
MATHEMATICAL INSTITUTE, UNIVERSITY OF
OXFORD

Computational Mathematics
Students’ Guide, Hilary Term 2020

by

Prof Vidit Nanda

Acknowledgments: The course guide is based on previous versions by Dr Andrew Thomp-
son, Dr Alberto Paganini and others. I am grateful to all previous authors.

©2020 Mathematical Institute, University of Oxford

Contents

1 Introduction 3
1.1 Objectives . 3
1.2 Schedule . 3
1.3 Completing the projects . 4

1.3.1 Getting help . 4
1.3.2 Debugging and correcting errors . 5

2 Preparing your project 6
2.1 Matlab publish . 6
2.2 Zip up your files . 7
2.3 Submitting the projects . 7

3 (A) Elliptic Integrals 8
3.1 Exercise A1 . 9
3.2 Exercise A2 . 9
3.3 Exercise A3 . 9

4 (B) Image Compression 10
4.1 Exercise B1 . 10
4.2 Exercise B2 . 11
4.3 Exercise B3 . 11

5 (C) Spectra of Random Matrices 12
5.1 Exercise C1 . 12
5.2 Exercise C2 . 12
5.3 Exercise C3 . 12

2

Chapter 1

Introduction

The use of computers is widespread in all areas of life, and at universities they are used
in both teaching and research. The influence and power of computing is fundamentally
affecting many areas of both applied and pure mathematics. Matlab is one of several
systems used at Oxford for doing mathematics by computer; others include Mathematica,
Maple, Sage and SciPy/NumPy. These tools are sufficiently versatile to support many
different branches of mathematical activity, and they may be used to construct complicated
programs.

1.1 Objectives

The objective of this practical course is to discover more about mathematics using Matlab.
Last term you were introduced to some basic techniques, by working through the Michael-
mas Term Students’ Guide which you are due to complete near the beginning of this term.
After this, for the rest of Hilary Term, you will work alone on any two of the three given
projects.

While Matlab complements the traditional part of the degree course, we hope the
projects help you revise or understand topics which are related in some way to past or
future lectures. It is hoped that at the end of this Matlab course you will feel sufficiently
confident to be able to use Matlab (and/or other computer tools) throughout the rest of
your undergraduate career.

1.2 Schedule

Deadlines

• 12 noon, Monday, week 6 Submission of first project.

• 12 noon, Monday, week 9 Submission of second project.

You are free to choose any two of the three projects described here. And you don’t have
to do them in order. For instance, if you choose Projects (A) and (C), you are allowed to
submit (C) in Week 6 and (A) in Week 9.

Computer and demonstrator access

This term, the practical sessions with demonstrators in Weeks 1 and 2 will be the same as
those for weeks 7 and 8, respectively, of Michaelmas Term. From Week 3 onwards, there

3

CHAPTER 1. INTRODUCTION 4

are no fixed hours for each college, and you may use the timetabled classrooms at the
Mathematical Institute whenever suits you within the following times:

• Weeks 3–8: Mon 3pm–4pm; Thurs 3pm–4pm.

There will be additional sessions ahead of the project deadlines:

• Week 5: Weds 3pm–5pm; Fri 3pm–5pm.

• Week 8: Fri 3pm–5pm.

It’s probably a good idea to check the course website (https://courses.maths.ox.
ac.uk/node/43979) for any possible updates to these times. Note that you will need
to bring your laptop to the drop-in sessions.If you need to borrow a laptop, you will need
to inform the Academic Administrator (acadadmin@maths.ox.ac.uk) of your chosen
drop-in session times in advance.

A demonstrator will be present during the above times. Demonstrators will help resolve
general problems that you encounter in trying to carry out the project instructions, but will
not assist in the actual project exercises.

1.3 Completing the projects

To carry out a project successfully, you need to master two ingredients: the actual math-
ematics of the topic under investigation, and the construction of the Matlab commands
needed to solve the relevant problems. Picking up the mathematics is probably a familiar
activity that you practice when you attend a lecture or read your notes. Building up a
repertoire of Matlab commands and algorithmic ideas requires a perhaps different skill
that in some ways is more akin to learning a language. There is a tendency to do things
in an inefficient way to begin with, but eventually one achieves fluency in most practical
situations.

Before you get started on a project, it is a good idea to glance through all the exercises
and try to fully understand what is being asked. To answer most of the exercises you will
have to find the relevant commands that enable Matlab to do what you want. There are
clues and guidance given for this within each project, although it will often be necessary
(or at least helpful) to consult the Matlab help system.

Each project is divided into several exercises, and earns a total of 20 marks. The projects
must be completed to your satisfaction and submitted electronically before the respective
deadlines in weeks 6 and 9, according to the instructions given below. The marks will
count towards Prelims and will not be released until after the Preliminary Examinations.

Your answers will ideally display both your proficiency in Matlab and appreciation of
some of the underlying mathematics.

Each project has some marks set aside for “Matlab code which is elegant and concise”.
This includes thoroughly adding comments so that your code is readable by other human
beings. The lecturer will (try to) give examples of such during the Matlab lectures this
term. As always, the presentation of your work also counts towards your grade. Several
of the exercises require you to make plots; please make sure your plots are legible, and all
their components are suitably labelled.

1.3.1 Getting help

You may discuss with the demonstrators and others the techniques described in the Michael-
mas Term Students’ Guide, the commands listed in the Hilary Term Students’ Guide, and

https://courses.maths.ox.ac.uk/node/43979
https://courses.maths.ox.ac.uk/node/43979
acadadmin@maths.ox.ac.uk

CHAPTER 1. INTRODUCTION 5

those found in the Matlab help pages. You may also ask the the Course Director to clarify
any obscurity in the projects.

The projects must be your own unaided work. You will be asked to make a declara-
tion to that effect when you submit them.

1.3.2 Debugging and correcting errors

‘Debugging’ means eliminating errors in the lines of code constituting a program. When
you first devise a program for an exercise, do not be too disheartened if it does not work
when you first try to run it. In that case, before attempting anything else, type clear at
the command line and run it again. This has the effect of resetting all the variables, and
may be successful at clearing the problem.

If the program still fails, locate the line where the problem originates. Remove semi-
colons from commands if necessary, so that intermediate calculations are printed out and
you can spot the first line where things fail. You may also want to display additional out-
put; the disp() command can be useful. If the program runs but gives the wrong answer,
try running it for very simple cases, and find those for which it gives the wrong answer.
Remove all code that is not used in that particular calculation, by inserting comments so
that Matlab ignores everything that follows on that line.

Website

A copy of this manual can be found at:
https://courses.maths.ox.ac.uk/node/43979

This site will also incorporate up-to-date information on the course, such as corrections of
any errors, possible hints on the exercises, and instructions for the submission of projects.

Legal stuff

Both the University of Oxford and the Mathematical Institute have rules governing the
use of computers, and these should be consulted at https://www.maths.ox.ac.uk/
members/it/it-notices-policies/rules.

https://courses.maths.ox.ac.uk/node/43979
https://www.maths.ox.ac.uk/members/it/it-notices-policies/rules
https://www.maths.ox.ac.uk/members/it/it-notices-policies/rules

Chapter 2

Preparing your project

To start, say, Project A, find the template ‘projAtemplate.m’ on the course website https:
//courses.maths.ox.ac.uk/node/43979 . Save this file as projectA.m, in a fold-
er/directory also called projectA. Do not use other names.

You will be submitting this entire folder so please make sure it contains only files
relevant to your project. You will almost certainly end up creating several .m files within
this folder as part of your project.

2.1 Matlab publish

The file projectA.m should produce your complete answer. We will use the Matlab ‘publish’
system.

publish('projectA.m','pdf')

This will create a PDF report in projectA/html/projectA.pdf. The lecturer will give
examples of ‘publish’ in your Matlab lectures and post an example file on the course
website. You should also read ‘help publish’ and ‘doc publish’.

The examiners will read this published report in assessing your project. It is important
that the report be well-presented.

• Divide projectA.m into headings for each exercise (perhaps more than one heading
for each exercise).

• You can and should call other functions and scripts from within projectA.m

• Make sure you answer all the questions asked using text in comment blocks—if it
asks why explain why!

• Some questions ask you to create a function in an external file. A good way to make
this code appear in your published results is to include ‘type other_function.m’
where appropriate in your projectA.m.

• Include appropriate Matlab output: don’t include pages and pages of output, but
you must show that you have answered the question. This will require some thought
and good judgment but it’s worth the effort to avoid losing points if the examiners
cannot determine your answer.

The examiners may also run your various codes and test your functions.
Make sure you run publish one last time before submitting your project. Then double-check the

results.

6

https://courses.maths.ox.ac.uk/node/43979
https://courses.maths.ox.ac.uk/node/43979

CHAPTER 2. PREPARING YOUR PROJECT 7

2.2 Zip up your files

Make a projectA.zip or projectA.tar.gz file of your projectA folder or directory
including all files and subfolders or subdirectories. No .rar files please. It is highly
recommended you make sure you know how to do this well before the deadline.

Double-check that you have all files for your project and only those files for your project.

2.3 Submitting the projects

Full instructions on the submission system will be emailed to you nearer the time. The
projects are to be submitted electronically at https://courses.maths.ox.ac.uk/node/
43979/assignments (from anywhere with internet access). Submission deadlines are
given in Section 1.2. These deadlines are strict. It is vital that you meet them because the
submission system will not allow submissions after the above times. You should therefore
give yourself plenty of time to submit your projects, preferably at least a day or two in
advance of the deadline. Penalties for late submission are specified in the Examination
Conventions

https://www.maths.ox.ac.uk/members/students/undergraduate-courses/
examinations-assessments/examination-conventions.

You will need your University Single Sign On username and password in order to
submit each project, and also your examination candidate number (available from Student
Self-Service). If you have forgotten your details you must contact OUCS well before the
first deadline. The system will only allow one submission per project.

https://courses.maths.ox.ac.uk/node/43979/assignments
https://courses.maths.ox.ac.uk/node/43979/assignments
https://www.maths.ox.ac.uk/members/students/undergraduate-courses/examinations-assessments/examination-conventions
https://www.maths.ox.ac.uk/members/students/undergraduate-courses/examinations-assessments/examination-conventions

Chapter 3

(A) Elliptic Integrals

This project is designed to show you a simple but extremely important class of integrals
which can not be explicitly solved, and hence require numerical approximation. If this
topic is appealing to you, I suggest also searching the internet for complete elliptic integrals
of the second kind. I know it’s a mouthful, but there’s a lot of interesting geometry and
analysis related to these integrals.

Introduction

An ellipse, you might remember from ye olde geometry class, is a closed curve which (once
you align and center it around the origin in the plane) looks like this:

The longest radius (called a here) is the major axis and the shortest radius (called b in the
picture) is the minor axis. Even if it has been several years since you last saw an ellipse, you
may recall that its equation in the (x, y) plane is:

x2

a2 +
y2

b2 = 1. (3.1)

A little bit of calculus will tell you that the area is πab; when a = b the ellipse becomes a
circle and this area formula recovers the much better-known πa2. But what of the circum-
ference C as a function of a and b? It is a matter of some surprise that there is no simple
formula for C in terms of a and b. What goes wrong?

Well, here’s what happens if you try to use calculus for computing P(a, b). First you
need to try and parametrize the ellipse. No problem, you can tell from (3.1) that a perfectly
good parametrization is

x(t) = a cos(t) and y(t) = b sin(t) (3.2)

8

CHAPTER 3. (A) ELLIPTIC INTEGRALS 9

for t in the interval [0, 2π). So the length element becomes

dC(t) =
√
(dx)2 + (dy)2 =

√
a2 sin2(t) + b2 cos2(t) dt,

and all we have to do is solve

C(a, b) =
∫ 2π

0

√
a2 sin2(t) + b2 cos2(t) dt.

When a = b, there is no problem because the stuff under the square root is just a. But in
general, when a 6= b there is no magic trick that will simplify our life and offer a clean
solution. Thus, in order to satisfy our curiosity about elliptic integrals, we will turn to
numerics.

3.1 Exercise A1

Write function[x,y] = ellipse(a,b,n) which generates n points of the form (xi, yi)
on an ellipse with major axis a and minor axis b using the parametrization from (3.2). You
should first chop up the interval [0, 2π] into n equally spaced subintervals [ti, ti+1], and
then store xi = x(ti) and yi = y(ti) for the endpoints of those pieces1.

Now plot the output points for (a, b, n) = (1, 0.75, 800) to confirm that they lie on an
ellipse with the correct semi-major and semi-minor axis.

3.2 Exercise A2

Write function [len] = arclength(x,y) which takes as input the points which
were output by ellipse and computes the approximate circumference as a sum

Capp(a, b) =
n−1

∑
i=1

√
(xi+1 − xi)2 + (yi+1 − yi)2.

Check that Capp(a, a) is close to the expected circular circumference for values of a in
{1, 0.8, . . . , 0.2} by comparing the difference between your Capp (using n = 100 points in
each case) and the true circumference 2πa. In general does Capp tend to be an over-estimate,
an under-estimate, or neither? Can you explain why?

3.3 Exercise A3

The mathematician S Ramanujan developed an approximate formula for the circumference
of an ellipse:

Cram(a, b) = π

[
3(a + b)−

√
(3a + b)(a + 3b)

]
.

Compare your Capp to his Cram for a family of ellipses that starts from the unit circle
(a = b = 1) and shrinks to the interval (a = 1, b = 0) by decreasing the minor axis in 100
evenly-spaced steps 1 = b1, b2, . . . , b100 = 0 while keeping the major axis a fixed at 1.

Plot, on the same graph, Capp(1, bi) and Cram(1, bi) as a function of bi for i between 1
and 100. What do you notice about the general shape and slope of the two graphs? How
well do they resemble each other? When are they the most different?

1Hint: help linspace

Chapter 4

(B) Image Compression

This project explores some magical properties of the singular value decomposition, affection-
ately called SVD. Secretly, this project is also about ellipses and I hope that you will spend
a few seconds on Wikipedia to independently discover why.

Introduction

Start with any n× k matrix A (with real entries) whose transpose I will denote by At. It is
not difficult to see that the n× n matrix B1 = AAt and the k× k matrix B2 = At A are both
symmetric, i.e., they equal their own transposes. What is somewhat more surprising is that
all the eigenvalues of B1 and B2 are non-negative real numbers — this is a consequence of
a result called the spectral theorem in linear algebra and beyond.

Even more surprising than that is the fact that the non-zero eigenvalues of B1 and B2
are exactly the same! Index the square roots of these eigenvalues in descending order:

σ1 > σ2 > · · · > σr

(where r ≤ min(n, k) is the rank of A). This collection of decreasing positive numbers
is called the set of singular values of A. The singular value decomposition of A is a
factorization

A = U · D ·Vt,

where D is an n× k diagonal matrix described as follows. The first r entries of its diagonal
contain the singular values σ1, . . . , σr of A, and all other entries are zero. The matrix U is
n× n and its columns contain while V is k × k. Their columns are given by eigenvectors
corresponding to the common eigenvalues σ2

i of B1 and B2 respectively.
The point of all this is the following. For each matrix M, let’s write M[a,b]×[c,d] to indicate

the sub-matrix of shape (b− a + 1)× (d− c + 1) which is obtained by restricting the rows
to a, a + 1, . . . , b− 1, b and columns c, c + 1, . . . , d− 1, d. Then, for any s ≤ r = rank(A), the
best rank-s approximation to A can be extracted from the SVD by

As−app = U[1,n]×[1,s] · D[1,s]×[1,s] ·Vt
[1,n]×[1,s] (4.1)

We will use this fact to compress digital images!

4.1 Exercise B1

From the course webpage https://courses.maths.ox.ac.uk/node/43979 , down-
load the image file arches.bmp. Use the Matlab’s in-built function imread to read in

10

https://courses.maths.ox.ac.uk/node/43979

CHAPTER 4. (B) IMAGE COMPRESSION 11

this file (the output will be a 1440× 2560× 3 matrix, which I will call M). Here the last
×3 indicates that we have three stacked matrices of pixel intensities, containing red, blue
and green for each pixel of this image in the 1440× 2560 grid. In case you have never seen
these before, each pixel is represented by a triple (R, G, B) of three integers between 0 and
255.

The first task is to generate an equivalent greyscale image by extracting a single matrix
B of size 1440× 2560 whose (i, j)-th entry is computed as follows:

Bi,j =

⌊
Mi,j,1 + Mi,j,2 + Mi,j,3

3

⌋
Here the b c indicates that you should round down to the nearest integer. Using the
function imwrite, create the black-and-white file arches-bw.bmp. Use imshow to plot
this greyscale image.

4.2 Exercise B2

Next, write function C = BestApprox(B,s) which takes in your grayscale matrix B
(produced by the previous exercise) along with an integer s. The output C is a new matrix
that consists of the best rank s-approximation of B as produced by (4.1). Please make sure
to check within your function that s is not too small (i.e., negative) or too large (exceeding
min(n, k) where n and k count the number of rows and columns of B.

Using imshow again, plot the image you obtain using the best rank-50 approximation
to B. You may use Matlab’s in-built svd function.

4.3 Exercise B3

For each s in {10, 20, . . . , 490, 500}, compute the worst-case difference of absolute values
between the grayscale matrix B and the best rank-s approximation Cs computed using
(4.1):

d(s) = max
i,j

{
|Bi,j − Cs

i,j|
}

,

for 1 ≤ i ≤ 1440 and 1 ≤ j ≤ 2560. (Hint: don’t call BestApprox(B,s) individually
for each s, because computing the SVD so many times will be expensive and lead to slow
code. Instead, try to compute the SVD once and for all, and then extract all the different
rank s-approximations from that single pre-computed SVD).

Plot a graph showing d(s) against s for all s in {1, 10, 20, . . . , 990, 1000}. How quickly
does the approximation improve as the rank is increased?

Chapter 5

(C) Spectra of Random Matrices

The spectrum of a matrix is just a scary term that means its set of eigenvalues. This third project
is about examining a surprising bit of structure in the eigenvalues of symmetric matrices
with random entries. You may be pleased (or exasperated) to hear that this project is also
about ellipses — I’m only half-joking. There is no introduction for this project because I
don’t want to completely ruin the surprise.

5.1 Exercise C1

Write function e = RandSpec(n) which does the following. It takes in a positive
integer n, and generates an n × n matrix A with independent standard Gaussian entries
(the Matlab function randn will be helpful). Then it returns the vector e containing all n
eigenvalues of the symmetric random matrix S = A + At. As usual the second term means
the transpose of A. You are allowed to use the eig function.

Plot a histogram (with 100 bins) of the output generated by calling RandSpec(800)
once. If you call the function many times, you will see many different plots (after all, the
process is random). But do you see any patterns in the histogram that are common across
all these plots? If so, what are they?

5.2 Exercise C2

Now let’s see how the maximum eigenvalue of S changes with the size n. Write function
e = MaxEval(n) which takes in a number n, calls RandSpec(i) for every i in {1, . . . , n},
and returns a vector e so that the largest eigenvalue of the random i× i matrix is stored in
e(i). Now plot the entries of the vector e as a function of i by calling MaxEval(800). If
things go according to plan, e(i) should roughly be equal to 2.8

√
i. Confirm this by plotting

2.8
√

i on the same plot.

5.3 Exercise C3

Generate a vector e by calling RandSpec(1000) and plot the histogram with 100 bins as
in Exercise C1. Let b be the height of the tallest bin you see, and let a = 2.8

√
1000 be

the predicted maximum eigenvalue. On the same histogram, plot points from the ellipse
x2/a2 + y2/b2 = 1. What have you discovered about the eigenvalues of random matrices?
If this last question is crushing your soul, see Wigner’s semicircle law on the internet.

12

	Introduction
	Objectives
	Schedule
	Completing the projects
	Getting help
	Debugging and correcting errors

	Preparing your project
	Matlab publish
	Zip up your files
	Submitting the projects

	(A) Elliptic Integrals
	Exercise A1
	Exercise A2
	Exercise A3

	(B) Image Compression
	Exercise B1
	Exercise B2
	Exercise B3

	(C) Spectra of Random Matrices
	Exercise C1
	Exercise C2
	Exercise C3

