use Block Wiedemann http://caramel.loria.fr/p180.txt

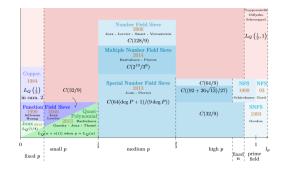
Christophe Petit -Advanced Cryptography

56

# Outline



# Further subexponential DLP algorithms



Source:www-polsys.lip6.fr/~pierrot/papers/Dlog.pdf

	Christophe Petit -Advanced Cryptography	58
--	-----------------------------------------	----

Outline

Generic DLP algorithms

Index Calculus for DLP : introduction

Subexponential DLP algorithms Coppersmith

Function Field Sieves Number Field Sieves

Quasi-polynomial DLP algorithm

Factoring algorithms

Elliptic Curve Discrete Logarithm Problem

Christophe Petit -Advanced Cryptography

# Don Coppersmith



#### Remember : basic algorithm for $\mathbb{F}_{2^n}^*$

- ▶ DLP : given  $g, h \in \mathbb{F}_{2^n}^*$ , find k such that  $h = g^k$
- Factor basis made of small "primes"

 $\mathcal{F}_B := \{ \text{irreducible } f(X) \in \mathbb{F}_2[X] \mid \deg(f) \leq B \}$ 

- Relation search ►
  - Compute  $r_j := g^{a_j} h^{b_j}$  for random  $a_j, b_j \in \{1, \dots, p-1\}$
  - Factor  $r_j \in \mathbb{F}_2[X]$  with Berlekamp's algorithm
  - If all factors  $\in \mathcal{F}_B$ , we have a relation  $g^a h^b = \prod_{f_i \in \mathcal{F}} f_i^{e_i}$
- Linear algebra produces  $g^a h^b = 1$

Christophe Petit -Advanced Cryptography

#### Coppersmith's algorithm for $\mathbb{F}_{2^n}$

- Idea : reduce factor basis to polynomials of degree  $n^{1/3}$ (vs.  $n^{1/2}$ ) by ensuring all  $r_i$  have degree  $n^{2/3}$  (vs. n)
- We have  $\mathbb{F}_{2^n} \approx \mathbb{F}_2[x]/(p(x))$  for any irreducible pChoose  $p(x) = x^n + q(x)$  where deg  $q \le n^{2/3}$
- Let  $k = 2^e \approx n^{1/3}$ , let  $d \approx n^{1/3}$
- Let  $h \approx n^{2/3}$  least integer larger than n/k
- Let  $r(x) = x^{hk} \mod p(x) = q(x)x^{hk-n}$ with deg  $r < k + \deg q \approx n^{2/3}$

UNIVERSITY OF	Christen ha Datit. Advanced Countermarker	60
	Christophe Petit -Advanced Cryptography	02

# Coppersmith's algorithm for $\mathbb{F}_{2^n}$

- ▶ Factor basis are elements with degree smaller than *d*, where *d* smallest integer  $\geq n^{1/3}$
- Relations will be of the form  $d(x) = (c(x))^k$ for c, d smooth, where c constructed in a special way
- Relation search
  - Take a(x) and b(x) coprime with degrees d
  - Take  $c(x) = a(x)x^h + b(x)$  degree  $O(n^{2/3})$
  - Take  $d(x) = (c(x))^k \mod p$
  - We have  $d(x) = r(x)(a(x))^k + (b(x))^k$  degree  $O(n^{2/3})$
  - If both c and d are smooth, we get a relation
     Probability O(2^{-n^{1/3}-ϵ})

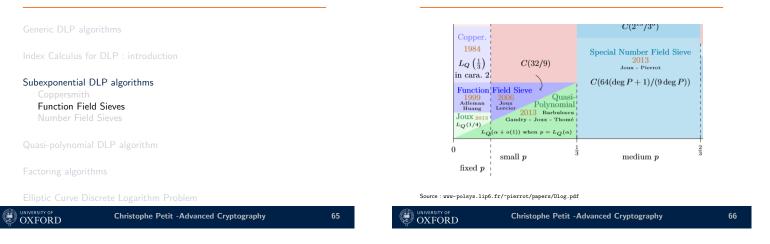
Christophe Petit -Advanced Cryptography

# Individual logarithms

- For increasing *i*, until  $m_i$  and  $n_i$  are smooth enough
  - Use continued fractions/ Euclide algorithm to write  $h(x)x^i = m_i(x)/n_i(x)$  with deg  $m_i$ , deg  $n_i \leq n/2$
  - ▶ Check smoothness of *m_i* and *n_i*
  - ► Continue until both are O(n^{2/3}) smooth
- ▶ For each factor *m* 
  - Choose a(x) and b(x) coprime random such that m|c where  $c(x) = a(x)x^h + b(x)$
  - Let  $d(x) = (c(x))^k \mod p(x)$  as above
  - If d and c/m are smooth enough, we either iterate on all (smaller degree) factors or we write m in the factor basis

# Outline

Function	Field	Sieves
i anotion	1 1010	0.0100



# Adleman-Huang

- We want to solve DLP in  $\mathbb{F}_{p^n}$ , where p is constant
- Set smoothness bound  $d \approx n^{1/3}$
- Define  $f(x) = x^n + q(x)$  where deg  $q < n^{2/3}$
- Let  $k \approx n^{1/3}$ , let h least integer larger than n/k, and let  $\delta = hk n$
- Let  $m(x) = x^h$  and  $H(x, y) = y^k + x^{\delta}q(x)$
- We have a homomorphism

$$\Phi: \frac{\mathbb{F}_{\rho}[x,y]}{(H(x,y))} \to \frac{\mathbb{F}_{\rho}[x]}{(f(x))}: (x,y) \to (x,m(x))$$

Christophe Petit -Advanced Cryptography

Factor basis and relations

- $\blacktriangleright$  Factor basis is  $\mathcal{F}=\mathcal{F}_1\cup\mathcal{F}_2$  where
  - 1.  $\mathcal{F}_1$  contains all irreducible polynomials of degree at most d over  $\mathbb{F}_{\rho}$ ,
  - 2.  $\mathcal{F}_2 = \{r + ms \mid N(r + ys) \in \mathcal{F}_1\}$ (Here  $N(r + ys) = r^k H(x, -s/r)$  is function field norm)
- ► To find a relation, take random couples of polynomials (a, b) both of degrees about n^{1/3}, until both
  - 1. am + b is d-smooth
  - 2. N(ay + b) is d-smooth

# Adleman-Huang (2)

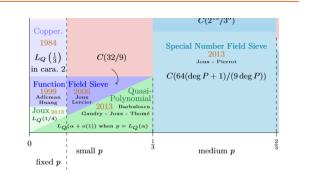
From each such couple deduce a relation

$$\sum_{P_i \in \mathcal{F}_1} e_i \log P_i = \sum_{Q_i \in \mathcal{F}_2} f_i \log Q_i$$

- Remark : deg(am + b) ≈ deg N(ay + b) ≈ n^{2/3} so probability that a random couple (a, b) gives a relation is about L_p(1/3)⁻¹
- Individual logarithms as in Coppersmith's algorithm

		Christophe Petit -Advanced Cryptography	69
--	--	-----------------------------------------	----

#### Joux-Lercier



Source:www-polsys.lip6.fr/~pierrot/papers/Dlog.pdf

۲

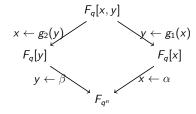
OXFORD	Christophe Petit -Advanced Cryptography	70
--------	-----------------------------------------	----

Joux-Lercier

- We want to solve DLP in  $\mathbb{F}_{q^n}$ , where  $q = L_{q^n}(1/3)$
- Find polynomials  $g_1, g_2$  of degrees  $d_1, d_2 \approx n^{1/2}$  over  $\mathbb{F}_q$  s.t.  $g_2(g_1(x)) + x$  has an irreducible factor I of degree n
- Letting  $y = g_1(x)$ , we see that  $g_1(-g_2(y)) y$  has an irreducible factor I' of degree n
- ▶ If  $\alpha \in \mathbb{F}_{p^n}$  is a root of *I* then  $\beta = g_1(\alpha)$  is a root of *I*'
- If  $\beta \in \mathbb{F}_{p^n}$  is a root of I' then  $\alpha = -g_2(\beta)$  is a root of I

Joux-Lercier

 We have the following commutative diagram of homomorphisms



Christophe Petit -Advanced Cryptography

# Factor basis and relations

## • Factor basis is $\mathcal{F} = \mathcal{F}_1 \cup \mathcal{F}_2$ where

- *F*₁ = images of degree 1 polynomials in *F_q[y]* by *y* ← β *F*₂ = images of degree 1 polynomials in *F_q[x]* by *x* ← α
- To find relations, pick random h(x, y) = xy + bx + cy + duntil both  $h(g_2(y), y)$  and  $h(x, g_1(x))$  split completely
- Splitting probability  $\frac{1}{d_1!} \cdot \frac{1}{d_2!} \approx 2^{-n^{1/2}\log n} \approx L_{q^n}(1/3)$
- Size of  $\mathcal{F}$  is also  $L_{q^n}(1/3)$

Christophe Petit -Advanced Cryptography

### Individual logarithms

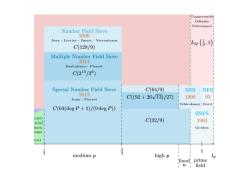
- Let  $h \in \mathbb{F}_q[x]$  for which we want to compute DL
- Compute  $x^i h(x)$  until the result is moderately smooth
- For each factor h', find  $a, b \in \mathbb{F}_q[x]$  such that
  - Degrees not too large, about deg h'
  - $h'(x) | (a(x)g_1(x) + b(x))$
  - $(a(x)g_1(x) + b(x)) / h'(x)$  smoother enough
  - $a(g_2(y))y + b(g_2(y))$  smooth enough
- Alternatively decrease the factors on each side, until all factors on both sides are linear

# Outline

Subexponential DLP algorithms

Number Field Sieves

Christophe Petit -Advanced Cryptography



Number Field Sieves

Source : www-polsys.lip6.fr/~pierrot/papers/Dlog.pdf

Christophe Petit -Advanced Cryptogra	phy 76
--------------------------------------	--------

## Gordon

- We want to solve DLP in  $\mathbb{F}_p$ , where p is prime
- Choose  $m \approx L_p(2/3)$
- Let  $p = \sum_{i=0}^{d} f_i m^i$  with  $d \approx (\log p)^{1/3}$

• Let 
$$f(x) = \sum_{i=0}^{d} f_i x^i$$

We have a ring homomorphism

$$\varphi : \mathbb{Q}[x]/(f(x)) \to \mathbb{F}_p : x \to m$$

Christophe Petit -Advanced Cryptography

## Factor basis and relations

- Let  $B \approx L_p(1/3)$  be a smoothness bound
- Factor basis is  $\mathcal{F} = \mathcal{F}_1 \cup \mathcal{F}_2$  where
  - $\mathcal{F}_1 = \{ \text{primes smaller than } B \}$
  - $\mathcal{F}_2 = \{ \text{degree 1 prime ideals } \nu \mid N(\nu) \in \mathcal{F}_1 \}$
- Search for pairs (a, b) with  $a \approx b \approx L_p(1/3)$  such that  $a + bm \in \mathcal{F}_1$  and  $a + bx \in \mathcal{F}_2$
- Note that  $a + bm \approx N(a + bx) = (-b)^d f(-a/b) \approx L_p(2/3)$ so smoothness probability is  $L_p(1/3)$

	Christophe Petit -Advanced Cryptography	78
--	-----------------------------------------	----

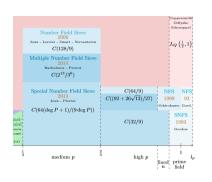
# Individual logarithms

- Suppose we want DL of a particular h
- First compute  $x^i h$  until the result is  $L_p(2/3)$  smooth
- ▶ For each factor *h_i*,
  - ▶ Generate  $L_p(1/3)$ -smooth  $\ell_i \approx h_i$ , let  $m_i = h_i \ell_i$ , let  $f_i(x)$  such that  $f_i(m_i) = 0 \mod p$ , until  $N_i(x) = f_i(0)$  is  $L_p(1/3)$  smooth
  - Search for pairs (a, b) with  $a \approx b \approx L_p(1/3)$  such that  $a + bm_i \in \mathcal{F}_1$  and  $N_i(a + bx)$  is  $L_p(1/3)$  smooth. Repeat and eliminate factors not in  $\mathcal{F}_1$

# Technicalities

- $\blacktriangleright$  Need to cancel units appearing in the relations  $\Rightarrow$  add these units to the factor bases
- If the class number of Q[x]/(f(x)) is h > 1 then need to remove non-principal ideals from the relations
   ⇒ implicitly take h powering of the equations to get principal ideals

# Joux-Lercier-Smart-Vercauteren



Source : ww	w-polsys.lip6.fr	/~pierrot/pa	pers/Dlog.pd	f

Christophe Petit -Advanced Cryptography	81

# Joux-Lercier-Smart-Vercauteren

- We want to solve DLP in  $\mathbb{F}_{p^n}$ , where  $p = L_{p^n}(2/3)$
- Choose  $f_1 \in \mathbb{Z}[x]$  of degree *n* with small coefficients, with a root *m* modulo *p*
- Let  $f_2 = f_1 + p$
- Define number fields  $K_i = \mathbb{Q}[x]/(f_i(x))$
- We have two homomorphisms

$$\varphi_i: K_i \to \mathbb{F}_{p^n}: x \to m$$

UNIVERSITY OF Christophe Petit -Advanced Cryptography

## Factor basis and relations

- Let  $B \approx L_{p^n}(1/3)$  be a smoothness bound
- Let  $\mathcal{F}_0 = \{ \text{primes smaller than } B \}$
- Factor basis is  $\mathcal{F} = \mathcal{F}_1 \cup \mathcal{F}_2$  where
  - $\mathcal{F}_1 = \{c + dm \mid N_1(c + dx) = (-d)^k f_1(-c/d) \in \mathcal{F}_0\}$
  - $\mathcal{F}_2 = \{c + dm \mid N_2(c + dx) = (-d)^k f_2(-c/d) \in \mathcal{F}_0\}$
- Search for pairs (a, b) with  $a \approx b \approx L_{p^n}(1/3)$  such that both  $N_i(a + bx) \in \mathcal{F}_0$
- Note that N_i(a + bx) ≈ L_{pⁿ}(2/3) so smoothness probability is L_p(1/3)

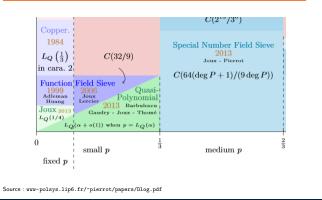
Christophe Petit -Advanced Cryptography

## Remarks

- $\blacktriangleright$  Individual logarithms as in Gordon, alternating descent in  ${\cal K}_1$  and  ${\cal K}_2$
- If K_i has a non-trivial automorphism group Aut(K) (for example if it is Galois) then corresponding part of factor basis can be reduced by a factor #Aut(K)
- Multiple number field sieve uses more than 2 number fields in parallel

Outline		
Generic DLP algorithms		
Index Calculus for DLP : introduction		
Subexponential DLP algorithms		
Quasi-polynomial DLP algorithm		
Factoring algorithms		
Elliptic Curve Discrete Logarithm Problem		
OXFORD Christophe Petit -Advanced Cryptography	85	Ē 🛞 🖯

# Quasi-polynomial DLP algorithm !



OXFORD	Christophe Petit -Advanced Cryptography	86

# Barbulescu, Gaudry, Joux, Thomé



Christophe Petit -Advanced Cryptography

# Sparse medium subfield representation

- ► A finite field K admits a sparse medium subfield representation if
  - $K = \mathbb{F}_{q^{2k}}$  for some prime power q
  - ▶ There exist  $h_0, h_1 \in \mathbb{F}_{q^2}[X]$  with small degrees, such that  $X^q h_1(X) h_0(X)$  has a degree k irreducible factor I
- In practice we can find  $h_1, h_2$  of degrees at most 2
- The polynomial I is used to define  $\mathbb{F}_{q^{2k}} = \mathbb{F}_{q^2}[X]/(I(X))$
- Elements in such field will be seen as polynomials of degree less than k over  $\mathbb{F}_{q^2}$

# Quasi-polynomial DLP algorithm !

- If K admits a sparse medium subfield representation then (initially under various heuristics, now getting cleaner) any discrete logarithm in K can be computed in time bounded by max(q, k)^{O(log k)}
- If  $q \approx k$  then  $q = O(\log |K|)$  hence complexity  $q^{O(\log q)} = 2^{O((\log \log |K|)^2)}$  quasi-polynomial in  $\log |K|$
- If |K| = pⁿ with characteristic p = (log |K|)^{O(1)} then set q = p^[log_p n] and work in extension field L = 𝔽_{q²ⁿ}, still quasi-polynomial

anced Cryptography

89

• If  $q = L_{q^{2k}}(\alpha)$  then complexity  $L_{q^{2k}}(\alpha)^{O(\log \log q^{2k})}$ 

Christophe Petit -Ad

# Key proposition

Let  $K=\mathbb{F}_{q^{2k}}$  with a sparse medium subfield representation. Under various heuristics,

1. There is an algorithm (polynomial time in q and k) which given an element of K as a polynomial  $P \in \mathbb{F}_{q^2}[X]$  with  $2 \leq \deg P \leq k - 1$ , returns an expression with at most  $O(q^2k)$  terms

$$\log P = e_0 \log h_1 + \sum e_i \log P_i$$

where deg  $P_i \leq \lceil \frac{1}{2} \deg P \rceil$  and  $e_i \in \mathbb{Z}$ 

2. There is an algorithm (polynomial time in q and k) which returns log  $h_1$  and log(X + a) for all  $a \in \mathbb{F}_{q^2}$ 

	Christophe Petit -Advanced Cryptography	90
--	-----------------------------------------	----

#### Using the Key proposition

• Given  $P \in K$  we use first part to obtain

$$\log P = e_0 \log h_1 + \sum e_i \log P_i$$

where deg  $P_i \leq \lceil \frac{1}{2} \deg P \rceil$ 

- ► Apply first part recursively on each *P_i*
- Eventually

$$\log P = e_0 \log h_1 + \sum_{a \in \mathbb{F}_{q^2}} e_a \log(X + a)$$

► Apply second part to get log P

Christophe Petit -Advanced Cryptography

- Using the Key proposition (2)
- ► The procedure constructs a tree with arity O(q²k) and O(log k) levels
- Number of nodes is  $(q^2k)^{O(\log k)}$
- Each node has a cost polynomial in k and q

## Main ideas in Key proposition

Systematic equation

$$X^q - X = \prod_{\alpha \in \mathbb{F}_q} (X - \alpha)$$

Sparse field representation

$$I|(h_1X^q - h_0) \Rightarrow X^q = \frac{h_0}{h_1} \mod I$$

• Replace X by  $m \cdot P$  in systematic equation, where

$$m \cdot P = rac{aP+b}{cP+d}$$
 and  $m = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{F}_{q^2})$ 

Christophe Petit -Advanced Cryptography

93

95

## Sketch of the algorithm

- Given *P*, substitute *X* by  $m \cdot P$  for various *m*, so that products  $P(X) \alpha$  appear on the RHS
- Use the sparse field representation to reduce the degree on the LHS to about the degree of P
- Keep the relation if all factors of the LHS have degree smaller than [¹/₂ deg P]
- Combine the relations with linear algebra to eliminate all factors P(X) − β with β ≠ 0
- For second part : take P(X) = X

Christophe Petit -Advanced Cryptography	94

# Remarks

- Relations obtained are identical for all m = λm' with λ ∈ F_{q²} and m ∈ SL(2, F_q), and more generally we pick m in distinct cosets of PGL(F_{q²})/PGL(F_q)
- Probability that a random polynomial of degree D is D/2-smooth is constant
- Analysis involves several heuristic assumptions; they are likely to be fine, if not then we are likely to refine them and deduce a better algorithm

Christophe Petit -Advanced Cryptography

Outline

Generic DLP algorithms

Index Calculus for DLP : introduction

Subexponential DLP algorithms

Quasi-polynomial DLP algorithm

#### Factoring algorithms

۲

Basic Algorithms and Quadratic Field Sieve (General) Number Field Sieve Elliptic Curve Factorization Method

Elliptic Curve Discrete Logarithm Problem

OXFORD	Christophe Petit -Advanced Cryptography	96

# Integer factorization

• Given a composite number *n*, compute its (unique)

• Equivalently : compute one non-trivial factor  $p_i$ 

• We will assume n = pq, where p and q are primes

factorization  $n = \prod p_i^{e_i}$  where  $p_i$  are prime numbers

# Factorization vs Discrete logarithms

- Discrete logarithm and factoring algorithms are similar Exceptions (?)

  - Quasi-polynomial time algorithm for discrete logarithms in small to medium characteristic
  - Elliptic curve factorization method
- Hardness of large characteristic field discrete logarithms and integer factorization is comparable today

INIVERSITY OF	Christophe Petit	-Advand
---------------	------------------	---------

ed Cryptography

97

Christophe Petit -Advanced Cryptography 

Outline

Factoring algorithms

Basic Algorithms and Quadratic Field Sieve

Christophe Petit -Advanced Cryptography



Sieve of Eratosthenes

- Compute all primes up to  $\sqrt{n}$ using a sieve
- Try to factor n by each of them •
- Complexity  $O(\sqrt{n})$
- Remark : sieve can also be used to quickly find all smooth numbers in an interval

99

100

# Pollard's rho

- Idea : find x and y such that gcd(x − y, n) = p in other words x = y mod p but x ≠ y mod n
- ► Define some "pseudorandom" iteration function f
- Compute iterates x_i and x_{2i}
- Simultaneously compute  $gcd(x_i x_{2i}, n)$
- By birthday's paradox,  $x_i = x_{2i} \mod p$  after  $O(p^{1/2})$  trials on average, and  $x_i = x_{2i} \mod n$  after  $O(n^{1/2})$  trials on average
- Hence we succeed after  $O(p^{1/2})$  trials on average

Christophe Petit -Advanced Cryptography

## Pollard's p-1 method

- A number  $x = \prod p_i^{e_i}$  is *B*-powersmooth if  $p_i^{e_i} < B$
- The method assumes p-1 is *B*-powersmooth
- Let *s* be the product of all  $p_i^{e_i} < B$
- By assumption (p-1)|s, hence  $g^s = 1 \mod p$
- We deduce  $gcd(g^s 1, n) = p$
- Only works if some factor p such that p-1 smooth !
- Compute gcd with square-and-multiply algorithm

A744 8	UNIVERSITY	UF
	OVEO	D
	OXFO	к

n

101

Christophe Petit -Advanced Cryptography 102

#### **Carl Pomerance**



Christophe Petit -Advanced Cryptography

# Quadratic Field Sieve : Rough version

- A congruence x² = y² mod n such that x ≠ ±y mod n implies that gcd(x - y, n) is a non trivial factor of n
- Set a smoothness bound  $B \approx L_n(1/2)$
- Factor basis  $\mathcal{F} = \{ \text{primes smaller than } B \}$
- Pick random x_i until you find a relation

$$x_i^2 \mod n = \prod_{s_j \in \mathcal{F}} s_j^{e_{ij}}$$

(probability is about 
$$L_n(1/2)^{-1}$$
)

• Repeat until you have  $|\mathcal{F}|$  relations

# Quadratic Field Sieve : Rough version (2)

- For each *i* write the exponents  $e_{ij}$  in a row vector
- Perform linear algebra modulo 2 on these vectors to find  $a_i$  such that  $\sum_{i=1}^n e_{ij}a_i = 2b_j$  even
- Deduce a congruence

$$\left(\prod_{i} x_{i}^{a_{i}}\right)^{2} = \prod_{i} \left(x_{i}^{2}\right)^{a_{i}} = \prod_{i} \left(\prod_{s_{j} \in \mathcal{F}} s_{j}^{e_{ij}}\right)^{a_{i}} = \left(\prod_{s_{j} \in \mathcal{F}} s_{j}^{b_{j}}\right)^{2}$$

► Only 2 congruences needed on average

Christophe Petit -Advanced Cryptography

#### Improvements

• Choose x slightly bigger than  $\sqrt{n}$  such that

$$x^2 \mod n = x^2 - n = (\sqrt{n} + t)^2 - n = 2t\sqrt{n} + t^2$$

is about the size of  $\sqrt{n}$ 

➤ Sieving : instead of testing smoothness with trial divisions, build a basis of smooth numbers of the form x² − n by extending the sieve of Erathostenes

UNIVERSITY OF	Chuistanha Datit Advanced Counternanhu	106
	Christophe Petit -Advanced Cryptography	100

# Outline

Generic DLP algorithms

Index Calculus for DLP : introduction

Subexponential DLP algorithms

Quasi-polynomial DLP algorithm

#### Factoring algorithms

Basic Algorithms and Quadratic Field Sieve (General) Number Field Sieve Elliptic Curve Factorization Method

Elliptic Curve Discrete Logarithm Problem

Christophe Petit -Advanced Cryptography

# (General) Number Field Sieve

- Original idea by Pollard, later developed by many authors
- Eventually led to discrete logarithm algorithms as well
- Let  $d \approx (\log n)^{1/3}$  and  $m \approx \lceil n^{1/d} \rceil$
- Write  $n = \sum_{i=0}^{d} f_i m^i$
- Let  $f(x) = \sum_{i=0}^{d} f_i x^i$
- ► We have a ring homomorphism

$$\varphi : \frac{\mathbb{Q}(x)}{(f(x))} \to \mathbb{Z}_n : x \to m$$

Christophe Petit -Advanced Cryptography

#### Factor basis and relations : rough idea

- Define smoothness bound  $B \approx L_n(1/3)$
- Define factor basis  $\mathcal{F} = \mathcal{F}_1 \cup \mathcal{F}_2$  where
  - $\mathcal{F}_1 = \text{set of primes smaller than } B$
  - ►  $\mathcal{F}_2 = \{a + bm \mid a, b \in \mathbb{Z}, N(a + bx) \in \mathcal{F}_1\}$
- (here  $N(a + bx) = (b)^d f(a/b)$  is the number field norm) • Generate pairs (a, b) with  $a, b \approx L_n(1/3)$  until both a + bm and N(a + bx) are B-smooth
- Deduce a relation from each such pair
- Use linear algebra to get x, y such that  $x^2 = y^2 \mod n$
- Complexity  $\approx L_n(1/3)$

Christophe Petit -Advanced Cryptography

109

#### **Technicalities**

- As such the number field side of equation may not be a square after linear algebra : only its norm is a square
- $\mathbb{Z}[x]$  may not be the full ring of integers
- Need to deal with units
- Need to deal with non-unique factorization / ideal class group when class number h > 1
- All issues solved by Adleman :
  - Fix a random set of  $O(\log n)$  primes  $q_i$
  - Consider multiplicative characters extending Legendre symbols χ_{qi}(ax + b) = (^{am+b}_{qi})
     Include (χ_{qi}(ax + b))_i in each exponent relation

OXFORD Christophe Petit -Advanced Cryptography	110
------------------------------------------------	-----

#### Remarks

- ► Instead of generating *a*, *b* randomly, fix random *a* values and sieve on b for each fixed a
- Initially various heuristics, but now rigorous bound for complexity of finding  $x^2 = y^2 \mod n$ (yet we cannot prove  $x \neq \pm y \mod n$  !)
- Exact constant more efficient for Mersenne-like numbers (Special Number Field Sieve) than arbitrary numbers (General Number Field Sieve)
- Improved constant using several number fields in parallel (Coppersmith's trick)

Christophe Petit -Advanced Cryptography

- ▶ Pomerance, A Tale of Two Sieves
- Buhler, Lenstra, Pomerance, Factoring integers with the Number Field Sieve

Further readings

# Outline

Generic DLP algorithms

Index Calculus for DLP : introduction

Subexponential DLP algorithms

Quasi-polynomial DLP algorithm

#### Factoring algorithms

Basic Algorithms and Quadratic Field Sieve (General) Number Field Sieve Elliptic Curve Factorization Method

Elliptic Curve Discrete Logarithm Problem

(R)	UNIVERSITY OF	Christenke Detit Advensed Comtessanhu
	OXFORD	Christophe Petit -Advanced Cryptography

# Pollard's p-1 method

- A number  $x = \prod p_i^{e_i}$  is *B*-powersmooth if  $p_i^{e_i} < B$
- $\blacktriangleright$  The method assumes p-1 is *B*-powersmooth
- Let s be the product of all  $p_i^{e_i} < B$
- By assumption (p-1)|s, hence  $g^s = 1 \mod p$
- We deduce  $gcd(g^s 1, n) = p$
- Only works if some factor p such that p-1 smooth !

6	UNIVERSITY OF
	OXFORD

Christophe Petit -Advanced Cryptography

# Elliptic curve factorization method





- ► Idea : generalize previous method when neither p − 1 nor q − 1 are smooth
- The group order  $#E(\mathbb{F}_p)$  of an elliptic curve can be smooth even when p-1 is not !

Christophe Petit -Advanced Cryptography

# Elliptic curve addition law

- Let  $E: y^2 = x^3 + a_4 x + a_6$
- Let  $P_1 = (x_1, y_1)$ ,  $P_2 = (x_2, y_2)$  two points on the curve
- ► The chord-and-tangent rules lead to addition law formulae : for example we have P₁ + P₂ = (x₃, y₃) where
- $\begin{aligned} \lambda &= \frac{y_2 y_1}{x_2 x_1}, \quad \nu = \frac{y_1 x_2 y_2 x_1}{x_2 x_1}, \\ x_3 &= \lambda^2 x_1 x_2, \quad y_3 = -\lambda x_3 \nu \end{aligned}$
- $x_3 = \lambda^2 x_1 x_2,$   $y_3 = -\lambda x_3 \nu$ • These formulae involve divisions
- Over  $\mathbb{F}_p$ , a division by 0 means  $P_3$  is point at infinity
- Over  $\mathbb{Z}_n$ , a division fails if  $(x_2 x_1)$  is not invertible
- A failure reveals a factor of n!

## Elliptic curve factorization method

- 1. Choose *E* and  $P = (x, y) \in E(\mathbb{Z}_n)$
- 2. Let B be a smoothness bound on  $\#E(\mathbb{Z}_p)$  for p|n
- 3. Compute  $s = \prod p_i^{e_i}$  where  $p_i^{e_i} \leq B$
- 4. We have [s]P = 0 = "point at infinity" modulo p but  $[s]P \neq 0$  in  $\mathbb{Z}_n$
- 5. Try to compute [s](P) : a division by p must occur and produce an error
- 6. When a division by some d fails, compute

 $gcd(d, n) \neq 1$ 

See.	UNIVE	RSITY	OF	
۲	OX	FO	R	D

Christophe Petit -Advanced Cryptography

### Elliptic curve factorization method

For a random curve, we expect #E(𝔽_p) to be ± uniformly distributed in

$$\#E(\mathbb{F}_p) \in [(p+1) - 2\sqrt{p}, (p+1) + 2\sqrt{p}]$$

- Let  $B \approx L_p(1/2)$  so that smoothness probability is about  $(L_p(1/2))^{-1}$
- Repeat with random curves until you get a factor
- Remark : runtime depends on the smallest factor
- ► In practice, the method is used as subroutine to factor middle-size integers when  $\log_2 n \approx 60 80$  bits

	Christophe Petit -Advanced Cryptography	118
--	-----------------------------------------	-----

#### Factorization in practice : Magma



No Number Field Sieve involved by default

OXFORD Christophe Petit -Advanced Cryptography 119
----------------------------------------------------

# Factorization in practice : Magma



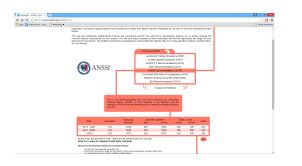
# $\label{eq:Factorization} \mbox{Factorization in practice}: \mbox{CADO-NFS}$

ADD MS ×	E - 4
C G cado-rfs.glorge.inria.fr	특승 <mark>(</mark> )
eps 🔯 Dutheok.com - chris 🗋 🛡 Kodoling 🛡	<ul> <li>Other Localization</li> </ul>
CADO-NES	
JADU-NES	
rible Algébrique: Distributio	n, Optimisation - Number Field Sieve
	)( <u> </u>
Introduction	
Download	Introduction
<ul> <li>Supported Platforms</li> </ul>	Introduction
<ul> <li>Required Software</li> </ul>	
Tools	CADO-NFS is a complete implementation in C/C++ of the Number Field Sieve
Who Used Cado-Nfs	(NFS) algorithm for factoring integers. It consists in various programs
	corresponding to all the phases of the algorithm, and a general script that runs them,
Features	possibly in parallel over a network of computers. Starting with version 2.0 there are
Known Bugs	some functionalities for computing discrete logarithms in finite fields. CADO-NFS
Contact/Support	is distributed under the Gnu Lesser General Public License (LGPL) version 2.1 (or
	any later version).

Probably best available software today !

Christophe Petit -Advanced Cryptography	121

# Recommended key lengths



Check www.keylength.com for updates!

Christophe Petit -Advanced Cryptography	122

Outline		Elliptic curves	
Generic DLP al	gorithms	<ul> <li>Set of rational points satisfying some cubic equation</li> <li>Group structure given by chord and tangent rule</li> </ul>	on
Index Calculus	for DLP : introduction		
Subexponential	DLP algorithms	R	
Quasi-polynomi	al DLP algorithm		
Factoring algori	ithms	P	
Elliptic Curve D	Discrete Logarithm Problem	R = P + Q	
UNIVERSITY OF	Christophe Petit -Advanced Cryptography	123 UNIVERSITY OF Christophe Petit -Advanced Cryptography	

# Elliptic curve discrete logarithm problem (ECDLP)

- ▶ Given *E* over a finite field *K*, Given  $P \in E(K)$ , given  $Q \in G := \langle P \rangle$ , Find  $k \in \mathbb{Z}$  such that Q = kP.
- In practice K is often a prime field, a binary field with prime extension, or  $\mathbb{F}_{p^n}$  with *n* relatively small
- Common belief : best algorithms are generic ones (at least for the parameters used in practice) 160-bit ECDLP ≈ 2048-bit DLP or factoring

Christophe Petit -Advanced Cryptography

#### Reductions to simpler DLP

- ► Idea : transfer ECDLP to a "simpler" DLP problem through a group homorphism
- ▶ **MOV reduction** if |G| divides  $q^m 1$  [MOV93] Use pairings to transfer ECDLP to DLP on  $K^m$
- Polynomial time for anomalous curves [SA98,S98,S99]
   Transfer ECDLP to a *p*-adic elliptic logarithm if |G| = |K|
- Weil descent for some curves over  $\mathbb{F}p^n$  [GS99,GHS00] Transfer ECDLP to the Jacobian of an hyperelliptic curve
- Only work for specific families

	Christophe Petit -Advanced Cryptography	126
--	-----------------------------------------	-----

## Remember : Index calculus

- General method to solve discrete logarithm problems 1. Define a **factor basis**  $\mathcal{F} \subset G$ 
  - 2. Relation search : find about  $|\mathcal{F}|$  relations

ai

$$P + b_i Q = \sum_{P_i \in \mathcal{F}} e_{ij} P_j$$

3. Do **linear algebra** modulo |G| on the relations to get

$$aP+bQ=0$$

- $\blacktriangleright$  Define  ${\cal F}$  s.t. there is an "efficient" algorithm for Step 2
- Balance relation search and linear algebra

Christophe Petit -Advanced Cryptography

# Index calculus : success stories

- Finite fields : Adleman [A79,A94], Coppersmith [C84], Adleman and Huang [AH99], Joux [J13], Barbulescu-Gaudry-Joux-Thomé [BGJT13] Subexponential complexity for any field Quasipolynomial for small to medium characteristic fields
- Hyperelliptic curves : Adleman-DeMarrais-Huang [ADH94], Enge [E00], Gaudry [G00], Gaudry-Thomé-Thériault-Diem [GTTD07] Subexponential for large genus; beats BSGS if g ≥ 3
- Elliptic curves : no algorithm at all until 2005

N== 2	UNIVERSITY OF
	OXFORD
	OAPORD

# Index calculus for elliptic curves

- ► For finite fields, **small "primes"** are a natural factor basis
  - Every element factors uniquely as a product of primes
  - "Good" probability that random elements are smooth
- Similarly for elliptic curves, we will need
  - 1. A definition of "small" elements
  - 2. An algorithm to decompose general elements into (potentially) small elements

129

First partial solutions given by Semaev [S04]

#### Summation polynomials [504]

- Relate the x-coordinates of points that sum to O
- ►  $S_r(x_1,...,x_r) = 0$  $\Leftrightarrow \exists (x_i,y_i) \in E(\bar{K}) \text{ s.t. } (x_1,y_1) + \cdots + (x_r,y_r) = O$
- Recursive formulae :  $S_2(x_1, x_2) = x_1 - x_2$   $S_3(x_1, x_2, x_3) = ...$  (depends on *E*)  $S_r(x_1, ..., x_r) =$  $Res_X (S_{r-k}(x_1, ..., x_{m-k-1}, X), S_{k+2}(x_{r-k}, ..., x_r, X))$
- *S_r* has degree 2^{*r*−2} in each variable
   Symmetric set of solutions

	Christophe Petit -Advanced Cryptography	130
--	-----------------------------------------	-----

# Semaev's variant of index calculus

- Semaev's variant of index calculus :
  - ► Factor basis : define  $\mathcal{F}_V := \{(x, y) \in E | x \in V\}$  where  $V \subset K$
  - ▶ Relation search : for each relation, Compute (X_i, Y_i) := a_iP + b_iQ for random a_i, b_i Find x_j ∈ V with S_{m+1}(x₁,..., x_m, X_i) = 0 Find the corresponding y_i
- ► Semaev's observation : ECDLP reduced to solving summation's polynomial with constraints x_i ∈ V
- For K = 𝑘_p, Semaev proposed V := {x < B} but he could not solve summation polynomials

Christophe Petit -Advanced Cryptography

Focus on composite fields [G09,D11]

- For  $K := \mathbb{F}_{q^n}$ , Gaudry and Diem proposed  $V := \mathbb{F}_q$
- $\blacktriangleright$  Finding relations amounts to finding  $x_j \in \mathbb{F}_q$  with  $S_{n+1}(x_1,\ldots,x_n,X_i)=0$
- See  $\mathbb{F}_{q^n}$  as a vector space over  $\mathbb{F}_q$
- See polynomial equation S_{n+1} = 0 over 𝔽_{qⁿ} as a system of n polynomial equations in n variables over 𝔽_q
- System can be solved with generic algorithms using complexity polynomial in Bézout bound O(2^{n²})
- Gives L(2/3) algorithm when  $n \approx \sqrt{\log q} \approx (\log q^n)^{1/3}$

# ECDLP : state-of-the-art

- We have an L(2/3) algorithm to solve ECDLP over fields 𝔽_{qⁿ} if q and n have the right size
- In applications we are interested in ECDLP over either prime fields, or 𝔽_{2ⁿ} with extension degree *n* prime
- Some algorithms have been suggested in those cases, but their complexity is unknown

Christophe Petit -Advanced Cryptography

#### Binary case [D11b, FPPR12]

Let  $K := \mathbb{F}_{2^n}$ . Fix n' < n and  $m \approx n/n'$ 

- ► Factor basis : Choose a vector subspace V of F_{2ⁿ} with dimension n' Define F_V := {(x, y) ∈ E|x ∈ V}
- ▶ Relation search : find about 2^{n'} relations. For each one, Compute (X_i, Y_i) := a_iP + b_iQ for random a_i, b_i Find x_j ∈ V with S_{m+1}(x₁,..., x_m, X_i) = 0 Find the corresponding y_j
- Linear algebra between the relations

Christophe Petit -Advanced Cryptography	134

## Finding relations : Weil descent

- $\blacktriangleright$  Finding relations amounts to Finding  $x_i \in V$  with  $S_{m+1}(x_1, \ldots, x_m, X) = 0$
- Let  $\{v_1, \ldots, v_{n'}\}$  be a basis of V Define  $x_{ij} \in \mathbb{F}_2$  such that  $x_i = \sum_{j=1}^{n'} x_{ij} v_j$

$$S_{m+1}\left(\sum_{j=1}^{n'} x_{1j}v_j, \ldots, \sum_{j=1}^{n'} x_{n'j}v_j, X\right) = 0$$

- See  $\mathbb{F}_{2^n}$  as a vector space over  $\mathbb{F}_2$
- The polynomial equation over  $\mathbb{F}_{2^n}$  corresponds to a **system** of polynomial equations over  $\mathbb{F}_2$

Christophe Petit -Advanced Cryptography

# Complexity of characteristic 2 algorithm

• Computing  $S_{m+1}$  with resultants : cost  $2^{t_1}$  where

$$t_1 \approx m(m+1)$$

• Finding  $2^{n'}$  relations : total cost  $2^{t_2}$  where

$$t_2 \approx n' + \log T_R$$

#### where $T_R(m, n', n)$ is time to compute one relation

• (Sparse) linear algebra on relations : cost  $2^{\omega' t_3}$  where

 $t_3 \approx \log m + \log n + \omega' n'$ 

Christophe Petit -Advanced Cryptography

# Complexity of characteristic 2 algorithm

- Conjectured to be subexponential based on a heuristic assumption on Groebner Basis algorithms behavior and experimental results [PQ12]
- Original assumption perhaps too optimistic
- Still an open problem

Christophe Petit -Advanced Cryptography

# **ECDLP** over Prime Fields

- No vector space available to define the factor basis
- Find a rational map  $L = \circ_{j=1}^{n'} L_j$  with a large zero set
- Define a factor basis  $\mathcal{F} = \{(x, y) \in E(\mathcal{K}) | L(x) = 0\}$
- Each relation search now amounts to solving

$$\begin{cases} S_{m+1}(x_{11}, \dots, x_{m1}, X) = 0\\ x_{i,j+1} = L_j(x_{i,j}) & i = 1, \dots, m; j = 1, \dots, n' - 1\\ 0 = L_{n'}(x_{i,n'}) & i = 1, \dots, m. \end{cases}$$

Complexity is an open problem

See UNIVERSITY OF	Christenka Dath, Advanced Countermoder	120
OXFORD	Christophe Petit -Advanced Cryptography	138
S UAFURD		

Outline	Conclusion on (EC)DLP and factoring
Generic DLP algorithms	
Index Calculus for DLP : introduction	<ul><li>Very active field of research, with recent breakthroughs</li><li>Research challenges</li></ul>
Subexponential DLP algorithms	<ul><li>Find new algorithms for these problems</li><li>Analyze existing algorithms</li></ul>
Quasi-polynomial DLP algorithm	<ul> <li>Consider related problems</li> <li>Come to me if interested in a project in the area</li> </ul>
Factoring algorithms	Recommended key sizes : www.keylength.com
Elliptic Curve Discrete Logarithm Problem	

Christophe Petit -Advanced Cryptography

Christophe Petit -Advanced Cryptography