
Advanced Cryptography

MFOCS, Oxford

Christophe Petit

January 16, 2018

Contents

1 Introduction 2
1.1 Course Content and Prerequisites . . . . . . . . . . . . . . . . . . 2
1.2 Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Feedback welcome . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Guided Reading 3
2.1 Elliptic Curve Cryptography . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Elliptic Curves (Week 1) . . . . . . . . . . . . . . . . . . . 3
2.1.2 Elliptic Curve Discrete Logarithm Problem (Weeks 1-2) . 5
2.1.3 Algorithmic and implementation aspects (Week 2) . . . . 6
2.1.4 Pairing-based cryptography (Week 3) . . . . . . . . . . . 6
2.1.5 Elliptic curve pairings (Week 3) . . . . . . . . . . . . . . . 7
2.1.6 Isogeny-based cryptography (Week 4) . . . . . . . . . . . 7

2.2 Zero-knowledge protocols . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Basic definitions (Week 5) . . . . . . . . . . . . . . . . . . 9
2.2.2 Some classical proofs (Week 5) . . . . . . . . . . . . . . . 9
2.2.3 The Fiat-Shamir transform (Week 6) . . . . . . . . . . . . 9
2.2.4 E-voting (Weeks 7-8) . . . . . . . . . . . . . . . . . . . . . 10
2.2.5 Further reading: ZK proofs based on other assumptions . 11

3 Group Presentations 11
3.1 Elliptic Curve Cryptography (I) (Week 3) . . . . . . . . . . . . . 11
3.2 Elliptic Curve Cryptography (II) (Week 5) . . . . . . . . . . . . . 12
3.3 Zero-knowledge protocols (Week 7) . . . . . . . . . . . . . . . . . 12

1



1 Introduction

1.1 Course Content and Prerequisites

Cryptography is the science and art of ensuring private and authenticated com-
munications. How does modern cryptography proceed to achieve that?

• We provide rigorous definitions of what security means in a given context,
for example IND-CCA security or existential unforgeability definitions.

• We make some hardness assumption on some computational problem, for
example the discrete logarithm problem or the integer factorization prob-
lem.

• We build some protocol so that we can prove that breaking the proto-
col (in the sense of our security definition) would imply solving the hard
computational problem. For example, ElGamal encryption is IND-CPA
secure if the decisional Diffie-Hellman problem is hard.

In this course I will assume you have the basic knowledge on cryptography
that is normally provided in an introduction course, and certainly the one offered
in MFOCS. I also assume that finite fields have no secret for you, as well as basic
algebra concepts such as rings and groups. In addition to this, I assume that
you have some experience with Sage and know some basic computer algebra
algorithms.

Of course, I assume that you are motivated, eager to learn and hard-working.
I hope you will feel comfortable to ask questions when we meet or by email
anytime.

Compared to the introduction course offered in MFOCS, this one is likely to
focus more on the mathematical constructs and less on the security definitions.
This does not mean that I do not consider those as important. I assume you
master the ones covered in the introduction course, and we will also study some
new definitions.

Based on the preferences you have expressed, we will cover the following
content this year:

1. Elliptic curve cryptography, including isogeny-based cryptography.

2. Zero-knowledge protocols, including their application to voting protocols.

I can provide references on other topics of your interest upon request, but
these won’t be considered part of the assessed material. I am also open to
discuss potential dissertations topics.

1.2 Organisation

This course will be organized as a reading course.
You are expected to learn by yourselves or in groups from the reference

material. The questions listed in Section 2 should help you identify the basic
knowledge to acquire on each of the topics listed above.
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The questions listed in Section 3 cover advanced material or they aim at
developing your critical understanding. You are required to prepare a 60 min
group presentation answering them. The presentation will be interrupted by
discussions to check your understanding of the material covered, or to provide
additional information. You are welcome to split the work between you, but
everybody must have a good understanding of the whole content. Your under-
standing of this material may be assessed in the mini-project.

Here is a tentative schedule (to be agreed), per week

1. Tuesday 16/01, 12pm-13pm: introduction

2. Tuesday 23/01, 11am-12pm: discussion on reading material (if requested)

3. Tuesday 30/01, 9am-10am and 11am-13pm: 2h for presentations + 1h for
questions/discussions on reading material

4. Tuesday 06/02, 11am-12pm: discussion on reading material (if requested)

5. Tuesday 13/02, 9am-10am and 11am-13pm: 2h for presentations + 1h for
questions/discussions on reading material

6. Tuesday 20/02, 11am-12pm: discussion on reading material (if requested)

7. Wednesday 28/02, to be agreed: 2h for presentations + 1h for ques-
tions/discussions on reading material

8. Tuesday 06/03, 11am-12pm: discussion on reading material (if requested)

By “requested” I mean that at least one of you has explicitly asked me to meet.
All meetings will be open to everyone. We may occasionally have a meeting
over Skype (not when you will be presenting).

1.3 Feedback welcome

I have been teaching Advanced Cryptography for MFOCS since 2015 as a regular
course, but this year I will teach it as a reading course for the first time. I am
very keen to improve it, and your constructive feedback can help me with that.
Feel free to provide feedback any time and be ensured it will be very welcome!

2 Guided Reading

2.1 Elliptic Curve Cryptography

2.1.1 Elliptic Curves (Week 1)

The main references for this part are my lecture slides from last year [31] and
Silverman’s book [35], Chapter III.
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• What are the advantages of elliptic curve cryptography compared to cryp-
tography based on the discrete logarithm over finite fields? Look at
www.keylength.com

• Define an elliptic curve.

• Define Weierstrass equations. Can any elliptic curve be represented by a
Weierstrass equation?

• Define reduced Weierstrass equations. Why are the characteristic 2 and 3
cases treated separately?

• Define the discriminant of an elliptic curve. How is this related to the
smoothness condition?

• Define the j-invariant of an elliptic curve. In what sense is this an invari-
ant?

• Suppose ϕ : E1 → E2 is an isomorphism mapping one curve in Weierstrass
coordinates to another curve in Weierstrass coordinates. What is the most
general form of ϕ?

• Give the equation of one curve with j-invariant j.

• Define a group law on the points of an elliptic curve. Assuming the curve is
in (reduced) Weierstrass coordinates, how do you add two points together?
What is the neutral element? How do you define the inverse of a point?
Understand the group operation both from geometric and algebraic points
of view.

• Prove that this operation indeed defines a group. The only difficult
property to prove is associativity. I personally like Sutherland’s proof
in his MIT lecture notes (http://math.mit.edu/classes/18.783/2017/
LectureNotes2.pdf)

• Define scalar multiplication. Express scalar multiplication as a rational
map.

• Define torsion points and division polynomials. How are these related?

• What is the group structure of elliptic curves over finite fields? How does
it look like over their algebraic structure?

• Understand Hasse’s theorem. For any finite field K, why do we expect to
have roughly K points on any curve defined over K? How accurate is this
prediction in general?

• Understand Weil-Deligne’s theorem. Assume you know the number of
points of a curve over some finite field. How can you use this theorem to
deduce the number of points over any extension field?
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• Define an isogeny. Show that its kernel is a subgroup of the curve. Define
the dual isogeny.

• Define an endomorphism. Define the Frobenius endomorphism. What is
its characteristic equation?

• Describe the structure of endomorphisms.

• Use Sage: define a finite field, an elliptic curve, add points on the curve,
perform scalar multiplications, compute the number of rational points.

2.1.2 Elliptic Curve Discrete Logarithm Problem (Weeks 1-2)

The main references for this part are my lecture slides from last year [31], and
Blake-Serousi-Smart [6].

• Define the elliptic curve discrete logarithm problem (ECDLP)

• Define Computational/ decisional elliptic curve Diffie-Hellman problems

• Define the EC Diffie-Hellman protocol. What security guarantees does
this protocol offer?

• Define EC ElGamal. Show that ElGamal is IND-CPA secure if ECDDH
is hard. Show that ElGamal is not IND-CCA secure.

• Define ECDSA. What security guarantees does this protocol offer?

• Discuss the importance of using good randomness in ECDSA (attack on
Sony’s signatures, bitcoin theft due to Android’s RNG weaknesses)

• Compare existing attack on DLP and ECDLP.

• What are NIST curves? Are these curves perfectly safe to use?

• Check othe popular curves on ttp://safecurves.cr.yp.to/

• There are two main methods to generate suitable curves: the first one
is to generate random coefficients and use point counting algorithms; the
second one is the complex multiplication method. Discuss the advantages
of each approach.

• Describe Schoof’s point counting algorithm, and discuss its complexity.

• What is the quadratic twist of a curve? How are the number of points on
one curve and its quadratic twist related?

• Use Sage to implement EC ElGamal encryption algorithm and Pollard’s
rho algorithm on ECDLP.
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2.1.3 Algorithmic and implementation aspects (Week 2)

The main references for this part are my lecture slides from last year [31], and
Blake-Serousi-Smart [6].

• Describe the basic double-and-add algorithm. What is its complexity?

• Study various methods to accelerate scalar multiplication [6, Chapter 4].

• Define Edwards curves. Are they as generic as Weierstrass curves? What
are the advantages of using Edwards curves formulae over Weirstrass
curves formulae?

• Use Sage to implement a scalar multiplication method of your choice for
Edwards curves.

2.1.4 Pairing-based cryptography (Week 3)

The main references for this part are my lecture slides from last year [31], the
survey [17], and references therein.

• Define pairings. What are their main properties? What are Type I, Type
II, Type III pairings?

• How can pairings help to build a 3-partite Diffie-Hellman protocol? Can
this protocol be built with any type of pairing?

• What computational assumptions are required for the security of the 3-
partite Diffie-Hellman protocol? How can these assumptions be related to
other computational assumptions?

• Can we extend this protocol to a 4-partite Diffie-Hellman protocol?

• What is the main idea behind identity-based cryptography? What prob-
lem does it aim to solve and what new problems does it create?

• Study Boneh-Franklin ID-based encryption protocol. Check that decryp-
tion of a valid ciphertext gives back the corresponding plaintext.

• What are the security requirements for ID-based encryption? Do the
requirements posed by Boneh-Franklin look sufficient to you?

• What are the security requirements for the hash function in Boneh-Franklin
protocol?

• Study Boneh-Lynn-Sacham signatures. What security arguments/proofs
can be provided for this protocol?

• Use Sage to implement one pairing-based protocol of your choice.

6



2.1.5 Elliptic curve pairings (Week 3)

The main references for this part are my lecture slides from last year [31], and
Galbraith’s survey in Blake-Serousi-Smart [6][Vol 2, Chapter IX].

• Define a divisor, its degree, its support.

• Define the divisor of a function, a principal divisor

• Show that the map sending an elliptic curve point P to the divisor (P )−(0)
is a group homomorphism up to principal divisors

• Let D =
∑

P nP (P ) be a degree 0 divisor on E. Then D ∼ 0 if and only
if
∑

P [nP ]P = O.

• State the Weil reciprocity.

• Define the Tate pairing. State and prove its main properties.

• Define the reduced Tate pairing. Why is this definition useful?

• Define the embedding degree. What is its importance for cryptographic
applications? What is expected about the embedding degree of random
curves?

• Define the Weil pairing. State and prove its main properties.

• Show how the Tate and Weil pairings reduce ECDLP to DLP over a finite
field. Does this reduction necessarily give a subexponential algorithm for
ECDLP?

• Can we use the Tate and Weil pairings for protocols that require a sym-
metric pairing?

• What is a distorsion map and how can it help buidling a symmetric pair-
ing?

• Study how the Tate and Weil pairing can be efficiently computed using
Miller’s algorithm

• What are the requirements for elliptic curves to have suitable crypto-
graphic pairings? Give some examples of suitable families.

2.1.6 Isogeny-based cryptography (Week 4)

The main references for this part are my lecture slides from last year [31, ?] and
the recent survey [18].

• Define an isogeny; give a standard representation as a rational map. Define
the kernel, the degree. Define the dual isogeny.
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• What are Vélu’s formulae? In general, what is the computational cost of
these formulae?

• Define the endomorphism ring computation problem. How should the
answer to this problem be returned? Is this representation efficient in
general?

• Define isogeny graphs and state their main properties.

• Sketch Kohel’s algorithm to compute endomorphisms of supersingular el-
liptic curves. What is its cost?

• What is the isogeny computation problem?

• Why are isogeny problems appealing for cryptography?

• Describe Charles-Goren-Lauter hash function based on isogenies. What
are the security arguments for this function? What is known about its
security?

• Describe the supersingular isogeny key exchange protocol (SIDH). Why
are Alice and Bob’s secret kernels of order coprime to each other? Could
we complete the protocol without exchanging extra points (i.e. exchanging
only j-invariants)? What are the security guarantees provided by the
protocol?

• Show how to derive an encryption scheme from this key exchange protocol.

• Implement CGL hash function in Sage.

2.2 Zero-knowledge protocols

As a warm-up, read the fabulous story of crypto researcher Mick Ali, a descen-
dant of Ali Baba who wanted to prove his knowledge of the magic word without
revealing it [33].

Zero-knowledge protocols are subtle cryptographic primitives that are often
used in bigger protocols, and there is unfortunately no definitive reference for
their study. There is some consensus on what the security definitions of these
protocols should convey, but there are also many subtle variations on the ex-
act definitions in the literature. These variations are due to the necessity to
adjust the definitions to either what can be proven from the particular con-
struction or to what should be proven for the bigger protocol, and ideally both
simultaneously.

Besides the early fundamental works including [21, 20, 8], good introductions
can be found in Chapter 8 of Katz [25] and the lecture notes of Damg̊ard [13]
and Venturi [37].
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2.2.1 Basic definitions (Week 5)

The main references here are the lecture notes of Damg̊ard [13] and Venturi [37].

• Define language, NP language, relation, witness.

• How do interactive proofs differ from classical proofs in Maths textbooks?

• Define sigma protocols, prover, verifier, commitment, challenge, response.
Informally define the correctness, soundness and zero-knowledge proper-
ties of sigma protocols.

• Define k-special soundness. What is the intuition behind this security
definition?

• Define honest verifier zero-knowledge. What is the intuition behind this
security definition?

• Explain the difference between arguments and proofs.

• Explain the difference in the notions of perfect/statistical/computational
soundness and zero-knowledge.

• What are the properties satisfied by Mick Ali’s protocol? [33]

2.2.2 Some classical proofs (Week 5)

The main references here is the paper [20].

• Study the zero-knowledge proof for graph isomorphism in [20, Section 2].
What are the properties satisfied by this protocol?

• Study the zero-knowledge proof for 3-coloring in [20, Section 3]. What are
the properties satisfied by this protocol?

• Explain how this leads to a zero-knowledge proof for any language in NP.
What are the properties satisfied by this protocol?

• Study how the “encryption scheme” is used in these protocols. Can you
replace this encryption scheme by a one-way function?

• Study how to perform “OR proofs” in zero-knowledge [37, 12].

2.2.3 The Fiat-Shamir transform (Week 6)

• Define identification protocol. What are the security requirements of such
protocols?

• Study the so-called “Fiat-Shamir transform” [15, 32]. What is its purpose?
What is the underlying rationale?
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• What are the typical requirements on the hash function in the Fiat-Shamir
transform? What is the purpose of the so-called “forking lemma” [32]?
Understand this lemma and its use.

• Study Schnorr identification scheme. Check that it satisfies all the above
security requirements. How are Schnorr signatures constructed from the
identification scheme?

• Can the above requirement on the hash function be relaxed? Study the
arguments given in [30].

• Suppose an identification scheme is such that a malicious prover can cheat
with a probability 1/2. What can be done to reduce this probability?

• Define an elliptic curve version of Schnorr signatures, and implement it
using Sage.

2.2.4 E-voting (Weeks 7-8)

The main reference for this part is Benaloh’s and Adida’s papers [5, 2].

• Reflect on voting and electronic voting. What are the security require-
ments that you can identify? Which ones were/not satisfied by the voting
processes you have used in the past? Which security requirements do you
consider as the most important ones?

• Compare your list of security requirements with the ones identified in [1].

• Recall ElGamal encryption protocol. Show how ElGamal ciphertext can
be re-randomized without the secret key.

• What is a treshold encryption protocol?

• Explain how to turn ElGamal encryption into a treshold encryption pro-
tocol.

• Describe Chaum-Pedersen’s zero-knowledge protocol to prove discrete log-
arithm equalities, and explain how to use this protocol to prove correct
decryption of ElGamal [2, 9]. Verify that this protocol satisfies the stan-
dard security requirements.

• Define mix-net and shuffle.

• Describe the Sako-Kilian shuffle proof [34, 2].

• What is the purpose of separating ballot creation from ballot casting?

• What is the purpose of auditing in both Benaloh and Adida’s systems?
Who is supposed to perform this audit? What are the technical skills
required from auditors? How realistic is it that auditing will be properly
performed?
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• What are the main lessons taken from the electronic voting experiment de-
scribed in [3]? What were the main technical and non technical challenges
solved for this election?

• Briefly describe and compare the the voting protocols in [5, 2, 3]. Com-
ment on the type of elections for which those protocols could be suitable.

• Can electronic voting provide additional security properties compared to
traditional voting techniques? Can traditional voting techniques provide
additional security properties compared to electronic voting?

• Describe the shuffle argument in [4] and implement it in Sage.

2.2.5 Further reading: ZK proofs based on other assumptions

For those interested, I include in this section references to zero-knowledge proofs
based on a number of different assumptions.

• Code-based cryptography: the classic reference is Stern [36].

• Lattice-based cryptography: see [26] for a Stern-like proof, or Lyuba-
shevsky [29].

• Isogeny-based cryptography: see [14] or my own paper [18].

3 Group Presentations

3.1 Elliptic Curve Cryptography (I) (Week 3)

1. Read the survey on recent elliptic curve discrete logarithm results [19].
Summarize the current state of the art and main open problems.

2. Describe the Elliptic Curve Factorization Method. What is its complexity?
Is it used today to factor big numbers? Implement the method using Sage.
Compare the efficiency of your implementation with the internal routine.

3. Study Golwasser-Killian primality proofs. Implement the method in Sage.
Study the efficiency of your implementation.

4. Describe Ciet-Joye fault’s attack [10]. What is the attack model? What
can be achieved with this attack?

Prepare a presentation to show your results at the beginning of Week 3.
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3.2 Elliptic Curve Cryptography (II) (Week 5)

1. Pairings have resulted in a tremendous amount of cryptographic schemes.
Browse the web to find some applications and list them into categories.
Choose one application that has not been covered in the lecture slides and
describe it.

2. Read Koblitz-Menezes’ opinion on the proliferation of pairing assump-
tions [28] and summarize their main arguments.

3. Based on the papers [16, 17], provide constructions of elliptic curve pair-
ings that are suitable for the protocol chosen in Question 1. Explain the
rationales behind your choices, and discuss the resulting security and ef-
ficiency both asymptotically and at the 128-bit security level. In your
parameter estimation, be sure to take into account recent progress in dis-
crete logarithm computation [27]. How is the discussion in Q2 relevant
here?

4. Implement Miller’s algorithm in Sage. Compare the cost of a pairing and
a scalar multiplication for your implementation. Does this fit with the a
priori theoretical estimations?

Prepare a presentation to show your results at the beginning of Week 5.

3.3 Zero-knowledge protocols (Week 7)

1. While the early works have shown the existence of zero-knowledge proofs
for all languages in NP, subsequent work has dramatically improved the
efficiency. Sketch the proofs for arithmetic circuits proposed in [11, 23, 22].
What is the motivation for working with arithmetic circuits instead of 3-
coloring or SAT problems? Are efficiency improvements only due to new
clever ideas or do they come at the cost of relaxed security definitions,
stronger assumptions? How is [7] improving on [22]?

2. For specific classes of languages one can improve efficiency even further.
Describe Groth-Sahai proofs [24]. What sort of statements can they prove?
What security assumptions are required for that?

3. Choose one of the protocols above and prove that it satisfies its main
security requirements.

4. Implement one of the above proofs of your choice using Sage. Propose
suitable parameters to use in your implementation.

Prepare a presentation to show your results at the beginning of Week 7.
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