
Computational Number Theory

April 4, 2017

Acknowledgements
These lecture notes are based on those from an Oxford course given by

James McKee, and are reproduced here with his kind permission. They con-
tain examples due to Richard Pinch. Parts of the notes are based on material
from the book by Pohst and Zassenhaus. While I take full responsibility for
the current contents of these notes, considerable thanks are due to Richard
and, in particular, to James.

I am anxious to be informed of any misprints or other errors that are
spotted. Please email them to me at

rhb maths.ox.ac.uk

Particular thanks are due to Eoin Byrne, who typeset a large part of
these notes, and to Michelle Kovesi, whose meticulous reading of the notes
has eliminated numerous misprints.

Roger Heath-Brown
April, 2013

1

Books
Much of the material is covered in Cohen’s A course in computational al-

gebraic number theory (Springer, GTM 138). However although the material
is in many cases the same, the treatment in these notes is often somewhat
different.

Good general books include Knuth’s The art of computer programming,
especially volume 2, and The design and analysis of computer algorithms, by
Aho, Hopcroft and Ullmann.

More specific sources include:-
Continued fractions
Many books on elementary number theory, such as Davenport (The higher
arithmetic), Hardy & Wright, Baker, Rose, . . .

Elliptic curves
Koblitz, A course in number theory and cryptography (Springer, GTM 114)
Lattices
Pohst and Zassenhaus, Algorithmic algebraic number theory (CUP)
Smart, The algorithmic resolution of Diophantine equations (CUP, LMSST
41)
Factorisation
Riesel, Prime numbers and computer methods for factorization (Birkhäuser)

2

1 Background material

1.1 Polynomial time

Let f, g be two functions from Nr to R≥0. We write

f = O(g)

if there exist constants A,B such that

f(n1, . . . , nr) ≤ Ag(n1, . . . , nr)

whenever n1, . . . , nr ≥ B.
For example, the number of digits in the base b representation of a positive

integer n is
O(max(1, logn

log b
)).

We shall often be interested in estimating running times for algorithms. We
may have input parameters n1, . . . , nr, and then the running time (i,e., the
number of elementary operations—what operations we consider to be ele-
mentary may depend on context) will be some function of n1, . . . , nr, say
f(n1, . . . , nr). A precise expression for f(n1, . . . , nr) may be hard to deter-
mine, and may be too complicated to provide any illumination. Often one is
satisfied with finding a ’nice’ function g(n1, . . . , nr) such that f = O(g).

A frequently-met special case is where the input to an algorithm consists
of a single positive integer n. Let f(n) be the running time of the algorithm.
If

f(n) = O((log n)d)

for some constant d, then we say that the algorithm runs in polynomial
time. More generally, if b is the number of bits in the input, and there is a
constant d such that an algorithm runs in time O(bd), then we say that the
algorithm runs in polynomial time. If d = 0, 1, 2, 3, . . ., then we say that the
algorithm runs in constant time, linear time, quadratic time, cubic time,. . . .

In practice, the implied constants A,B in the O-notation are important.
A quadratic time algorithm will run more quickly than a (genuinely) cubic
time algorithm for large enough values of the input, but for specific values of
the input, the asymptotic behaviour is irrelevant.

Basic arithmetic operations on the integers, +,−,×,÷ (finding quotient and
remainder), are all polynomial-time, even when using naive methods. Hence

3

arithmetic in Z/nZ can be done in polynomial time (for division, where pos-
sible, one computes a multiplicative inverse using Euclid’s algorithm: see
immediately below).

1.2 Euclid’s Algorithm

Any positive integer n can be written uniquely (up to reordering the factors)
as a product of primes. If

a =
r∏
i=1

pαi
i ,

b =
r∏
i=1

pβii ,

where p1, . . . , pr are distinct primes, then the greatest common divisor of a
and b, gcd(a, b) is given by

gcd(a, b) =
r∏
i=1

p
min(αi,βi)
i .

It is the greatest integer dividing both a and b.

Computing gcd(a, b) by finding the prime factorisations of a and b can be
slow (we shall be looking at this problem in some detail later). Can we do
better?

If |a| ≥ |b| > 0, then we can write

a = qb+ r

with

|r| ≤ |b|
2

(q is the nearest integer to a
b
). Any common divisor of a and b divides

r (and b). Any common divisor of b and r divides a (and b). There-
fore gcd(a, b) = gcd(b, r). This gives a recursive algorithm for computing
gcd(a, b).

Euclid’s algorithm
Input: integers a and b.
Output: gcd(a, b).

4

Step 1 If |a| < |b|, then swap a and b.

Step 2 If b = 0, then STOP with output |a|.

Step 3 Compute q, r such that a = qb + r, with |r| ≤ 1
2
|b|. Replace a

by b, b by r, and go to Step 2.

Each application of Step 3 reduces |b| by a factor of at least 2. Hence we
loop O(log(min |a|, |b|)) times, and we see that Euclid’s algorithm runs in
polynomial time.

There are many variants, some particularly convenient for use with binary
computers. See Cohen §1.3, especially Algorithm 1.3.5.

If d = gcd(a, b), then there exist integers x, y such that d = xa+ yb. Euclid’s
algorithm can be extended to find x, y. In the following, all triples (x, y, z)
satisfy xa+ yb = z.

Extended Euclid
Input: integers a and b.
Output: integers x and y such that xa+ yb = gcd(a, b).

Step 1 If |a| < |b|, then swap a and b. Let A = (1, 0, a), B = (0, 1, b).

Step 2 If b = 0, then STOP with output A = (x, y, gcd(a, b)).

Step 3 Compute q, r such that a = qb + r, with |r| ≤ 1
2
|b|. Copy A into

Aold. Replace A by B, replace B by Aold − qB, and go to Step 2.

This algorithm can be used to compute inverses in Z/nZ in polynomial time.
Given a ∈ Z, we compute x, y such that xa+yn = gcd(a, n). If gcd(a, n) > 1,
then a is not invertible mod n. If gcd(a, n) = 1, then x is the desired inverse
of a mod n.

1.3 Modular exponentiation

Computing am(mod n) can be done by performing m − 1 multiplications
(mod n). We can do much better as follows.

5

Write
m = 2s + 2t + · · ·

where s > t > . . . (i.e., compute the binary representation of m). Then
compute the list

a, a2, a4, a8, . . . , a2
s

(all mod n) where each term is the square of the previous one. Multiply
together all those a2

i
for which 2i appears in the binary representation of m,

to get
a2

s

a2
t · · · = a2

s+2t+··· = am.

We have thus computed am (mod n) in O(logm) multiplications.

The above idea is implemented more efficiently (without having to store ei-
ther the binary expansion of m or the relevant a2

i
) by the following algorithm.

Modular exponentiation: am (mod n)

Step 1 Let x = m, y = a, z = 1.

Step 2 If x is odd, then multiply z by y (mod n), and then subtract 1
from x.

Step 3 If x = 0, then STOP with output z.

Step 4 Square y (mod n), divide x by 2, and go to Step 2.

See Cohen §1.2 for variants.

1.4 Continued fractions: basic definitions

Let θ be any real number. Put a0 = bθc (the largest integer not greater than
θ). If a0 6= θ, then we can write θ = a0 + 1

θ1
, where θ1 > 1, and we put

a1 = bθ1c. If a1 6= θ1, then we can write θ1 = a1 + 1
θ2

, where θ2 > 1, and we
put a2 = bθ2c. This process can be continued indefinitely, unless an = θn for
some n. Note that a1, a2, . . . are all positive integers, although a0 might be
negative or zero. This process is the continued fraction process, and the
ai are known as the partial quotients of θ.

6

If the process terminates, then we have

θ = a0 +
1

θ1

= a0 +
1

a1 + 1
θ2

...

= a0 +
1

a1 + 1
a2+

1

a3+
1

...+ 1
an

We then write
θ = [a0, a1, . . . , an].

We also use this notation when the ai are not necessarily integers.

If the continued fraction process does not terminate, then we write

θ = [a0, a1, a2, . . .],

and for any n we then have

θ = [a0, a1, a2, . . . , an, θn+1],

where a0, . . . , an are integers, but θn+1 is not.

If we set
pn
qn

= [a0, . . . , an],

where gcd(pn, qn) = 1, then we call pn
qn

the nth convergent to θ. We shall
see that

pn
qn
→ θ as n→∞.

1.5 Continued fractions: a recurrence relation for the
convergents

Let a0, a1, a2, . . . be a sequence of integers, with ai > 0 when i > 0. Define
pn, qn by

p0 = a0, q0 = 1, p1 = a0a1 + 1, q1 = a1,

pn = anpn−1 + pn−2, qn = anqn−1 + qn−2, for n ≥ 2.

7

Then:

(a) pnqn+1 − pn+1qn = (−1)n+1;

(b) gcd(pn, qn) = 1;

(c) pn
qn

= [a0, . . . , an];

(d) If the ai are produced by applying the continued fraction process to θ,
then pn

qn
is the nth convergent to θ, and

θ =
pnθn+1 + pn−1
qnθn+1 + qn−1

.

Proof
(a) We use induction on n. We have p0q1 − p1q0 = a0a1 − a0a1 − 1 = −1, so
the result holds for n = 0. Suppose that the result holds for n = m− 1, and
consider the case n = m. We have, using the recurrence relation,

pmqm+1 − pm+1qm = pm(am+1qm + qm−1)− (am+1pm + pm−1)qm

= pmqm−1 − pm−1qm
= −(−1)m

= (−1)m+1,

so the result holds for n = m.
(b) This is immediate from (a).
The remark in (d) that pn/qn is the nth convergent to θ follows immediately
from (c). We use induction on n to prove the rest of (d) along with (c),
remembering that (c) does not require a priori that the ai are produced by
the continued fraction process. First note that

p1
q1

= a0 +
1

a1
= [a0, a1].

Also

p1θ2 + p0
q1θ2 + q0

=
(a0a1 + 1)θ2 + a0

a1θ2 + 1

= a0 +
θ2

a1θ2 + 1

= a0 +
1

a1 + 1
θ2

= θ,

8

so the result holds for n = 1. Suppose that the result holds for n = m − 1,
and consider the case n = m. We have

[a0, . . . , am] =
pm−1am + pm−2
qm−1am + qm−2

, using (d), with n = m− 1

and θ = [a0, . . . , am]

=
pm
qm
, which is (c), with n = m.

To establish (d) with n = m, note that

θ = [a0, . . . , am, θm+1]

= [a0, . . . , am−1, am +
1

θm+1

]

=
pm−1(am + 1

θm+1
) + pm−2

qm−1(am + 1
θm+1

) + qm−2
, using (d), with n = m− 1

=
pm + pm−1

θm+1

qm + qm−1

θm+1

, using the recurrence relations

=
pmθm+1 + pm−1
qmθm+1 + qm−1

, which is (d), with n = m.

1.6 Continued fractions: some properties of the con-
vergents

For parts (a) to (d), we suppose that the continued fraction process does not
terminate.

(a) θ lies between pn
qn

and pn+1

qn+1
.

Proof θ = [a0, . . . , an, θn+1] = [a0, . . . , an + 1
θn+1

], where 0 < 1
θn+1

≤ 1
an+1

,

so θ lies between [a0, . . . , an] and [a0, . . . , an + 1
an+1

] = [a0, . . . , an, an+1].

(b) |θ − pn
qn
| ≤ 1

qnqn+1
.

Proof From (a), |θ − pn
qn
| ≤ |pn

qn
− pn+1

qn+1
| = 1

qnqn+1
, using 1.5(a).

(c) qn+2 ≥ 2qn, pn+2 ≥ 2pn (n ≥ 1)
Proof Immediate from the recurrence relations.

(d) pn
qn
→ θ as n→∞.

Proof Immediate from (b) and (c).

9

(e) The continued fraction process terminates if and only if θ is rational.
Proof The ’only if’ part is clear. Conversely, suppose that θ = a

b
is rational,

and that the process does not terminate. Then taking n such that qn+1 > b
gives |θ − pn

qn
| ≥ 1

bqn
> 1

qnqn+1
, contradicting (b).

Note that 1.5(a) could be used to compute inverses mod n. To compute
the inverse of a mod n, we compute convergents to a

n
. By (e), we eventually

reach pr = a, qr = n, provided that gcd(a, n) = 1. By 1.5(a), we then have
pr−1n − aqr−1 = (−1)r+1, so that qr−1 is, up to choice of sign, the desired
inverse. This method is equivalent to (a variant of) Euclid’s algorithm. From
(c), we have r = O(log n).

The continued fraction process gives us a sequence of rational approxima-
tions to any irrational number θ. These approximations are rather good,
indeed they are the ’best possible’ in a sense made precise below.

Examples

(a)
θ = 16

9
, a0 = 1, θ = 1 + 7

9
.

θ1 = 9
7
, a1 = 1, θ1 = 1 + 2

7
.

θ2 = 7
2
, a2 = 3, θ2 = 3 + 1

2
.

θ3 = 2 a3 = 2 θ3 = 2

16
9

= [1, 1, 3, 2]

(Compare with Euclid’s algorithm.)

p0
q0

= 1
1

p1
q1

= 1 + 1
1

= 2
1

p2
q2

= 1 + 1
1+ 1

3

= 1 + 3
4

= 7
4

p3
q3

= 1 + 1
1+ 1

3+1
2

= 1 + 1
1+ 2

7

= 1 + 7
9

= 16
9

(Check the properties of the convergents proved above. Remark that we

10

have computed the inverse of 16 mod 9, and of 9 mod 16.)

(b) θ =
√

19 = [4, 2, 1, 3, 1, 2, 8, 2, 1, 3, 1, 2, 8, . . .]
(For irrational numbers, the partial quotients are often mysterious. Two ex-
ceptions are quadratic irrationals, and certain functions of e.)

(c) e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, . . .]

1.7 Continued fractions: closeness of the approxima-
tions

Throughout this section, we suppose that θ is irrational, so that the contin-
ued fraction process does not terminate.

(a) |qnθ − pn| decreases as n increases.

Proof θ = pnθn+1+pn−1

qnθn+1+qn−1
, hence, using 1.5(a),

|qnθ − pn| = |qnpnθn+1 + qnpn−1 − pnqnθn+1 − pnqn−1
qnθn+1 + qn−1

|

=
1

qnθn+1 + qn−1

<
1

qn + qn−1

=
1

(an + 1)qn−1 + qn−2

<
1

qn−1θn + qn−2
= |qn−1θ − pn−1|.

(b) The convergents give successively closer approximations to θ.

Proof This is a weaker statement than (a).

(c)
1

(an+1 + 2)q2n
< |θ − pn

qn
| < 1

an+1q2n
≤ 1

q2n
.

11

Proof an+1q
2
n < q2nθn+1 + qnqn−1 < (an+1 + 2)q2n. Now use |θ − pn/qn| =

1/(q2nθn+1 + qnqn−1), as in the proof of (a).

(d) If p and q are integers with 0 < q < qn+1, then |qθ− p| ≥ |qnθ− pn|. (In
this sense, continued fraction approximations are “best possible”.)

Proof From 1.5(a), we can find integers u, v such that

p = upn + vpn+1,

q = uqn + vqn+1.

Thus u 6= 0 (0 < q < qn+1). If v 6= 0, then u and v cannot both be negative
(0 < q) nor both positive (q < qn+1), so they have opposite signs. Since
qnθ − pn and qn+1θ − pn+1 also have opposite signs, we have

|qθ − p| = |u(qnθ − pn) + v(qn+1θ − pn+1)| ≥ |qnθ − pn|,

as required.

(e) If p, q are positive integers with |θ − p/q| < 1/(2q2), then p/q is a con-
vergent to θ.

Proof Take n such that qn ≤ q < qn+1 (one can clearly do this if θ is ir-
rational; as an exercise, check the rational case). Then

|p/q − pn/qn| ≤ |θ − p/q|+ |θ − pn/qn|
= q−1|qθ − p|+ q−1n |qnθ − pn|
≤ (1/q + 1/qn)|qθ − p| by (d)

< (2/qn).(1/2q)

= 1/qqn.

Hence |p/q − pn/qn| = 0.

Thus we see that all continued fraction approximations are “good”, and
that all “sufficiently good” rational approximations arise via the continued
fraction process.

1.8 Continued fractions: quadratic irrationals

The partial quotients of θ are ultimately periodic if and only if θ is a quadratic
irrational. (For a proof see any of the standard texts.) Moreover, the contin-
ued fraction expansion of

√
n can be computed using only integer arithmetic,

12

and relatively low precision.

Example
b
√

19c = 4

√
19 = 4 + (

√
19− 4)

1√
19−4 =

√
19+4

19−16 =
√
19+4
3

b
√
19+4
3
c = b4+4

3
c

(Exercise: ba+b
c
c = b bac+b

c
c for any positive integers b, c.)

√
19+4
3

= 2 +
√
19−2
3

3√
19−2 = 3(

√
19+2)
15

=
√
19+2
5

(Exercise: the denominator always divides the norm of the numerator, which
keeps the numbers small.)

1.9 The Legendre symbol

If n is an integer with n ≥ 2, then (Z/nZ)∗ denotes the multiplicative group
of those residue classes of integers mod n which are relatively prime to n.
The order of this group is φ(n), where φ is Euler’s totient function.

Let p be prime, greater than 2. Then φ(p) = p − 1. Moreover (Z/pZ)∗

is then cyclic. The subset of invertible squares mod p is a subgroup of order
(p−1)/2. Indeed if g is a generator of (Z/pZ)∗, then the squares are precisely
the even powers of g, and the non-squares are the odd powers of g.

If b is an integer, and p is an odd prime, then the Legendre symbol,
(b
p
), is defined by

(b
p
) = 0 if p divides b;

(b
p
) = 1 if b is a non-zero square mod p;

(b
p
) = − if b is a not a square mod p.

If (b
p
) = 1, then b is called a quadratic residue mod p; if (b

p
) = −1, then b

is called a quadratic non-residue mod p.

13

The Legendre symbol (b
p
) can be computed in O(p) operations in (Z/pZ)∗,

simply by testing whether a2 = b (mod p) for a = 1, 2, . . . , p− 1. We can do
much better by using Euler’s criterion:

(b
p
) = b(p−1)/2(mod p).

This is trivial if p divides b. Otherwise note that gr = 1(mod p) if and only if
p−1 divides r, and deduce that b(p−1)/2 = 1(mod p) if and only if b is an even
power of g, and so, equivalently, if and only if b is a non-zero square mod p.
If b is not a square mod p then b(p−1)/2 is a non-trivial square-root of 1(mod
p), and so must be -1. Using the modular exponentiation algorithm of §1.3
we can compute (b

p
) via Euler’s criterion in O(log p) operations in (Z/pZ)∗.

1.10 The Jacobi symbol

If n is composite, then the structure of (Z/nZ)∗ is more complicated than
when n is prime. The group is usually not cyclic. In general, far fewer than
half the elements are squares. We shall extend the Legendre symbol (b

n
) to

include odd composite n, when (b
n
) is called the Jacobi symbol. It will still

be true that (b
n
) = 1 for all b which are squares mod n (and relatively prime

to n) but (b
n
) will equal 1 for some non-squares also. Indeed (b

n
) will equal 1

for exactly half the elements of (Z/nZ)∗.

If n =
∏

i p
ei
i , where the pi are distinct odd primes, we define the Jacobi

symbol by

(b
n
) =

∏
i

(b
pi

)ei

(with (b
1
) = 1), where the expression on the right is a product of Legendre

symbols.

The Jacobi symbol satisfies the following properties (where m,n are odd
positive integers, and a, b are arbitrary integers).

(a) (b
n
) = (b mod n

n
);

(b) (b
mn

) = (b
m

)(b
n
);

(c) (ab
n

) = (a
n
)(b
n
);

(d) (−1
n

) = (−1)(n−1)/2;

(e) (2
n
) = (−1)(n

2−1)/8;

14

(f) (m
n

) = (n
m

)(−1)(m−1)(n−1)/4.

All of these follow readily from properties of the Legendre symbol. For
the Legendre symbol, formula (f) is the celebrated law of quadratic reci-
procity, first proved by Gauss. We take these properties on trust, and use
them to remark that the Jacobi symbol (b

n
) can be computed in O(log n)

operations on Z/nZ without needing to know the prime factorization of n.
Indeed by (a) we can suppose that 0 ≤ b < n, and then we can use (c) and
(e) to remove any factors of 2 from b, to reduce to the case in which b and
n are positive odd integers; then (f) reduces the computation to that of (n

b
).

One may check that after two such reductions the value of “n” is at least
halved. Thus after O(log n) reductions we will be left with either (1

n
) or (0

n
),

which have values 1 and 0 respectively. The reader will observe that this
process is somewhat similar to the “binary gcd algorithm”.

1.11 Square-roots modulo a prime

We start with a particularly simple special case. If p = 3 (mod 4) we may
write p = 2s + 1 with s odd. Then x = b(s+1)/2 will be a square root of
b mod p whenever b is a quadratic residue of p. To see this we note that
bs = b(p−1)/2 = 1 (mod p), by Euler’s criterion, so that

x2 = bs+1 = b (mod p).

In general we have to work a bit harder. Suppose again that we are trying
to find a square-root of b(mod p), where b is a quadratic residue of p. Assume
we have an integer z which is a quadratic non-residue modulo p. (It is not
quite obvious, but in fact the above algorithm for p = 3 (mod 4) corresponds
to taking z = −1.) Write p− 1 = 2rs, where s is odd, and set

y = zs (mod p).

Then run the following procedure.
Step 1. Initialize by setting w = b(s+1)/2 (mod p) and n = r.
Step 2. Check whether w2 = b (mod p), and if so set x = w and stop.
Step 3. Compute (w2b−1)2

t−1
modulo p for t = n− 1, n− 2, . . . until one

reaches a value which is −1 modulo p.
Step 4. Set w0 = wy2

r−t−1
(mod p).

Step 5. Replace w by w0 and n by n− 1, and return to Step 2.

15

Of course the parameter n plays no role in the algorithm — it is just a
convenience for the proof. To check that this works we will show that we
always have (w2b−1)2

n−1
= 1 (mod p) at Step 2. In particular, if we ever

get down to n = 1 we will have w2 = b (mod p). We prove this claim by
induction. It is certainly true at the outset, when w = b(s+1)/2 (mod p) and
n = r, since we then have

(w2b−1)2
n−1

= (bs)2
r−1

= b(p−1)/2 = 1 (mod p),

by Euler’s criterion. Then, provided that (w2b−1)2
n−1

= 1 (mod p) at Step 2,
when we compute the value in Step 3 for t = n− 1 we will have n ≥ 2 and

{(w2b−1)2
t−1}2 = (w2b−1)2

n−1

= 1 (mod p),

so that
(w2b−1)2

t−1

= ±1 (mod p).

Thus either t = n − 1 is satisfactory or (w2b−1)2
n−2

= 1 (mod p). In this
latter case we must have n ≥ 3, and we can repeat the argument. Hence,
provided that (w2b−1)2

n−1
= 1 (mod p) at Step 2, there will always be a

satisfactory value of t in Step 3. We can never reach the stage at which the
decreasing sequence of exponents produces (w2b−1)2

0
= 1 (mod p), since this

is equivalent to the stopping condition w2 = b (mod p) in Step 2.
To complete the proof of the claim it is now enough to check that

(w2
0b
−1)2

n−2

= 1 (mod p)

at Step 4. We will in fact show that

(w2
0b
−1)2

t−1

= 1 (mod p),

which is sufficient, since t ≤ n− 1. However

(w2
0b
−1)2

t−1

= (w2b−1y2
r−t

)2
t−1

= (w2b−1)2
t−1

y2
r−1

(mod p).

We arranged in Step 3 that (w2b−1)2
t−1

= −1 (mod p). Thus it is enough to
observe that

y2
r−1

= z2
r−1s = z(p−1)/2 = −1 (mod p)

by Euler’s criterion, since z was assumed to be a quadratic non-residue.

There remains the problem of finding a quadratic non-residue z of p.
This is easy in practice, since one can choose z at random and have a 50%
chance that (z

p
) = −1. Thus the expected number of trials before finding a

suitable z is 2. This produces a probabilistic algorithm. However to give
a deterministic algorithm, which is guaranteed to succeed without any
random choices, is another matter entirely.

16

1.12 Elliptic curves over finite fields

The ground field
Let p > 3 be a prime. We shall work throughout over the field with p ele-
ments, Fp. One can easily generalize things to work over an arbitrary finite
field, including characteristics 2 and 3, but prime fields (the integers mod p)
are more familiar, and the formulae are simpler when the characteristic is at
least 5. Moreover, some results are easier to formulate when the number of
elements in the field is a prime, rather than a prime power.

Definition of an elliptic curve
An elliptic curve over Fp is the set of points (x, y) ∈ F2

p satisfying an
equation of the form

y2 = x3 + ax+ b

(where a, b ∈ Fp and 4a3 + 27b2 6= 0), together with “the point at infinity”
denoted by O.

Examples
Take p = 5. then

y2 = x3 + 3x

defines an elliptic curve over F5 (with a = 3, b = 0 and 4.33 + 27.02 6= 0),
having 10 points namely

O, (0, 0), (1, 2), (1, 3), (2, 2), (3, 1), (3, 4), (4, 1), (4, 4).

Similarly
y2 = x3 + 2x

gives an elliptic curve over F5 with just two points O and (0, 0).

The number of points
For a given value of x the number of y ∈ Fp for which y2 = x3 + ax+ b could
be 0, or 1, or 2 (the second case arising when x3 + ax+ b = 0). The number
of values of y will be

1 +

(
x3 + ax+ b

p

)
in each case, so that, including the point at infinity, the number of points on
the elliptic curve will be

1 +
∑
x∈Fp

(
1 +

(
x3 + ax+ b

p

))
= p+ 1 +

∑
x∈Fp

(
x3 + ax+ b

p

)
= p+ 1 + ε,

17

say. If the values of the Legendre symbol were +1 and −1 at random one
would expect ε to show quite a bit of cancellation. In fact there is the fol-
lowing result.

Hasse’s Theorem (1933)
For any elliptic curve over Fp one has |ε| ≤ 2

√
p. Thus if the number of

points on the curve (including the point at infinity) is N then

|N − (p+ 1)| ≤ 2
√
p.

Examples If p = 5, then we have |ε| ≤ 4, so that 2 ≤ N ≤ 10. In fact
all possibilities occur:

18

ε N Equation
-4 2 y2 = x3 + 2x
-3 3 y2 = x3 + 4x+ 2
-2 4 y2 = x3 + x
-1 5 y2 = x3 + 3x+ 2
0 6 y2 = x3 + 1
1 7 y2 = x3 + 2x+ 2
2 8 y2 = x3 + 4x
3 9 y2 = x3 + x+ 1
4 10 y2 = x3 + 3x

It is useful to know not only that the number of points is close to p+ 1, but
also that there are “many” possibilities for the number of points. It can be
shown that every number of points in Hasse’s range is possible.

The group law
An abelian group law, written additively, is defined on the set of points of
an elliptic curve E by

• O is the identity;

• P + Q + R = O if and only if there is a line meeting E at P,Q and
R, counted properly. (Any vertical line x =constant passes through O,
and if P = Q the line will be tangent at P .)

Inverses
We have −(x, y) = (x,−y). For if P = (x, y) is on E then so is Q = (x,−y)
and the line through Q and Q is vertical and so passes through O. Hence
P + Q + O = O, and so Q = −P . Note that this argument, suitably inter-
preted, remains correct even when y = 0.

P+Q
The line through P and Q (or the tangent at P if P = Q) meets E at a third
point, R say. then P +Q+R = O, whence P +Q = −R. So to add P and
Q we take the third point of intersection of the line PQ with E, and change
the sign of its y coordinate.

Explicit formulae

(i) −O = O; O + O = O.

(ii) (−x, y) = (x,−y); (x, y) + (x,−y) = O.

19

(iii) If (x1, y1) and (x2, y2) are on E and x1 6= x2, then (x1, y1) + (x2, y2) =
(x3, y3) where

x3 =

(
y1 − y2
x1 − x2

)2

− x1 − x2

and

y3 = −y1 +

(
y1 − y2
x1 − x2

)
(x1 − x3).

(iv) If (x1, y1) is on E and y1 6= 0, then 2(x1, y1) = (x3, y3) where

x3 =

(
3x21 + a

2y1

)2

− 2x1

and

y3 = −y1 +

(
3x21 + a

2y1

)
(x1 − x3).

Is this an abelian group law?
Addition is plainly commutative, since the line through P and Q is the same
as the line through Q and P ; we have an identity element, and inverses ex-
ist. Thus all the axioms for an abelian group are satisfied apart possibly
from associativity. This can in principle be checked from the above formu-
lae, separating several special cases, or one can refer to the various textbooks.

An example
Consider E : y2 = x3 + 3x over F5. Suppose we wish to add P = (0, 0) and
Q = (1, 2), which both lie on E. The line through P and Q is y = 2x. If
(u, v) lies both on E and on this line we will have v2 = u3 + 3u and v = 2u,
so that (2u)2 = u3 + 3u. This cubic has roots u = 0, 1 and 3 over F5, corre-
sponding to v = 0, 2 and 1 respectively. Thus the line meets E at P = (0, 0),
Q = (1, 2) and (3, 1). It follows that P +Q = −(3, 1) = (3,−1).
To compute 2Q for example, we need the tangent line at Q. This passes
through Q = (1, 2) and has slope dy/dx. Since

2y
dy

dx
=

d

dx
(x3 + 3x) = 3x2 + 3

we have 4(dy/dx) = 6, so that the slope of the tangent line at Q will be
-1. The tangent line is therefore y = 4x + 3, which meets E at Q, with
multiplicity 2, and at (4, 4), via a calculation analogous to that used above
for P +Q. It follows that 2Q = −(4, 4) = (4,−4) = (4, 1).

20

Points of order two Points of order two are easy to spot. If 2(x, y) = O
then (x, y) = −(x, y) = (x,−y), which holds if and only if y = 0. (It was for
reasons such as this that we insisted at the outset that p ≥ 5.)

Examples of groups
Take p = 5 and consider the curves E1 : y2 = x3 +x+2 and E2 : y2 = x3 +x.
Both curves have four points

E1 : O, (1, 2), (1, 3), (4, 0),

E2 : O, (0, 0), (2, 0), (3, 0),

so in each case we have an abelian group of order 4, which can only be C4

or C2 × C2. For E1 there is exactly one point of order 2, so the group must
be C4, while for C2 there are three points of order 2 and the group is C2×C2.

Possible group types
For an elliptic curve over a finite field, the group is either cyclic or a product
of two cyclic groups. If Cm × Cm is a subgroup then p = 1(mod m). Thus,
for example, if an elliptic curve over F5 has 9 points the group must be C9.

Computing multiples of points
To compute kP for large k we can use a repeated doubling technique. Find
2P , 4P , 8P ,. . . successively, and add together whichever of these correspond
to the binary expansion of k. Thus kP can be found in O(log k) steps. The
process mimics modular exponentiation closely, and can be rearranged so as
to avoid storing all the various points 2rP .

21

2 Lattices

2.1 Some definitions

Throughout this section k and n will be positive integers with k ≤ n.

A lattice L, of rank (or dimension) k in Rn is a Z-module spanned by
k linearly independent vectors in Rn (linearly independent over R). Thus

L = {
k∑
i=1

xibi : xi ∈ Z},

where b1, . . . , bk are linearly independent column vectors in Rn. Any such
linearly independent spanning set for L is called a basis.

If c1, . . . , ck is another basis, then there exists a k × k integer matrix U ,
with determinant ±1, such that

(c1, . . . , ck) = (b1, . . . , bk)U, (∗)

where (c1, . . . , ck) and(b1, . . . , bk) are n× k matrices.

The determinant of L, denoted ∆(L) or det(L), is defined by

∆(L) = det(BtB)1/2

where B = (b1, . . . , bk). The matrix BtB will be a positive-definite symmetric
matrix, and hence will have positive determinant. It takes the form(

btibj
)
i,j≤k

with entries being the scalar products of the basis vectors. One sees from (*)
that the definition of ∆(L) is independent of the choice of basis. Moreover
in the special case k = n we have

∆(L) = | det(b1, . . . , bn)| = | det(B)|.

In fact ∆(L) is the k-dimensional volume of the fundamental parallelo-
tope

{
k∑
i=1

xibi : 0 < xi ≤ 1}.

If L1 ⊆ L2 we say that L1 is a sublattice of L2. (Here the corresponding
values of n must be the same, but we might have k1 < k2.)

22

Example Let k = n = 2 and take

b1 =

(
1
1

)
, b2 =

(
2
0

)
.

Then

∆(L) =

∣∣∣∣(1 2
1 0

)∣∣∣∣ = 2.

The symmetric matrix Q = BtB may be used to define a positive definite
quadratic form

Q(x, y) = (x y)BtB

(
x
y

)
= (x y)

(
2 2
2 4

)(
x
y

)
= 2x2 + 4xy + 4y2.

In general any positive definite quadratic form arises from a suitable lattice
in this way. Note that Q(x1, . . . , xk) = ||

∑k
i=1 xibi||2, where || || is the stan-

dard Euclidean norm on Rn.

Instead of the basis b1, b2 we could use

c1 =

(
7
19

)
, c2 =

(
6
16

)
,

which is also a basis for L. However in many situations we want to find a
basis in which the vectors are as short as possible.

2.2 The shortest non-zero lattice vector

A lattice L has a well-defined minimal length among non-zero vectors. The
square of this length is usually denoted by M1(L). To prove this assertion we
consider the quadratic form Q associated to L. Since Q is positive definite
one may complete the square successively to produce

Q(x1, . . . , xk) = a1(x1 + λ12x2 + . . .+ λ1kxk)
2

+a2(x2 + λ23x3 + . . .+ λ2kxk)
2 + . . .+ akx

2
k.

The coefficients aj will all be strictly positive since Q is positive definite.
Then the vector b1 has ||b1||2 = Q(1, 0, . . . , 0) = a1. We claim that there
are only finitely many lattice vectors b with ||b||2 ≤ a1, or in other words,
only finitely many integer vectors (x1, . . . , xk) with Q(x1, . . . , xk) ≤ a1. This
condition is equivalent to

a1(x1 +λ12x2 + . . .+λ1kxk)
2 +a2(x2 +λ23x3 + . . .+λ2kxk)

2 + . . .+akx
2
k ≤ a1.

23

Thus we have akx
2
k ≤ a1, which shows that there are finitely many possi-

bilities for xk. Then ak−1(xk−1 + λk−1,kxk)
2 + akx

2
k ≤ a1, so that there are

finitely many possibilities for xk−1, and so on.

Example
Continuing the example before, we have

Q(x, y) = 2x2 + 4xy + 4y2 = 2(x+ y)2 + 2y2,

with ||b1||2 = a1 = 2. If 2(x + y)2 + 2y2 ≤ 2 then y2 ≤ 1 so that y = 0 or
±1. Trying these values of y we find that Q(x, y) ≤ 2 for integers x, y pre-
cisely when (x, y) = (0, 0), (1, 0), (−1, 0), (−1, 1) or (1,−1). Since we want
to have a non-zero vector the first of these is disallowed, leaving 4 vectors
whose length is the minimal value

√
2, namely b1,−b1,−b1 + b2 and b1 − b2.

In particular M1(L) = 2.

In general, in higher dimensions, this process is horribly inefficient, particu-
larly if one starts with a basis that consists of vectors that are much larger
than necessary. Thus we shall describe, later in this section, a good algo-
rithm (the “LLL” algorithm) for finding a tolerably good basis, which can
be used as a starting point for the above process. Indeed in many cases the
LLL basis is already good enough for the required application.

2.3 Hermite’s theorem

Hermite’s theorem states that for each k ∈ N there is a constant µk such that

M1(L)k ≤ µk∆(L)2

for every lattice L of rank k.

Sketch proof
Since we may restrict attention to the k-dimensional subspace of Rn in which
L lies it suffices to suppose that k = n. Consider the fundamental paral-
lelepiped

P = {
k∑
i=1

xibi : 0 < xi ≤ 1}.

For different lattice points x the translates P +x are disjoint, and their union
is the whole of Rk. Thus in a large cube C the number of lattice points is
approximately Vol(C)/Vol(P) = Vol(C)/∆(L). This approximation gets
better and better the larger the cube we use.

24

On the other hand, consider the sphere

S := {x ∈ Rk : ||x|| < 1

2

√
M1(L)}.

We claim that the translates S+x of these are also disjoint, for distinct lattice
vectors x ∈ L. If this were not the case we would have two different vectors
x, x′ a distance less than

√
M1(L) apart. This would produce a non-zero

vector x− x′ ∈ L of length less than
√
M1(L), which is impossible.

Since the translates of S are disjoint, the number of them which can
lie in a large cube C is at most Vol(C)/Vol(S). However, since there is
(essentially) one such translate for every lattice point in C we deduce that
Vol(C)/∆(L) is (more or less) at most Vol(C)/Vol(S). Again the approxi-
mation gets better and better the larger the cube we use. We deduce that
∆(L)−1 ≤ Vol(S)−1. If we write µ

−1/2
k for the volume of the sphere of radius

1/2 we have Vol(S) = M1(L)k/2µ
−1/2
k , and the result follows.

This argument does not give the best possible value for µk. Finding the
optimal values is a well-known problem, which has been solved only for k ≤ 8.

2.4 An important corollary

Corollary For any lattice L there is a real number c(L) > 0 such that
∆(L1) ≥ c(L) for every sublattice L1 of L, irrespective of the rank of L1.

Proof Suppose that L1 is a sublattice of L and that L1 has rank h. Then
M1(L) ≤M1(L1), and M1(L1) ≤ µ

1/h
h ∆(L1)

2/h. Thus

∆(L1) ≥M1(L)h/2µ
−1/2
h ,

so that if L has rank k we can take c(L) = minh≤kM1(L)h/2µ
−1/2
h .

2.5 The Gram–Schmidt process

The Gram–Schmidt process deals with vector spaces over R, and converts an
arbitrary basis into an orthogonal one. In our situation we do not need to
produce an orthonormal basis (with vectors of length 1) but merely one in
which any two different basis vectors are orthogonal. To fix our notation let
us recall how this is done.

Given linearly independent vectors b1, . . . , bk in Rn, one defines b∗1 = b1 and

b∗i = bi −
i−1∑
j=1

µijb
∗
j (2 ≤ i ≤ k)

25

with

µij =
〈bi, b∗j〉
〈b∗j , b∗j〉

(1 ≤ j ≤ i− 1).

Then b∗1, . . . , b
∗
k will be orthogonal, and will span the same vector space as

b1, . . . , bk. However they will not span the same lattices, unless by fluke all
the numbers µij are integers.

2.6 LLL-reduced bases

We now begin the study of the reduction process discovered by Lenstra,
Lenstra and Lovász. A lattice basis b1, . . . , bk is said to be LLL-reduced if
the associated Gram–Schmidt basis and associated coefficients µij satisfy

(1) |µij| ≤ 1
2

for 1 ≤ j < i ≤ k; and

(2) ||b∗i + µi,i−1b
∗
i−1||2 ≥ 3

4
||b∗i−1||2 for 2 ≤ i ≤ k.

Motivation
Condition (1) says that b1, . . . , bk are “almost orthogonal”, in the sense that
the Gram–Schmidt coefficients µij are small.

Condition (2) restricts the relative sizes of the basis vectors. Using orthogo-
nality one can see that (2) is equivalent to

||b∗i ||2 ≥ (3
4
− µ2

i,i−1)||b∗i−1||2 (2 ≤ i ≤ k).

Thus the lengths ||b∗i || form an “almost-increasing” sequence.

The precise fraction 3
4

which appears in (2) is not crucial. Any value strictly
between 1

4
and 1 could be used, but 3

4
is a good compromise. Larger values

would give better bases, but at the expense of longer running times.

2.7 Properties of LLL-reduced bases

Throughout this section suppose that b1, . . . , bk is an LLL-reduced basis for
L, with associated Gram–Schmidt coefficients µij. Then

(a) We have
||bj||2 ≤ 2i−1||b∗i ||2 ≤ 2i−1||bi||2

for 1 ≤ j ≤ i ≤ k.

(b) ∆(L) ≤
∏k

i=1 ||bi|| ≤ 2k(k−1)/4∆(L).

26

(c) ||b1|| ≤ 2(k−1)/4∆(L)1/k.

(d) For every non-zero vector x in L we have ||b1|| ≤ c||x|| where

c = max
1≤i≤k

||b1||
||b∗i ||

≤ 2(k−1)/2.

Remarks
From (c) one sees that

M1(L)k ≤ ||b1||2k ≤ 2k(k−1)/2∆(L)2,

giving us a form of Hermite’s theorem, with the (rather bad) explicit value
µk = 2k(k−1)/2. Notice also that (d) shows that ||b1|| is close to being a
minimal-length vector in the lattice. It is larger than minimal by at worst
the constant factor c.

Proofs
(a) We have

||b∗i ||2 ≥ (3
4
− µ2

i,i−1)||b∗i−1||2 ≥ 1
2
||b∗i−1||2 (2 ≤ i ≤ k).

Hence ||b∗j ||2 ≤ 2i−j||b∗i ||2 for 1 ≤ j ≤ i ≤ k by induction. Thus

||bi||2 = ||b∗i ||2 +
i−1∑
j=1

µ2
ij||b∗j ||2 (∗∗)

≤

(
1 +

i−1∑
j=1

2i−j−2

)
||b∗i ||2

= (1 + 1
4
(2i − 2))||b∗i ||2

≤ 2i−1||b∗i ||2,

so that
||bj||2 ≤ 2j−1||b∗j ||2 ≤ 2j−1+i−j||b∗i ||2 = 2i−1||b∗i ||2.

The inequality (a) then follows, using (**).

(b) Let B be the matrix with columns b1, . . . , bk and let B∗ be the ma-
trix with columns b∗1, . . . , b

∗
k. Then B = B∗J where J is the upper triangular

matrix

J =

1 µ2,1 µ3,1 · · · µk,1
0 1 µ2,3 · · · µk,2
...

. . .
...

...
. . . µk,k−1

0 · · · · · · · · · 1

 .

27

Then ∆(L)2 = det(BtB) = det((B∗)tB∗), since det(J) = 1. However the
vectors b∗i are orthogonal, so that (B∗)tB∗ is a diagonal matrix, with diagonal
entries (b∗i)b

∗
i = ||b∗i ||2. We therefore conclude that ∆(L)2 =

∏k
i=1 ||b∗i ||2.

However (**) yields ||b∗i || ≤ ||bi||, so that

∆(L) ≤
k∏
i=1

||bi|| (which is the first inequality in (b))

≤
k∏
i=1

2(i−1)/2||b∗i || (using (a) with j = i)

= 2k(k−1)/4
k∏
i=1

||b∗i ||

= 2k(k−1)/4∆(L).

Remark The same argument shows that
∏k

i=1 ||ci|| ≥ ∆(L) for any basis
c1, . . . , ck of L, whether LLL-reduced or not.

(c) Set j = 1 in (a) and take the product for 1 ≤ i ≤ k to get

||b1||2k ≤
k∏
i=1

2i−1||b∗i ||2 = 2k(k−1)/2∆(L)2,

and the required inequality follows.

(d) We have ||b1||2 ≤ c2||b∗i ||2 for 1 ≤ i ≤ k, by definition of c. Any non-zero
x in L may be written as

∑k
i=1 ribi with ri ∈ Z, and also as

∑k
i=1 r

∗
i b
∗
i with

r∗i ∈ R. Choose the largest index i such that ri 6= 0 and call it i = h. By con-
struction of the Gram–Schmidt basis one has b∗h−bh ∈ 〈b1, . . . , bh−1〉, and also
b∗i ∈ 〈b1, . . . , bh−1〉 for 1 ≤ i ≤ h−1. It follows that (rh−r∗h)bh ∈ 〈b1, . . . , bh−1〉,
and since the the vectors bi are linearly independent this shows that r∗h = rh.
However rh is a non-zero integer so that ||r∗h|| ≥ 1. We therefore have

||x||2 =
k∑
i=1

(r∗i)
2||b∗i ||2 ≥ (r∗h)

2||b∗h||2 ≥ ||b∗h||2 ≥ ||b1||2/c2

as required.

2.8 The LLL reduction algorithm

Suppose that we are given a basis b1, . . . , bk of a lattice L, and we wish to find
a reduced basis, as defined by the conditions (1) and (2) of §2.6. The first

28

thing that we do is to compute the associated Gram–Schmidt basis b∗1, ..., b
∗
k

and the constants µij. Let m = 2. (We’ll see the significance of m later.) If
k = 1 then we are finished. Otherwise we do the following:

Step A
Reduce |µm,m−1| to at most 1

2
, by adding a suitable multiple of bm−1 to bm.

For example, take

b1 =

(
7
19

)
, b2 =

(
6
16

)
.

Then b∗1 = b1 and

µ2,1 =
1

49 + 361

(
7 19

)(6
16

)
=

346

410
=

173

205
>

1

2
.

So our basis is not yet LLL-reduced. Moreover

b∗2 =

(
6
16

)
− 173

205

(
7
19

)
= − 1

205

(
19
−7

)
.

To carry out Step A, we replace b2 by

b2 − b1 =

(
−1
−3

)
.

Note that b∗1 and b∗2 are unchanged.

Step B
If condition (2) holds, with i = m, then go to Step C.
Otherwise, swap bm−1 and bm; and make appropriate modifications to the
Gram–Schmidt basis, and then to the µij.
If m > 2 replace m by m− 1.
Return to Step A.

Note that condition (2) requires us only to know the lengths of the b∗i , so one
needs only to keep track of their current lengths, and of the µij. If a swap is
performed in Step B, then the lengths of b∗m−1 and b∗m are interchanged, but
no others, and the µij may change for i ≥ m− 1.

Step C
For j = m− 2,m− 3, . . . , 1, reduce |µm,j| to at most 1

2
, by adding a suitable

multiple of bj to bm.

29

Increase m by 1. If m = k + 1 stop, and otherwise return to Step A.

The significance of the parameter m is that whenever we go to Step A,
the vectors b1, . . . , bm−1 are an LLL-reduced basis for the lattice which they
span. Initially m is set to 2, and the aim is to reach m = k+ 1. When going
from Step B to Step A, the value of m decreases, unless it is already equal to
2. In contrast, when going from Step C to Step A the value of m increases.
The reader will find it helpful to draw a flowchart for the process!!

Since the value of m can go down as well as up it is not obvious that the algo-
rithm terminates. To investigate this we look closely at the way any changes
to the basis affect various sublattices. For each i = 1, . . . , k we define Li as
the sublattice of L spanned by b1, . . . , bi.

The first thing to notice is that neither Step A nor Step C change any of
the lattices Li. Consider what happens in Step B. If a swap is performed the
only lattice which changes is Lm−1. The new value of b∗m−1 is

old b∗m + µm,m−1.old b∗m−1.

The swap is performed only when condition (2) fails, and we see that this
implies that the process multiplies ||b∗m−1||2 by a factor which is at most 3

4
.

However we have

∆(Lm−1)
2 = det((b1 . . . bm−1)

t(b1 . . . bm−1))

= det((b∗1 . . . b
∗
m−1)

t(b∗1 . . . b
∗
m−1))

=
m∏
i=1

||b∗i ||2.

(For the second equality one needs to remember that the matrix relating a
basis to its Gram–Schmidt orthogonalization is upper triangular, with 1’s on
the diagonal.) This equality shows that a swap at Step B has the effect of
reducing ∆(Lm−1)

2 by a factor of at most 3
4
, while leaving ∆(Li)

2 fixed for
all i 6= m − 1. However the corollary in §2.4 shows that these ∆(Li) are
all bounded below by a positive constant, so the algorithm must eventually
terminate.

30

2.9 An example

As before, we consider the lattice spanned by

b1 =

(
7
19

)
, b2 =

(
6
16

)
.

Then ∆(L1)
2 = 49 + 361 = 410, while

∆(L2) = ∆(L) =

∣∣∣∣det

(
7 6
19 16

)∣∣∣∣ = 2.

Property (c) in §2.7 shows that an LLL-reduced basis would have

||b1||2 ≤ 2(k−1)/4∆(L)1/k = 21/4.21/2 = 23/4,

so that our basis is very far from reduced.

We compute

b∗1 = b1, µ2,1 =
173

205
, b∗2 =

1

205

(
19
−7

)
and go to Step A, with m = 2.

Step A: Replace b2 by

b2 − b1 =

(
−1
−3

)
,

so that µ2,1 is replaced by −7−57
410

= −64
410

, which has absolute value at most 1
2
.

Step B: Condition (2) fails (it must do, since we know that ||b1|| is not
small enough), so we swap b1 and b2 to get

b1 =

(
−1
−3

)
, b2 =

(
7
19

)
.

Observe that we now have ∆(L1)
2 = 10 < 3

4
· 410. We return to Step A, still

with m = 2.

Step A: This time we replace b2 by

b2 + 6b1 =

(
1
1

)
,

and go to Step B.

31

Step B: Condition (2) still fails, unsurprisingly since ||b1|| is still too large.
So we swap the basis vectors to reach

b1 =

(
1
1

)
, b2 =

(
−1
−3

)
.

Again ∆(L1)
2 has been reduced, and one checks that ∆(L1)

2 = 2 < 3
4
· 10.

We return to Step A.

Step A: Replace b2 by

b2 + 2b1 =

(
1
−1

)
,

and go to Step B.

Step B: At last condition (2) is satisfied, so we go to step C.

Step C: Increase m to 3, and stop, returning

b1 =

(
1
1

)
, b2 =

(
1
−1

)
.

2.10 The knapsack problem

We are given a knapsack which can carry a limited weight and we have a
given set of objects of known weights. We want to pack as much into the
knapsack as possible.

Example The given weights are 1, 2, 4, 8, 16, 32, 64 and the knapsack can hold
weight 12. There is a unique optimal packing, with weights 4 and 8. Indeed
for a knapsack of any given capacity there is a unique optimal packing, which
is easy to spot.

In general, if the weights w1, . . . , wk are in “superincreasing order”, such
that

wi >

i−1∑
j=1

wj for i = 2, . . . , k,

then the knapsack problem is easy: one uses the greedy algorithm, packing
the heaviest weight possible, then the next heaviest possible, and so on.

However in general the knapsack problem is hard. Indeed it is known to
be NP-complete. Given that it is provably hard, cryptographers have tried

32

to devise coding systems based on knapsack problems. Unfortunately, while
we know that the knapsack problem in general is hard, it is not so easy to
produce, and use, particular examples of hard knapsack problems.

2.11 A knapsack public-key cryptosystem

Alice wants to send a secret message to Bob. Bob chooses some secret (but
easy) knapsack weights w1, . . . , wk (a superincreasing sequence, for example).
He chooses two (secret) coprime integers N, e with N >

∑k
1 wi. He computes

knapsack weights h1, . . . , hk satisfying

hi = ewi(mod N).

There will be infinitely many choices satisfying these conditions and Bob tries
to make his weights correspond to a hard knapsack problem. Bob makes pub-
lic his weights h1, . . . , hk.

To send Bob a message consisting of k binary digits x1, . . . , xk Alice computes

M =
k∑
i=1

xihi

and sends M to Bob.

To decrypt the message Bob finds d such that de = 1(mod N) and com-
putes

dM =
k∑
i=1

xi(dhi)

=
k∑
i=1

xiwi(mod N)

=
k∑
i=1

xiwi (since N >
∑

wi).

Bob can easily recover x1, . . . , xk since the weights w1, . . . , wk correspond to
an easy knapsack problem.

The operations required to implement this system are extremely simple —
much easier than in RSA or in discrete logarithm cryptosystems.

33

Suppose the evil Eve hacks into the system and intercepts the message M
sent by Alice to Bob. She knows the weights h1, . . . , hk which Bob had pub-
lished, but does not know e, d or N . If she wants to recover x1, . . . , xk she
will have to solve the hard knapsack problem

∑
xihi = M .

Example Choose easy weights wi = 3i for 1 ≤ i ≤ 5, and take N = 400(>
3 + 9 + 27 + 81 + 243 = 363). Pick e = 147 say, and compute (easily, us-
ing the Euclidean algorithm) d = 283. Choose (hard ?) knapsack weights
hi = 147wi(mod 400) as h1 = 41, h2 = 123, h3 = 369, h4 = 307, and
h5 = 121. These are the weights that are made public.

Alice wants to send us the message 1, 0, 0, 1, 1, which she encodes as M =
41 + 307 + 121 = 469.

To decrypt this we compute 283 × 469 = 327(mod 400), and solve the easy
problem 327 = 1.31 + 0.32 + 0, 33 + 1.34 + 1.35 to recover the message.

2.12 Breaking the knapsack system with LLL

If we are lucky, we may be able to use LLL to break the knapsack cryptosys-
tem. We want to find xi ∈ {0, 1} such that

∑k
1 xihi = M .

Consider the lattice of rank k + 1 generated by the basis

1
0
...
...
0
h1

,

0
1
0
...
0
h2

, . . . ,

0
...
...
0
1
hk

,

0
...
...
...
0
−M

.

A solution to
∑k

1 xihi = M will give a (very) short lattice vector
x1
...
xk
0

which LLL may be able to find.

34

For the example of the previous section, starting with
1
0
0
0
0
41

 ,

0
1
0
0
0

123

 ,

0
0
1
0
0

369

 ,

0
0
0
1
0

307

 ,

0
0
0
0
1

121

 ,

0
0
0
0
0
−469

the LLL algorithm produces the reduced basis

1
0
0
1
1
0

 ,

0
−1
0
0
1
−2

 ,

−2
1
0
1
1
0

 ,

0
−2
1
0
−2
1

 ,

0
1
1
−2
1
−1

 ,

0
−2
−5
−2
3
3

 ,

and the first of these does indeed recover the message M .

(Incidentally, the squared lengths of these reduced basis vectors are, in order,
3, 6, 7, 10, 8, 51. Generally we expect the lengths to be in increasing order,
but it does not always happen, as this example illustrates.)

35

3 Factorisation of integers

3.1 Overview, trial division, and Fermat’s method

The problem Given an integer n > 1 we want to find a prime factor p of n.

If we have an algorithm to do this, we can iterate it on n/p to find the
complete prime factorisation of n. From now on we will assume that n is
not prime, since there are good, fast, (polynomial) algorithms for primality
testing — an interesting topic which we shall not go into here.

A solution: trial division
Try dividing n by 2, 3, 5, 7, . . . until a factor is found. One may either test
only primes as possible factors, which requires one to have a way (maybe
a table) to detect primes, or one can try all odd divisors. Given that n is
composite, it has a factor p ≤

√
n, so at most

√
n divisions are necessary.

Trial division is an important benchmark against which to measure other
algorithms. It is a very poor algorithm for numbers which have been spe-
cially constructed to be hard to factor, by multiplying together two large
primes for example. On the other hand, for large numbers n produced ran-
domly, trial division has an excellent chance of finding a prime divisor very
quickly. Indeed for 50% of large random integers, trial division finds a factor
at the very first attempt! Thus for randomly produced integers trial division
up to some cut-off point may be a sensible first move.

Fermat’s method
Try to solve n = x2 − y2 for integers x, y, so that n = (x − y)(x + y) gives
a factorization of n. Usually one searches using x, starting at x0 = d

√
ne

and trying x0, x0 + 1, x0 + 2, If n = pq with p small one needs to reach
x = (p + q)/2, which will be much larger than

√
n. So the method will be

much worse than trial division. However if p and q are close the method can
be more efficient. For example, with n = 971609 = 809× 1201 one starts at
x0 = 986, and has to try values of x until one reaches (p+ q)/2 = 1005; thus
there are 20 trials to perform.
Fermat’s method can be refined, for example by using congruences to restrict
the values of x to be tried. In this case n = 1(mod 8), so that if x2 − y2 = n
the number x2 − 1 will be a square (mod 8). Thus x cannot be even. Simi-
larly n = 2(mod 3) so that x2 − 2 must be a square (mod 3). This can only
happen when 3 | x. These consideration reduce the values of x to be tried to
x = 987, 993, 999, 1005, 1011, . . . , of which the fourth value is successful.

36

Fermat’s method is now of historical interest only, but many modern ap-
proaches try to express n as a difference of squares by much more subtle
methods.

3.2 The remainder of the course

For the rest of the course we will take a look at a few of the many factorisation
methods that have been published. Some are true algorithms, while others
have a probabilistic and/or heuristic element to them. Although our focus
will be on running times, the reader should also think about the difficulties
in implementation, the possibility of parallelisation, and questions of storage
requirements, for example.

Most of the mathematical prerequisites have been prepared, but we will have
an interlude on smooth numbers when we discuss factor-base methods.

3.3 Euler’s method and its more recent variants

Euler observed that if, for a given d, one can find two different representations
of n as x2 + dy2, say as

n = x20 + dy20 = x21 + dy21,

then n | (y1x0)2−(y0x1)
2 = (y1x0−y0x1)(y1x0+y0x1). Unless we are unlucky,

and one can give precise conditions under which this happens, n will divide
neither of the individual factors y1x0 − y0x1 or y1x0 + y0x1, so that we will
obtain a non-trivial divisor of n by computing gcd(n, y1x0 − y0x1).

For a given choice of d one would check possible values y ≤
√
n/d to see

whether n − dy2 is a square. Although a large value of d decreases the
amount of work to be done, it also decreases the chance that n will have one,
let alone two, representations as x2 + dy2.

3.4 Lehmer & Lehmer’s variant (1974)

Suppose that n is a product of just two prime factors. (Trial division up to
n1/3 will reduce us to this case.) Then one can guarantee that one of the
following ten forms will split n via Euler’s method:-

x2 + y2, x2 + 2y2, x2 − 2y2, x2 + 3y2, x2 − 3y2,

37

x2 + 6y2, x2 − 6y2, 3x2 − y2, 6x2 − y2, 2x2 + 3y2.

For the indefinite forms, it suffices to look at values x, y of size O(
√
n). In

fact, for a specific n, one can reduce the number of forms to be tried to 3, by
congruence considerations.

One can reduce the possible values of x, y to be tried using congruences,
in the same way as with Fermat’s method. At the time it was devised this
method was one of the fastest in practice(!)

3.5 McKee’s method

In this adaptation of Euler’s method one uses a large value of d.

Step 1 Check that n is not a square, or a higher power. If it is we have
found a factor. Otherwise choose x0 = b

√
n− n2/3c and d = n − x20. Then

n = x20 + d, with d approximately n2/3.

Step 2 Check n for factors up to (4d/3)1/4 = O(n1/6), using trial divi-
sion; and stop if you find one.

Step 3 For each integer a in the interval [
√
d/12,

√
4d/3], search for so-

lutions to an = x2 + dy2 with x, y ∈ N and y2 6= a. It can be proved (though
we shall not do it here) that if n is composite, and the algorithm reaches this
stage, then there always will be such a solution.

For good procedures to search for solutions x, y see below.

Step 4 Having found solutions n = x20 + d, an = x21 + dy21 it follows that
n | (y1x0)

2 − x21. It is then not hard to check that gcd(n, y1x0 − x1) is a
non-trivial factor of n.

One can show that a suitable implementation of this will run in O(n1/3+ε)
steps, for any small fixed ε > 0. In practice it is better to take d somewhat
smaller than n2/3. With d around n1/2 one gets an algorithm with theoretical
running time O(n3/8+ε), which soon beats trial division.

To search for solutions of an = x2 + dy2 in Step 3 one could first factor
d via trial division, and find a quadratic non-residue for each prime factor p.
The algorithm of §1.11 may then be used to solve x2 = an(mod p) for each
such p, and then one can combine the solutions using the Chinese Remainder

38

Theorem. All this becomes far easier if we can choose d to be prime in the
first place.

Example
Take n = 1082154235955237

Step 1 n = 328960842 + 1893420181 = x20 + d, say, where in fact d is
prime.
Step 2 Trial division up to 233 is a relatively tiny amount of work, and
finds no prime divisors.
Step 3 Search over values for a between 12562 and 50245, finding that

43036n = 25918669612 + d.1451012.

Note that with these values of d and a the congruence x2 = an(mod d) has
only 7 solutions which need checking, in the range x <

√
an.

Step 4 n = 12345701× 87654337.

3.6 Modern speed-ups of Fermat’s method

Instead of looking for solutions of x2 − y2 = n one can try x2 − ny2 = z2, in
effect making n a difference of two rational squares, rather than integer ones.
There are variants in which one examines x2 − any2 = z2 for some small a,
on the basis that if one finds prime factor of an which is suitably large (we
hope), this will divide n.

There are two approaches in the literature, one is to make x2 − ny2 small,
in the hope that this will increase the chance of x2 − ny2 being square.
This leads to the Continued Fraction Method, and to SQUFOF (the SQUare
FOrm Factoring method). The second method keeps both x and y small,
and is due to McKee (1999).

These methods are expected to run in time O(n1/4+ε), though we currently
cannot prove this. In practice they are soon better than trial division.

The Continued Fraction and SQUFOF methods

Take x/y to be a continued fraction approximation to
√
n. Then |x/y−

√
n| <

y−2, so that
|x/y +

√
n| < y−2 + 2

√
n ≤ 1 + 2

√
n.

39

Hence
|x2/y2 − n| < (1 + 2

√
n)/y2,

giving us |x2−ny2| < 1 + 2
√
n. Thus the chance that x2−ny2 is a square is

O(n−1/4). So one runs the continued fraction algorithm for
√
n, keeping track

only of the value of x(mod n). (We have x = pk in the notation of §§4–8,
and the numbers pk grow exponentially; but fortunately it is enough to work
with x(mod n).) If x = x′(mod n) with 0 ≤ x′ < n then we have x′2 = r(mod
n) with a remainder r which is guaranteed to have r < 1 + 2

√
n. If we have

r = z2 then gcd(x′−z, n) = gcd(x−z, n) will be a factor of n (if we are lucky).

SQUFOF (see Cohen for details) was an important algorithm in its day,
and in effect runs through the continued fraction algorithm, but without
computing x or y.

McKee’s 1999 method

Suppose that n is odd and composite, and set b = d
√
ne. Define a quadratic

form
Q(x, y) = (x+ by)2 − ny2 = x2 + 2bxy + (b2 − n)y2,

so that the coefficients are O(
√
n). We will seek integers x, y, z such that

Q(x, y) = z2, in the hope that gcd(x+ by − z, n) is a non-trivial factor of n.
Note that y = 1 corresponds to Fermat’s method.
McKee’s method relies on the following lemma.

Lemma
Suppose that n = pq with q > p > 2n1/4, and choose a positive integer
T ≤ n1/2 − n1/4. Then there are at least T distinct integer triples (x, y, z)
such that Q(x, y) = z and

(1) y is even and 2 ≤ y ≤ n1/4 + 2(T − 1),

(2) y|x| < 2T 1/4
√
n,

(3) |z| < (T 2 − 1)
√
n.

Moreover gcd(x+ by − z, n) is a non-trivial factor of n in each case.

Proof
The proof consists of unexciting technical details, which you might want to

40

skip!
For each integer t = 0, . . . , T − 1 let

r = b
√
q/pc <

√
q/p ≤

√
(n3/4/2)/(2n1/4) = n1/4/2

and put y = 2(r + t), so that (1) holds. Take

z = q − (r + t)2p and x = q + p(r + t)2 − by

so that

Q(x, y) = (x+by)2−ny2 = (q+p(r+t)2)2−4pq(r+t)2 = (q−(p(r+t)2)2 = z2.

Moreover

z ≤ q − r2p ≤ q − (
√
q/p− 1)2p = 2

√
qp− p < 2

√
n

and
−z ≤ −q + (

√
q/p+ T − 1)2p = 2(T − 1)

√
qp+ (T − 1)2p

≤ 2(T − 1)
√
n+ (T − 1)2

√
n = (T 2 − 1)

√
n,

which verifies (3). For (2) we first suppose that x ≥ 0. In this case we have

2bxy ≤ (x+ by)2 − b2y2 = (n− b2)y2 + z2 ≤ z2 ≤ T 4n

by (3), on recalling that b was defined to be d
√
ne. Thus we have

xy ≤ T 4n/2b ≤ T 4
√
n

for x ≥ 0. If x < 0 we put r =
√
q/p − η, with 0 ≤ η < 1. Then if we set

b =
√
n− δ with 0 ≤ δ < 1 we may calculate that

x = q + p(r + t)2 − by = p(t− η)2 + 2ηδ − 2δ
√
q/p− 2δt ≥ −2δ(

√
q/p+ T).

If x < 0 this yields

|x| ≤ 2
√
q/p+ 2T ≤ 2p−1

√
n+ 2T ≤ n1/4 + 2T,

since p > 2n1/4. On the other hand

y = 2(r + t) ≤ 2(
√
q/p+ T) ≤ n1/4 + 2T

by the same argument, so that

y|x| ≤ (n1/4 + 2T)2 ≤ 2T 4
√
n

41

if n ≥ 1000, say. This completes the proof of (2).
Finally we observe that x + by − z = 2p(r + t)2. This is divisible by p, but
not by q, since 0 < q + r < n1/4 + T ≤

√
n.

The clever bit in the algorithm, which is adaptable to other problems, is
as follows. We are looking for a solution to Q(x, y) = z2 with the variables
in certain ranges given by the lemma. Given a range X < ` ≤ 2X, the
probability that z will have a prime factor ` in this range is of order 1 in
logX. So if we take T a bit bigger than logX, there is a pretty good chance
that there will be a solution in which z has a prime divisor ` ∈ (X, 2X]. So
we run through the various possible p, looking for solutions in which ` | z.
How can we solve Q(x, y) = 0(mod `2)? We begin by finding the solutions
x0 of Q(x0, 1) = 0(mod `2). There will normally be either two solutions or
none. Then x = x0y(mod `2) for one of the solutions, so that x = x0y− µ`2,
say. However if we choose P ≥ 2T 2n1/4 then∣∣∣∣x0`2 − µ

y

∣∣∣∣ =

∣∣∣∣ x`2y
∣∣∣∣ =

2|x|y
`2

1

2y2
≤ 4T 4

√
n

P 2

1

2y2
≤ 1

2y2

by part (2) of the lemma, and this means that µ/y will be one of the conver-
gents in the continued fraction expansion of x0/`

2.
Hence for each prime ` we will be able to find any solution with ` | z in
polynomial time. Taking P to be of order T 2n1/4 then gives us a running
time O(n1/4+ε), but without a complete guarantee of success.

3.7 Other O(n1/4+ε) algorithms

There are in the literature a large number of algorithms with expected run-
ning time O(n1/4+ε). Indeed the fastest known algorithms which are both
deterministic and provably correct have this running time. (They are there-
fore “better” than those described above, being both deterministic and prov-
ably correct.) One of these, due to Strassen (1977) merely computes b

√
nc!

modulo n in a very efficient manner. Taking the gcd with n gives a factor of n.

One of the simplest algorithms is Pollard’s ρ-algorithm.
Step 1 Choose an integer n other than 0 or −2, and define f(x) = x2 + n.
Set a = b = 2.
Step 2 Compute a′ = f(a)(mod n) and b′ = f(f(b))(mod n). Find the gcd
of |a′ − b′| and n. If the value is n give up. If the value is between 1 and n
we have found a proper factor of n.
Step 3 If the gcd is 1 replace a by a′ and b by b′, and return to Step 2.

42

Example (From Wikipedia)
Take n = 8051 and f(x) = x2 + 1. Then

(i) a=2 and b = 2 become 5 and 26, and gcd(21, 8051) = 1.

(ii) a=5 and b = 26 become 26 and 7474 (mod 8051), and
gcd(7448, 8051) = 1.

(iii) a=26 and b = 7474 become 677 and 871 (mod 8051), and
gcd(194, 8051) = 97.

After k steps we have a = fk(2)(mod n) and b = f 2k(2)(mod n). If p is
a prime factor of n we expect the values fk(2)(mod p) to form a random
sequence, which eventually has a repetition, so that fk(2) = f j(2)(mod p)
with k < j. As in the birthday paradox, we expect this to happen with
k, j = O(

√
p). Write ` = j − k, so that the sequence has an initial section

followed by a cycle of period `. (Pictorially one can think of this as forming
a letter “rho” as in the name of the algorithm.) Now, if h = `dk/`e then
h ≥ k and fh(2) = f 2h(2). Thus after h steps we will have p | a − b. We
expect h = 0(

√
p). Moreover we will have n | a− b only if the cycle lengths

for all other prime factors of n happen to divide h.

Thus failures of the algorithm may occur, but are uncommon. Moreover
the expected running time is O(nε

√
p) where p is the smallest prime factor

of n. This is certainly O(n1/4+ε). For comparison, trial division takes time
roughly O(p), while some of the other algorithms discussed have running
times O(n1/4+ε) even when one of the prime factors is small.

3.8 Factor bases

There are many situations where “factor bases” are useful, but we will con-
sider here the problem of finding integers such that x2 = y2(mod n), in the
hope of using this to factor n. The basic idea is to find many congruences
x2i = yi(mod n), with 1 ≤ i ≤ K, say, and then to look for a subset of indices
I such that

∏
i∈I yi is a square y2. We will then be able to take x =

∏
i∈I xi.

Example (From Koblitz)
Take n = 1829. We have

422 = −65, 432 = 20, 612 = 63, 852 = −91, all (mod 1829).

The product of the four right-hand sides is 22325272132 = 27302. On the other
hand 42.43.61.85 = 1459(mod 1829), so that 14592 = 27302(mod 1829). We

43

therefore compute gcd(2730 − 1459, 1829) = gcd(1271, 1829) = 31, giving a
factor of 1829.

Generally, how do we find a product of the yi’s which is a square? A factor
base is a set B of relatively small primes, together with the “prime” -1. For
a simple model we will use the primes p up to a certain bound b. We then
generate lots of pairs (x, y) such that x2 = y(mod n), and keep only those,
(xi, yi) (with 1 ≤ i ≤ N say), for which yi is a product of factors in B. We
can then write

yi =
∏
p∈B

pep,i ,

and in order to make
∏

i∈I yi a square it suffices to find exponents fi = 0 or
1, such that the simultaneous congruences

N∑
i=1

fiep,i = 0(mod 2) (∀p ∈ B)

hold. This is a set of equations over F2 which can be solved by Gaussian
elimination. We will have a non-trivial solution if N > #B, so we will need
to have more suitable relations than primes in the factor base.

One feature of factor base methods is clear. There will be a non-trivial
memory requirement, since we will have to store the various pairs (xi, yi)
and manipulate the matrix of exponents ep,i. In contrast, the algorithms in
the course before this point have had relatively minor memory requirements.

Large-prime variants
There are many variations on this line of attack, but one important one re-
tains pairs (x, y) for which y = y′p with y′ a product of primes in the factor
base and p a medium size prime — outside the factor base but not too enor-
mously large. If two such pairs (x, y) are found which have the same extra
factor p, then we can eliminate p, modulo squares, by multiplying the two
relations.

3.9 Smooth numbers

An understanding of “smooth numbers” is essential for the analysis of factor
base methods. If y is a positive real number we say that n ∈ N is y-smooth,
if all prime factors of n have size at most y. Thus 105 is 8-smooth, but not
6-smooth.

44

Definition ψ(x, y) is the number of y-smooth integers n ≤ x.
For example, the 3-smooth integers up to 20 are 1,2,3,4,6,8,9,12,16,18, so
that ψ(20, 3) = 10.

We will only be interested in the situation in which 2 ≤ y < x. The ra-
tio log x/ log y plays a crucial role in understanding ψ(x, y) and, following
standard practice, we define

u =
log x

log y

and introduce the Dickman function ρ(u).

Facts (which we will use without proof)
(i) There is a function ρ(u) such

ψ(x, y) = ρ(u)x+O(x/ log y) (x ≥ y ≥ 2).

The “main term” ρ(u)x may be smaller than the “error term” O(x/ log y)
unless u is fairly small. However one can prove formulae with better error
terms. The function ρ(u) satisfies ρ(u) = 1 for 0 ≤ u ≤ 1 and otherwise may
be defined by the recursive relation

ρ(u) = ρ(k)−
∫ u

k

ρ(t− 1)

t
dt,

where k = buc. In particular we have ρ(u) = 1− log u when 1 ≤ u ≤ 2.

(ii) We have ρ(u) ≤ (k!)−1, where k = buc. A good approximation (we
will not make this precise) is to take ρ(u) “=” u−u for large u.

We will verify statement (i) in the case 1 ≤ u ≤ 2.

Lemma (Buchstab’s formula)
For x ≥ 1 and 0 < y ≤ z we have

ψ(x, y) = ψ(x, z)−
∑
y<p≤z

ψ(x/p, p).

(In such sums p always runs over primes.)

Proof For any w ≤ x, each w-smooth integer n > 1 can be written uniquely
as n = mp where p ≤ w and m is p-smooth, by taking p as the largest prime
factor of n. Since 1 is w-smooth we have

ψ(x,w) = 1 +
∑
p≤w

ψ(x/p, p).

45

The lemma follows on comparing the cases w = y and w = z.

Proposition
We have

ψ(x, y) = (1− log u)x+O(x/ log x)

for 1 ≤ u ≤ 2.

Proof We have ψ(w, z) = bwc when z ≥ w. Applying Buchstab with z = x
and
√
x ≤ y ≤ x gives

ψ(x, y) = ψ(x, x)−
∑
y<p≤x

ψ(x/p, p)

= bxc −
∑
y<p≤x

bx/pc (since p > x/p for such p)

= x

(
1−

∑
y<p≤x

1/p

)
+O

(∑
p≤x

1

)
= x(1− log log x+ log log y) +O(x/ log x)

= x(1− log u) +O(x/ log x).

In the penultimate step we used the facts that∑
p≤t

1/p = log log t+ C +O(1/ log t)

for a certain numerical constant C (analogous to the Euler constant) and
that the number of primes up to x is O(x/ log x).

3.10 Smooth square factoring

We are now ready to describe a simple factor base factoring method. It is
very far from being the best such method.

Step 1 Pick a smoothness bound b and let B = {p ≤ b : p prime}.

Step 2 Pick elements x ∈ Z/nZ at random, and see if the least residue
of x2(mod n) is b-smooth, using trial division. If it is, record its prime fac-
torization. Repeat until more than #B such values have been found.

Step 3 With the equations

x2i =
∏
p∈B

pep,i(mod n)

46

use Gaussian elimination over F2 to find a set of indices I such that∑
i∈I

ep,i = 0(mod 2)

for each p ∈ B, whence ∏
i∈I

∏
p∈B

pep,i

is a square, y2 say. Then x2 = y2(mod n), where

x =
∏
i∈I

xi.

Check whether gcd(x− y, n) is a proper factor of n, and if not try again!

What size b should one use? We expect to need O(#B) = O(b/ log b)
good values of xi, and the number of attempts before getting a b-smooth
value by chance will be O(1/ρ(u)) = O(uu), say. Thus Step 2 can be ex-
pected to take something like O(buu) steps, where u = log n/ log b. Taking
b = exp(

√
(log n)(log log n)/2) minimizes this, very roughly. Then, after al-

lowing for Step 3, which will need something like O((#B)3) steps, we see
that the overall running time might be about

exp(c
√

(log n)(log log n)) (∗)

for some constant c (= 3/
√

2 in this calculation).

It is important to note that this grows more slowly than any fixed power
nε.

One obvious way to improve matters is to pick values of x for which x2

has only a small residue modulo n, which will increase its chance of being
b-smooth. All such variants end up with an expected running time of the
shape (*), but with various values for the constant c.

3.11 Pollard’s p− 1 method

We aim to factor an odd composite n. Let p be the least prime dividing
n. Pollard’s p− 1 method (1974) is likely to succeed if p− 1 happens to be
b-smooth for some relatively small b.

Step 1 Pick a smoothness bound b, in the hope that p− 1 will be b-smooth.

47

Step 2 For each prime q ≤ b define r(q) such that qr(q) ≤
√
n < qr(q)+1, and

set
k =

∏
q≤b

qr(q).

Hence if p− 1 is b-smooth we will have p− 1|k.
Step 3 Pick an integer a and check that it is coprime to n. If it is not
coprime we find a factor of n. Compute ak(mod n) by the repeated squaring
technique, and find gcd(ak − 1, n). If p− 1 is b-smooth then p− 1|k, whence
ak = 1(mod p), and hence p | gcd(ak − 1, n).
Step 4 If gcd(ak − 1, n) provides a non-trivial factor of n then stop. If the
gcd is n then we can try ak

′
for various divisors k′ of k. If the gcd is 1 we

can try increasing b.

How long does the algorithm take? Computing ak(mod n) requires O(log k)
multiplications modulo n, with

log k =
∑
q≤b

r(q) log q ≤ π(b) log
√
n = O(b log n).

This step dominates the running time, which is therefore O(bnε). And what
is the chance of success? From Fact (ii) in subsection 3.9 this is about u−u

for large u. So if we tried b = n1/4 then, in the worst case with p around
√
n,

the probability is 1− log 2 = 0.31 Thus we get an algorithm taking time
O(n1/4+ε), which succeeds in about three-tenths of cases.

3.12 The elliptic curve method

The problem with Pollard’s p−1 method is that it can only work when p−1
is smooth. In Lenstra’s Elliptic Curve Method (1987) we work in the group
of points on a curve modulo p, and follow an analogous procedure. This time
we are likely to succeed if the group order is smooth. But the difference is
that now, if we are unsuccessful, we can try other curves until we hit on one
whose order is smooth.

Step 1 Pick a smoothness bound b. The hope will be that we can find
an elliptic curve such that the number of points over Z/pZ (for some prime
factor p of n) is b-smooth.
Step 2 Let k =

∏
q≤b, q

r(q), where q runs over primes and

qr(q) ≤ n1/2 + 2n1/4 + 1 < qr(q)+1.

48

If p ≤
√
n and Np is the number of points on an elliptic curve mod p, then

Hasse’s bound implies that Np ≤ n1/2 + 2n1/4 + 1. So we will have Np | k if
Np happens to be b-smooth.
Step 3 Pick an integer pair (x0, y0) modulo n at random, and take E as the
curve y2 = x3 + x + y20 − x30 − x0. Then P = (x0, y0) lies on E. Compute
kP by the repeated squaring method, working modulo n. If kP = 0 modulo
p for some p | n, then this process will produce a denominator which can-
not be inverted modulo p, since the point at infinity is, in effect, the point
(0/0, 1/0). Thus, when we remove denominators in the calculation modulo
n, by finding their inverses via the Euclidean algorithm, we will encounter a
gcd which is greater than 1. This will produce a divisor of n.

How to choose b
Given b, the time taken to test each curve is O(b(log n)c) for some con-
stant c, just as for the p − 1 method. The probability of success is about
u−u, where u = (log p)/(log b). This assumes that all numbers of points are
equally likely. (But they are not.) Heuristically the running time is then
expected to be O(uub(log n)c) steps. This is minimized by taking b to be
about exp(

√
(log p)(log log p)/2), giving a running time

O(exp(
√

(1 + ε)(log n)(log log n)).

Of course, we cannot choose b to depend on p, since p is unknown. Thus in
practice we might assume p to be of size

√
n. Alternatively we can try an

increasing succession of values of b, so that eventually we will reach a value
close to exp(

√
(log p)(log log p)/2).

Variants of this method were used successfully to factor the Fermat num-
bers F10 and F11.

The Elliptic Curve Method is one of most widely used techniques for “ev-
eryday” factoring. It is ultimately slower than the Number Field Sieve, for
example. However it has the attractive feature that the time taken is less
when n has a smaller prime factor, just as with the Pollard ρ-method. This
makes it particularly good for “naturally occurring” factorization problems,
such as the Fermat numbers mentioned above.

49

3.13 The quadratic sieve

A simple way to look for x2 with a smooth remainder modulo n is to take
x0 = d

√
ne and try successive values x = x0, x0 + 1, x0 + 2, . . . If x = x0 + t

with t not too large then the remainder is x2−n, which will be of order t
√
n.

This is more like
√
n in size than n, and so will be more likely to be smooth

than a random integer in (0, n]. If q is a prime divisor of x2− n then n must
be a quadratic residue of q, so that only half the primes need to be included
in the factor base.

Rather than test x2 − n for smoothness by trial division the quadratic sieve
uses a different technique to “sieve out” non-smooth values. In order to do
this the factor base is extended to include powers of primes qe up to b, and
not just primes themselves. Then, to search values L < x ≤ U looking for
cases in which x2 − n is b-smooth, we proceed as follows. We produce an
array indexed by the integers x in our interval. Then, for each prime power
qe in our factor base we compute the solutions (usually two) of x2 = n(mod
qe), and call them a and b. We then go through the array in steps of length
qe adding (an approximation to) log q for every x = a(mod qe). We repeat
this for integers x = b(mod qe), and then move on to the next prime power.
This is the sieving process.

Once we are done, we check though the contents of the array, looking for
places where the value is (approximately) log(x2 − n), in which case x2 − n
must be composed of prime factors q ≤ b. We can then decompose these
smooth values into their prime factorization by trial division, but this step
need only be done for the few numbers we actually want, rather than for
every single value x2 − n.

A crude estimate for the time requirement of the sieve process uses the fact
that there are at most 2(1 + (U − L)/qe) values of x to be visited for each
prime power qe. Thus the time taken is

O

(∑
qe≤b

(1 + (U − L)/qe)

)
= O(b) +O((U − L) log b).

For comparison, trial division for takes time O(b) for each value of x, yielding
a far worse total O((U − L)b).

50

3.14 The number field sieve

The number field sieve was introduced by Pollard in 1988. It is the fastest
algorithm currently available. However its complexity means that it is a sub-
stantial task to implement it. A number n has to be very large before the
number field sieve is faster than other methods. We will describe it in its
simplest form.

Choose two monic irreducible polynomials f1, f2 ∈ Z[x] with smallish co-
efficients, and a common root, m say, modulo n. We want the degrees to be
small, but not too small. One easy way to achieve this is to begin by picking
a degree d, asymptotically of size (log n)1/3(log log n)−1/3 (but this might be
5 or 6 in practice), and to take m about n1/d or just under. Now write n in
base m as

n = md + ad−1m
d−1 + . . .+ a0,

so that 0 ≤ ai < m. We then take f1(x) = xd + ad−1x
d−1 + . . . + a0 and

f2(x) = x−m. A random polynomial is almost certainly irreducible, but if
we are unlucky with f1 we can try another m.

Consider the number field Q(θ) where θ is a root of f1. Then Z[θ] is a
subring of the ring of integers for Q(θ). Unfortunately:-

(i) Z[θ] may not be the full ring of integers;

(ii) Even if it is, it may not be a unique factorization domain; and

(iii) The unit group is infinite, if d ≥ 3.

We will ignore these problems in this brief description!

We now have two ring homomorphisms:

φ1 : Z[θ]→ Z/nZ given by φ1 : θ 7→ m = m+ nZ,

and
φ2 : Z→ Z/nZ given by φ2 : k 7→ k = k + nZ.

We aim to find a set I of pairs (a, b) of coprime integers, such that
∏

(a,b)∈I(a−
θb) is a square α2 in the ring Z[θ], and also

∏
(a,b)∈I(a − bm) is a square k2

in Z. If we can do this then

φ1(β)2 =
∏

(a,b)∈I

φ1(a− bθ) =
∏

(a,b)∈I

(a− bm) =
∏

(a,b)∈I

φ2(a− bm) = φ2(k)2.

51

This produces two integer squares whose difference is divisible by n, and we
can hope that this will enable us to split n.

To find a suitable set I we choose factor bases for Z[θ] and Z. For the
former, the factor base will consist of a basis for the units, together with a
set of prime ideals with norm below some smoothness bound. We then try
lots of pairs (a, b), looking for cases where both a−bθ and a−bm are smooth
in their respective senses, and hence can be decomposed into “primes” from
the respective factor bases. One can sieve, as with the quadratic sieve, to
speed this process.
Having gathered enough relations, in which both a − bθ and a − bm are
smooth, we use linear algebra over F2 to find a subset of the pairs such that
the products

∏
(a,b)∈I(a− θb) and

∏
(a,b)∈I(a−mb) are both squares.

The whole process is rather like the smooth square factoring algorithm of
Section 3.10, or the quadratic sieve, except that it is done over a number
field. The technical problems are considerable, but in the calculation of the
expected running time everything depends on the size of m, rather than n
(if d is chosen around (log n)1/3(log log n)−1/3). The outcome is that one has
an expected running time of

O(exp(c(log n)1/3(log log n)2/3))

which is asymptotically better than any other current method.

We conclude with a simple example, courtesy of Richard Pinch.
n = 84101 = 2902 + 1.

Take d = 2, m = 290, f1(x) = x2 + 1, f2(x) = x− 290.

Then our number field is Q(i), and the ring we work in is Z[i] which for-
tunately is the full ring of integers, is a Unique Factorization Domain, and
has only the units ±1 and ±i.

Taking a = −38, b = −1 we have a − ib = −38 + i = −(2 + i)(4 − i)2,
and a−mb = 22.32.7
Taking a = −22, b = −19, we have a − ib = −22 + 19i = −(2 + i)(3 − 2i)2

and a−mb = 24.73

It follows that

(−38 + i)(−22 + 19i) =
(
(2 + i)(4− i)(3− 2i)

)2
= (31− 12i)2

52

and
(−38 +m)(−22 + 19m) = 26.32.74 = 11762.

Then φ1(31 − 12i) = 31− 22m = −3449 and φ2(1176) = 1176, whence
34492 = 11762(mod 84101).

We therefore calculate gcd(3449− 1176, 84101), giving us a value 2273, and
we find that 84101 = 2273× 37.

53

