
MATHEMATICAL INSTITUTE

UNIVERSITY OF OXFORD

Computational Mathematics

Students’ Guide
Michaelmas Term 2019

by

Dr Vidit Nanda

Acknowledgments: This course guide is based largely on previous versions by Dr Andrew Thomp-
son, Dr. Alberto Paganini and others before him. We are grateful to all previous authors.

©2019 Mathematical Institute, University of Oxford

Notes for the 2019/2020 Course

The course will be in two parts: Part I in Michaelmas Term Weeks 3–8 and Hilary Term Weeks 1–2,
and Part II in Hilary Term Weeks 3–8. For Part I, you will attend scheduled practical sessions every
fortnight starting in Week 3 Michaelmas Term. The practical sessions are held in the Mathematical
Institute, Radcliffe Observatory Quarter.

Each practical session will be run by a demonstrator and may include short lectures. You will
need to bring your laptop to these sessions. If you are unable to bring a laptop to the sessions, please
contact the Academic Assistant (acadadmin@maths.ox.ac.uk) well ahead of your first session.

Please follow the instructions on the Mathematical Institute website

https://www.maths.ox.ac.uk/members/it/software-personal-machines/matlab

to install MATLAB on your machine prior to the first session. Note that there are around 50 toolboxes
available for download, and the only one you will require is the Symbolic Math Toolbox. The default
setting is to download all available toolboxes, which may take many hours using a standard broad-
band connection. You can select just the Symbolic Math Toolbox (i.e. deselect all other toolboxes) in
the “Product Selection Window” stage of the installation process.

Alternatively, and in particularly if you are a proficient computer user, you could try to use Oc-
tave (http://www.octave.org) which uses a very similar command syntax and is often regarded as a
MATLAB clone. See Section 1.1.2.

Time-line A suggested rough schedule for covering the material is the following table:

Week Chapter Covered
3–4 MT 1
5–6 MT 2
7–8 MT 3
1–2 HT 4

You should work through each chapter in order, progressing at a rate of roughly one chapter a fort-
night. Michaelmas term will place many demands on your time but you need to put in the effort to
ensure that you make steady progress and that you finish Part I of the course by the end of Week 2,
Hilary Term.

Assessment During Part I of the course, you may work collaboratively with others and—as always—
you are encouraged to discuss mathematics and your studies with your peers. Your demonstrator will
ask you to submit work related to these sessions but none of the work in Part I will be formally as-
sessed. Instead the material will act as a foundation enabling you to work individually during Part
II. This individual work will be assessed and will count towards your Preliminary Examination as de-
scribed in Examination Decrees & Regulations, 2019 and the current Course Handbook. (See your college
tutor if you have any questions about this aspect of the course.)

Course director The course director for this academic year is Dr Vidit Nanda. The course demonstra-
tors (who will be in attendance during each practical session) will try to answer any of your questions;
alternatively Dr Nanda can be contacted by email at nanda@maths.ox.ac.uk.

Course website This manual and any extra course material (such as lecture notes) can be found on
the course website:

https://courses.maths.ox.ac.uk/node/43979

Errata list In the rather likely event that errors are found in this manual after printing, they will be
corrected and listed on the website above. It would be a good idea to check occasionally, especially if
you think you’ve found an error.

mailto:acadadmin@maths.ox.ac.uk
https://www.maths.ox.ac.uk/members/it/software-personal-machines/matlab
http://www.octave.org
mailto:nanda@maths.ox.ac.uk
https://courses.maths.ox.ac.uk/node/43979

Contents

1 Introduction to Matlab 1
1.1 What is Matlab? . 1

1.1.1 What is the Symbolic Math Toolbox? . 1
1.1.2 What is Octave? . 1
1.1.3 Learning Matlab . 2

1.2 The command prompt, variables, getting help . 2
1.2.1 Using MATLAB’s built-in help system . 2
1.2.2 Assigning to variables . 2
1.2.3 Floating-point numbers . 3
1.2.4 Symbolic computing . 4
1.2.5 Saving your work in .m file scripts . 5
1.2.6 Using symbols instead of numbers . 5
1.2.7 Built-in functions and help . 8

1.3 2D graphics . 9
1.3.1 Simple line graphs . 9
1.3.2 Parametric and polar plots . 10

2 Algebraic equations and calculus 12
2.1 Evaluating expressions . 12
2.2 The solve command . 13

2.2.1 Solving equations symbolically . 13
2.2.2 Assumptions . 14
2.2.3 Solving equations numerically . 15

2.3 Differentiation and the diff command . 17
2.3.1 Differentiation of unknown functions . 19

2.4 Evaluating limits . 20
2.5 Integration . 21

2.5.1 The int operator . 21
2.5.2 Quadrature: numerical evaluation of integrals . 22

3 Differential equations, sums, matrices and vectors 24
3.1 Solving ordinary differential equations using dsolve . 24
3.2 Vectors and lists in Matlab . 26

3.2.1 Symbolic lists . 26
3.2.2 Indexing in lists . 27
3.2.3 Vector operations . 27

3.3 Sets . 28
3.4 Sums and products . 28

3.4.1 Simple “numerical” sums . 28
3.4.2 Products . 29
3.4.3 Symbolic manipulation of sums and products . 29

3.5 Arrays, matrices and vectors . 31
3.5.1 Matrix definition . 31
3.5.2 Rows, columns and submatrices . 31

2

3

3.5.3 Operators on matrices and vectors . 32
3.5.4 Simultaneous equations . 33
3.5.5 Eigenvalues and eigenvectors . 33

3.6 Meshgrids and 3D plots . 33
3.6.1 Logical masks . 33
3.6.2 Meshgrid . 34
3.6.3 3D plotting . 34

4 Loops, conditionals and functions 36
4.1 Loops . 36

4.1.1 Approximate solutions to equations . 37
4.2 Conditionals . 38
4.3 Functions . 39
4.4 Examples of functions . 40

4.4.1 Finding the arithmetic mean of a set of numbers 40
4.4.2 Taylor’s theorem . 41
4.4.3 Euler’s method . 41
4.4.4 Euclid’s algorithm . 42
4.4.5 A simple matrix function . 43

4.5 Debugging . 43
4.6 Further exercise . 44

A Simplification 45
A.1 Expand . 45
A.2 Factor . 46
A.3 Collect . 46
A.4 Simple and Simplify . 46

B Other advanced topics 48
B.1 Matlab “handle” functions and anonymous functions . 48
B.2 Variable precision arithmetic . 48
B.3 Cell Arrays . 49
B.4 MuPAD worksheets . 49

Chapter 1

Introduction to Matlab

In this chapter you will learn about:

• Accessing MATLAB;

• using MATLAB as a calculator;

• MATLAB identifiers, constants and functions;

• using the MATLAB help system;

• making .m file scripts;

• plotting simple line graphs.

1.1 What is Matlab?

MATLAB is often described as a problem solving environment. It is a programming language and set
of tools for solving mathematical problems.

The name MATLAB was originally a contraction of “Matrix Laboratory” and indeed MATLAB’s core
strength is numerical computing involving matrices, vectors and linear algebra. It also has extensive
plotting and graphics routines.

1.1.1 What is the Symbolic Math Toolbox?

The Symbolic Math Toolbox is an add-on for MATLAB which adds symbolic computing abilities. The
strength of such a system is the ability to manipulate algebraic expressions. The Symbolic Math Toolbox
can be used to solve algebraic equations, factorize polynomials and simplify rational expressions. It
can also solve some differential equations. It can perform many of the standard operations of analysis
such as evaluating sums, limits, derivatives and integrals. Under the hood, the Symbolic Math Toolbox
is powered by a computer algebra system called MuPAD.

The combination of MATLAB and the Symbolic Math Toolbox allows the user to mix symbolic and
numerical computing within the MATLAB environment.

1.1.2 What is Octave?

Some people are concerned about the ethical issue surrounding computing. Should software be freely
available? If these issues are important to you, you might want to consider Octave (http://www.
octave.org) as an alternative to MATLAB. It is Free Software (also known as Open Source Software)
which means you can use it without restriction, study its source code, improve it, and share it with
others as you wish. None of these things are true of MATLAB.

OctSymPy (see http://github.com/cbm755/octsympy) is an add-on package that adds symbolic
computing features to Octave (it is analogous to the Symbolic Math Toolbox for MATLAB). OctSymPy
is new software developed right here at Oxford!

1

http://www.octave.org
http://www.octave.org
http://github.com/cbm755/octsympy

CHAPTER 1. INTRODUCTION TO MATLAB 2

The syntax of commands in Octave is almost the same as MATLAB and the differences are well-
documented. But having said that, this manual will concentrate on MATLAB and this is likely the tool
your demonstrators will know best. Try Octave if you wish, but do so “at your own risk.”

1.1.3 Learning Matlab

In order to become technically adept at using MATLAB it is important that you attempt all the exer-
cises contained in this manual; as with most tools, MATLAB is best learned by actually using it to do
mathematics, and this should be practised as often as possible. Try to incorporate MATLAB into your
weekly problem sheets, by using it to check some of your hand-written answers. Examples include
substituting your solution back into the equation and plotting an answer to make sure it makes sense.

In the rest of this chapter, we will give a brief introduction to MATLAB, outlining some of its basic
features and illustrating them with some short examples. The output of each command line is not
printed in this manual; after executing each line you should check that the output is as you would
expect. If it is not, then you should think about why this might be, and if necessary consult your
demonstrator.

1.2 The command prompt, variables, getting help

Note that in MATLAB the prompt is the symbol “”. Commands are entered to the right of the
prompt, followed by the return/enter key. To illustrate this try entering the following:

 12/15

which should display 0.8000. Try some more commands

 3 + 18

 3+18

 3 + 18

 40*21

 factorial(3)

1.2.1 Using MATLAB’s built-in help system

There are various ways of getting help on MATLAB commands but one of them is built into the com-
mand prompt and is a good “first stop” for help. To use it, type help followed by the name of a
command:

 help factorial

You can also access help in various ways using the graphical user interface. (Don’t worry if much of
the information in the help text doesn’t make sense yet.) Throughout this manual you should use the
help facility to learn more about the commands you are introduced to.

1.2.2 Assigning to variables

Numbers can be assigned to variables

 a = 4

 b = factorial(4)

 B = 5

Later you can recall the value of a variable

 a

 b

CHAPTER 1. INTRODUCTION TO MATLAB 3

and variables can be used in further calculations

 my_var = a^2 + b/10 + 2*B

It is important to think about what the symbol = means here: MATLAB uses it as the assignment operator.
B = 5 means “assign the value 5 to B”. You could pronounce this as “B gets 5”. You will sometimes
see people writing the assignment operator as “B ← 5” and some other programming languages
use “B := 5” to avoid confusion. For better or for worse, MATLAB uses =. Later on, we will meet
the equality operator == which tests for equality and expresses symbolic equality: it deserves to be
pronounced “equals”.

There are a few words that are reserved for MATLAB operations and so cannot be used for variable
names. Examples include while, for, and function: we will encounter many of these later the course
and if you try to use one as variable name you’ll usually get an error. But just because something is
allowed doesn’t mean it’s a good idea:

 pi = 3.2

 sin(pi)

This seems like a good time to show you how to clear all variables.

 clear

 pi % back to its usual value

 a % gives an error

Indeed, it is recommended that you start all exercises with clear. Let’s say that again in bold:

Usually, you should start exercises with clear.
When something doesn’t work as expected, try clear.

A semicolon suppresses the output (this is useful, for example, if the output is extensive and not
specifically required). It can also make your code and output more readable: this will be more impor-
tant as you start writing longer scripts in MATLAB.

 a = 6;

 b = 3;

 c = a*b;

 c = 2*(c + 6)

1.2.3 Floating-point numbers

By default MATLAB produces numerical answers which are often approximations (albeit highly accu-
rate approximations)

 5/3

 pi

 sqrt(2)

These numerical solutions are typically accurate to about 15 decimal places:

 sin(0)

 sin(pi)

Note the latter gives 1.2246e-16, that is 1.2246× 10−16. You can increase the number of displayed
digits with

 format long

 sin(pi)

CHAPTER 1. INTRODUCTION TO MATLAB 4

but note this has no effect on the actual accuracy of the expression, just its display.
Internally, MATLAB by default stores numbers in “IEEE Double-Precision Floating Point” or just

double for short. Each double takes 8 bytes (that is 64 bits, “binary digits”) in the memory of the
computer. The 64 bits is used to store numbers in scientific notation with a certain number of bits for
the exponent (the “-16” in our example above) and the rest for the coefficient (1.222 in our example).

Computers are very fast at doing arithmetic on doubles and this forms the basis for much of com-
putation. For example, encoding/decoding your voice, music, and video on your phone, performing
large-scale climate simulations, finding a location from GPS satellites, or finding eigenvalues of large
matrices all involve billions of operators on doubles. A surprising number of things we do (e.g.,
searching the internet) are just special cases of “finding eigenvalues of large matrices”.

However, sometimes it’s nice when 6/9 becomes 2/3 not “0.666666666666667”. Particularly when
learning or studying mathematics, we are often less interested in the numerical solution of something
but rather in the how and why of it. Think about the area under a curve (a number, rather easily
approximated) versus the indefinite integral (a general expression). We want the computer to do both
these tasks.

1.2.4 Symbolic computing

Symbolic manipulation software or computer algebra systems do work with symbols rather than num-
bers. They try to work out derivatives and integrals and solve equations much the same way you do:
by manipulating the symbols according to certain rules (“6/9: 6 is 2*3 and 9 is 3*3 so cancel the 3’s to
get 2/3”).

The Symbolic Math Toolbox adds symbolic computing to MATLAB. We can check if we have the
toolbox with the command:

 ver

which might produce a lot of output but the important bit for us is

Symbolic Math Toolbox Version 8.2 (R2018b)

This manual assumes that you are using Version 8.2 or any subsequent later versions of the Symbolic
Math Toolbox. If you installed MATLAB according to the instructions at the beginning of this manual,
this will certainly be the case.

With the toolbox, you define symbolic numbers at the MATLAB prompt:

 sym('6/9')

 sym('1')

 a = sym('pi')

 sin(a)

 b = sym('2')

 c = sqrt(b)

 c^2

Those are single quotes which surround a string. In fact, you can leave out the quotes when entering
small integers or simple fractions.

 sym(1)

 sym(1000)

 sym(6/9)

It is recommended to use this shortcut only for small integers and very simply fractions, and to revert
to the quote form if there is any doubt. The following exercise should convince you there can indeed
be doubt.

Exercise 1.1 Observe the output of sym(13/10), sym(133/100), sym(1333/1000) and follow the pat-
tern a few more steps. What happens? Try the experiment again with quotes (sym('13/10'), etc). (If
you’re curious, help sym explains how the quoteless mechanism works). �

CHAPTER 1. INTRODUCTION TO MATLAB 5

In general, avoid using decimal places inside the sym command.

 sym('6/9') % yes

 sym(6/9) % sure, good too

 sym('6.0/9') % probably not what you wanted

The latter will use “variable precision arithmetic” which we won’t make much use of in this course:
“help vpa” if you want to know more, or see Appendix B.2.

1.2.5 Saving your work in .m file scripts

Instead of just typing commands into the command prompt, you can create a script. Within the graph-
ical user interface, one way to do this is to select “New Script” from the menu bar. Add some com-
mands to the file, for example:

% my solution to Exercise 1.1

sym(13/10)

sym(133/100)

Save the file as “ex1_1.m”. From within the editor, you can run your script by clicking on the icon
with the green triangle and the white square. You can also switch to the command prompt and type
the name of your script (without the .m)

 ex1_1

In either case, the contents of the script should execute in the command window. You can alternate
between editing your script and running it.

It is recommended to save each exercise as a script and you may want to use additional scripts as
you work through this manual. Find what works for you but remember you may want to access this
material later (for example, next term when you work through the projects).

1.2.6 Using symbols instead of numbers

Numbers are nice and all, but the sym() command makes more interesting things possible because
symbolic expressions can contain symbols:

 x = sym('x')

 y = asin(x^3)

 z = sin(y)

Another example:

 x = sym('x')

 y = sym('y')

 f = (x^3 + x^2) * sqrt(y) * exp(x)

In fact, there is a shortcut—syms—for defined symbolic variables:

 syms x y z a b c r s t

 f = sin(a*x) * sqrt(tan(r*t-x) + sin(t-1) * tanh(s^2*y))

Consider

 a = sym(6)

 b = sym(2)*a

 c = sym('2*a')

What happened? The result in b is correct, but c throws an error. This is because MATLAB does
not want you to write expressions inside quotes and pass them to sym. For example, instead of
f = sym('a * x + b'), you should write

CHAPTER 1. INTRODUCTION TO MATLAB 6

 syms a x b

 f = a*x + b

If you really need to pass a string instead of a number or a variable to sym, you can use the command
str2sym. For example, you can write

 str2sym('sqrt(2)')

However, passing expressions as strings may not always produce the desired result. For instance,
compare the outputs of the following commands.

 a = sym(6)

 b = sym(2)*a

 c = str2sym('2*a')

In Section 2.1, we will learn about the subs command which will help push assigned variables into
expressions.

Variable types and casting

We have encountered two types (“classes”) of objects so far: doubles which store numbers with a finite
precision and syms which store symbolic expressions. It will often be important to keep track of which
is which. The whos command can help.

 clear

 a = sym('6/9')

 b = 6/9

 whos

Now we can ask some useful questions about what happens when you combine objects.

Exercise 1.2 Use MATLAB to evaluate the following:

 a = sym(2/3)

 b = 5/3

 c = a + b

 d = b*a

 e = a^b

 f = (2/3) ^ (sym(5/3))

 e - f

 whos

From these results, what does MATLAB typically do when it performs a binary operation which com-
bines a double and a sym? This is known as casting. �

So very roughly speaking, as long as some symbols in your expression are of class sym, you can
expect the result to be symbolic too. This is good news for entering complex expressions, for example:

 x = sym('x');

 f = 512*x^4 + 13/10*x^2 + 256*x^(2/3)

 % because the alternative is just horrible:

 g = sym(512)*x^(sym(4)) + sym(13)/sym(10)*x^sym(2) + ...

 sym(256)*x^(sym(2)/sym(3))

 f - g % but they are the same in the end

The previous example also shows how to split a very long line in two: simply interrupt the line with
“...” (three full stops) and continue on the next. You’ll also note that we have been using the character
“%” to comment our code. This is a good idea to help the reader understand what the code does. As
you’ve probably figured out, MATLAB ignores these comments when executing the code.

Sometimes it’s hard to tell if an expression like f above was entered correctly; the output often
looks as bad—or worse—than the input. Try this:

CHAPTER 1. INTRODUCTION TO MATLAB 7

 pretty(f)

That will render the expression in a way that you might find easier to decipher.1 Similarly, latex(f)
will output code that can be pasted into LATEX, which is the standard tool most mathematicians use for
typesetting mathematics.2

Just as sym() converts to symbolic expressions, double() converts to double-precision numerical
values.

Exercise 1.3 Use MATLAB to evaluate the following exactly:

19× 99, 320, 21000, 25!,
3
13
− 26

27
.

Now calculate the decimal value of following:

21
23

, 171/4,
1

99!
, 0.216100.

MATLAB has some names reserved for constants, some of which are shown in the following table.

pi 3.1415 . . .
i (or “1i”)

√
−1

inf ∞
nan (Not a Number) 0

0 , sin(∞)

The number e, that is 2.7182 . . ., can be entered as

 double_e = exp(1)

 symbolic_e = exp(sym(1))

 log(symbolic_e)

Exercise 1.4 Careful it’s not sym(exp(1)): try that and see what happens. Can you explain why?

As stated above, MATLAB denotes the square root of −1 by i (actually 1i or j work too). Suppose
that we wish to express (2 + 3i)4 in the complex form a + bi, where a and b are real:

 (2 + 3*i)^4

Some MATLAB programmers don’t like this because they want to use i for a variable. Thus it is very
common to instead write:

 (2 + 3*1i)^4

 % or

 (2 + 3i)^4

These examples used class double but symbolic complex numbers work too:

 syms x y

 z = x + 1i*y

 sin(z)

You might have a sense of unease at this point: you and I might be tacitly assuming x and y are real
but of course MATLAB doesn’t know that. Indeed the complex conjugate of z = x + iy is z̄ = x − iy
but MATLAB says:

1Of course, beauty is subjective. . . The output of this command might have counted as “pretty” in 1992; perhaps “retro”
might be a better word.

2Typesetting in LATEX is a useful skill to learn, especially if you end up continuing for graduate studies.

CHAPTER 1. INTRODUCTION TO MATLAB 8

 syms x y

 z = x + 1i*y

 conj(z)

We will see how to fix this later using assumptions in Section 2.2.2.

Exercise 1.5 Use MATLAB to express the following in the approximate decimal form a + bi

(5− 8i)2, i−1, i2, i
1
2 ,

1 + i
5 + 2i

, and
(

4
3
+

2i
5

)4

.

�

Exercise 1.6 Use symbolic complex numbers to verify that (a + bi)2 = a2 − b2 + 2abi. (Hint: one
approach would be to construct the left-hand side and the right-hand side. Sometimes the simplify()
command will give MATLAB a nudge. . .). �

1.2.7 Built-in functions and help

As we have seen already, MATLAB has many in-built functions, many of which are fairly obvious. The
table below lists some of those that you should be familiar with.

cos, cosh cosine and hyperbolic cosine
sin, sinh sine and hyperbolic sine
tan, tanh tangent and hyperbolic tangent
sec, sech secant and hyperbolic secant
csc, csch cosecant and hyperbolic cosecant
cot, coth cotangent and hyperbolic cotangent
exp exponential
log natural logarithm
log10 base-10 logarithm
abs absolute value (and magnitude of complex number)
sqrt square root

MATLAB has extensive built-in help which you can access from the command prompt:

 help cos

One important note is that help often gives you the function that operates on double values. For
example, with the command above, you’ll probably see

Overloaded methods:

sym/cos

If you are working with symbolic expressions, you can access the symbolic specific help:

 help sym/cos

(An object-oriented programmer would say “cos is overloaded for sym input”.) Other commands have
associated help too:

 help clear

 help syms

 help whos

You can also search for keywords:

 lookfor hyperbolic

CHAPTER 1. INTRODUCTION TO MATLAB 9

MATLAB has more detailed hyperlinked help accessed with the doc command (and also available
online).

Exercise 1.7 Use MATLAB to evaluate the following:

tan2(π/3), sec(π/6), 1 + cot2(π/4), cosec2(ß/4) e3 ln 4.

�

Exercise 1.8 Use the help facility to learn how to compute the binomial coefficient nCr in MATLAB.
Evaluate 10C4 and 250C12. Do this both symbolically and numerically. Which is the correct answer? �

Exercise 1.9 Evaluate arcsin(1/2) and arcsin((
√

5 + 1)/4). Evaluate sec(arctan x) in terms of x. �

1.3 2D graphics

One of the very useful features of MATLAB is the ease with which many different types of graphs
may be drawn. Most graphs are drawn with variants of the plot command, which has several forms,
each with many optional arguments that determine the appearance of the resulting graph. Here we
introduce a few of the simplest forms. If at any time you wish to learn more, explore with MATLAB’s
help and doc pages.

1.3.1 Simple line graphs

The simplest graphs are those of functions of a single real variable; for example, the graph of the
function sin(10/(1 + x2)) for 0 ≤ x ≤ 10 is given by the command

 syms x

 y = sin(10/(1+x^2));

 fplot(y)

You should see the graph on your screen, and it should be blue, which is the default colour. You can
control the domain with

 fplot(y, [-5, 10])

The range of the vertical axis can also be specified:

 fplot(y, [-5 10])

 ylim([-1.2 1.2])

Exercise 1.10 Plot sin(10 cos x) on the interval −2π ≤ x ≤ 2π. �

You can draw more than one curve, in different colours and line styles. For example:3

 clear

 syms x

 fplot(cos(x))

 hold on

 h = fplot(sin(x));

 set(h, 'color', 'red')

 set(h, 'linestyle', '--')

 set(h, 'linewidth', 3)

 legend('cos', 'sin')

 title('my colourful plots')

3You will probably want to put longer examples like this in a script (see Section 1.2.5).

CHAPTER 1. INTRODUCTION TO MATLAB 10

The use of “hold on” is crucial: try it without. The American spelling of “colour” is required. The
variable h is called a “handle” and it gives you access to MATLAB “under the hood”: see get(h) for
example.

You can also clear a figure with clf and control which figure window you’re drawing on:

 figure(2); clf;

 h = fplot(atan(x));

 set(h, 'linewidth', 4)

 set(h, 'color', [0.5 0 0.5])

The colour was set using an “RGB triplet” a vector specifying the percentages of red, green and blue.

Exercise 1.11 Draw the graphs of these five functions on the same plot:

y1(x) = 1, y2(x) = 1 + x, y3(x) = 1 + x + x2/2, y4(x) = 1 + x + x2/2 + x3/6,

and y5(x) = exp(x), on the interval 0 ≤ x ≤ 1. Use different colours for each. Add a legend. �

You can interact with figures using the graphical user interface. For example, zooming and pan-
ning with the mouse (try this).

Exercise 1.12 Using a plot, find the approximate coordinates of all the real solutions of the nonlinear
simultaneous equations

y = sin x,

y = x3 − 5x2 + 4.

Hint: see help ginput for one interesting way to do this with a mouse. (You will see in Section 2.2.3
how to find numerical solutions to simultaneous equations such as these.) �

1.3.2 Parametric and polar plots

The command fplot can also plot a function that is defined parametrically (with x and y as functions
of t, say). So the ellipse x = 2 cos t, y = sin t is plotted with the command

 syms t

 fplot(2*cos(t), sin(t), [0, 2*pi])

 axis equal

The axis equal command will ensure that a circle looks like a circle.

Exercise 1.13 The cycloid x = t− sin t, y = 1− cos t is the curve traced out by a point on a wheel as
the wheel turns. Plot this curve for 0 ≤ t ≤ 6π. �

Polar plots of r = f (θ) for a ≤ θ ≤ b can be achieved with ezpolar4, for example to draw the
cardioid:

 syms t

 ezpolar(1 - cos(t), [0, 2*pi])

Exercise 1.14 Plot (both leaves of) the lemniscate r2 = cos(2θ). �

4The name is an abbreviation of ‘easy polar’: American pronunciation compulsory!

CHAPTER 1. INTRODUCTION TO MATLAB 11

Alternatives to fplot

The fplot and ezpolar commands are useful to make quick plots, particularly of symbolic expres-
sions. However, sometimes it might be useful to access the other MATLAB plotting commands in
order to have more control over plots. We give one (non-exhaustive) example, as you will certainly
encounter this style of MATLAB plotting:

 syms x

 y = sin(10/(1+x^2));

 ym = matlabFunction(y)

 xx = linspace(-5, 10, 512);

 plot(xx, ym(xx))

The key idea here is to create a vector of doubles (the linspace command). We also convert the
symbolic expression into a more traditional MATLAB function.

Animation

We finish this chapter with an animation:

 clear

 clf

 syms x y

 ezsurf(real(atan(x + 1i*y)), 'circ')

 shading flat

 camlight left

 material shiny

 for a = 1:90

 view([-30, a])

 pause(0.1)

 end

(More about for loops later.)

Chapter 2

Algebraic equations and calculus

In this chapter you will learn about:

• different ways of evaluating expressions;

• solving equations symbolically and numerically;

• using MATLAB to differentiate expressions;

• using MATLAB to evaluate integrals (symbolically and numerically);

• dealing with limits.

2.1 Evaluating expressions

We previously saw a small example of the behaviour of the MATLAB Symbolic Math Toolbox when
redefining variables in an expression. Recall:

 syms x

 y = 2*x

 x = sym(6)

 y % still 2x

The subs command is useful here.

 subs(y)

By default subs substitutes the current value of all variables into the expression. In this case, x was 6
so it substitutes 6 in for x to give y = 12.

The subs command has a more specific form subs(expr, old, new) which replaces all occur-
rences of the expressions old in expr by the expression new. For example, suppose we want to evaluate
the expression x2 + 3x− 2 at x = 1. This is achieved by using the commands

 syms x

 y = x^2 + 3*x - 2;

 subs(y, x, 1)

A useful feature is that y itself has not changed, so that if we now wish to evaluate y at a different
value of x then this is easily done:

 % first, note y unchanged

 y

 subs(y, x, 10)

 subs(y, x, sym(pi))

 y2 = subs(y, x, atan(x))

12

CHAPTER 2. ALGEBRAIC EQUATIONS AND CALCULUS 13

Exercise 2.1 In each of the following, evaluate the expression at the given value.

i) x3 − 3x2 + 2x− 1, at x = 5;

ii) sin x cos3 x, at x = π/4;

iii) ln
(

u + 1 +
√

u2 − 3
)

, at u = 2. �

A single call of subs can be used to perform several substitutions. As an example, suppose that we
wish to evaluate r =

√
x2 + y2 + z2 at the point (x, y, z) = (1, 2, 3). This is achieved by typing

 syms x y z

 r = sqrt(x^2 + y^2 + z^2)

 A = subs(r, [x y z], [1 2 3])

The [] notation indicates a vector: more on this later. Recall that you can use double() to evaluate to
a decimal approximation:

 double(A)

Sometimes after using subs you might need simplify to encourage MATLAB to clean up the result.
That completes this brief introduction to evaluation. We now move on to look at solving equations.

The main aim is to introduce solve(), which can be used to solve equations, inequalities, and systems
of these. First, recall that “=” is used in MATLAB to express assignment. To express equality we use
“==”.

 a = sym(6) % assign 6 to a

 logical(a == 6) % returns 1 for true

 logical(a == 7) % returns 0 for false

 logical(a < 10) % returns 1 for true

 logical(a <= 6) % returns 1 for true

 logical(a ~= 5) % returns 1 for true

 logical(a ~= 6) % returns 0 for false

These are mostly self-explanatory except for “~=” (tilde followed by equals) which means “not equal
to”.

2.2 The solve command

2.2.1 Solving equations symbolically

The solve command can be used to rearrange simple algebraic expressions to arrive at a new expres-
sion. For example, the solution of the equation

2x + 3 = 0 (2.1)

for x can be obtained using the Symbolic Math Toolbox as follows:

 syms x

 eq = 2*x + 3 == 0

 solve(eq, x)

Again please note the different uses of = and == here: eq is assigned the expression of Equation (2.1)
which happens to contain an equality operator. Messing this up makes subtle bugs that can be hard to
track down.

Note that the solution, − 3
2 , is not assigned to x. You can do that yourself if you wish:

CHAPTER 2. ALGEBRAIC EQUATIONS AND CALCULUS 14

 x

 x = solve(eq, x)

 eq

 eq2 = subs(eq)

Suppose that we wish to solve the simultaneous equations

x + y = 2, −x + 3y = 3.

This is done as follows:

 clear

 syms x y

 eq1 = x+y == 2;

 eq2 = -x+3*y == 3;

 [xsoln, ysoln] = solve(eq1, eq2, x, y)

An alternative:

 sol = solve(eq1, eq2, x, y)

 xsoln = sol.x

 ysoln = sol.y

where sol is something called a structure: roughly speaking it can contain “sub-variables” known as
fields.

What about problems with multiple solutions?

 clear

 syms x

 eqn = x^2 == -25

 sol = solve(eqn, x)

 sol(1)

 sol(2)

Here sol is a vector of two solutions, −5i and 5i.

Exercise 2.2 Find the solutions of the following equations:

(a) x2 − x− 2025 = 0, (b) x3 − 6x2 − 19x + 24 = 0,

(c) 2x4 − 11x3 − 20x2 + 113x + 60 = 0. �

Exercise 2.3 Use the solve command to find the point of intersection, in the (x, y)-plane, of the two
lines

ax + by = A, cx + dy = B.

Having found the intersection, find an expression for the distance of the point of intersection from the
origin. �

Note in the previous exercise that the Symbolic Math Toolbox made various assumptions (for ex-
ample that ad− bc 6= 0). Some other systems (for example MuPAD in its worksheet mode) are very
good at finding a wider variety of solution possibilities: this can be useful (and/or annoying) depend-
ing on what you’re trying to accomplish.

2.2.2 Assumptions

Sometimes one makes assumptions about equations and variables. For example, you might be inter-
ested only in the real roots of a quadratic. Or you might have a mathematical model where you know a
particular variable must stay positive (say it represents a positive physical quantity like concentration
or density). The Symbolic Math Toolbox allows you to add assumptions to symbolic variables.

CHAPTER 2. ALGEBRAIC EQUATIONS AND CALCULUS 15

 syms x

 assume(x, 'real')

 ineq = x^2 <= 25

 S = solve(ineq, x, 'ReturnConditions', true);

 S.conditions

 assumeAlso(x > 0)

 S = solve(ineq, x, 'ReturnConditions', true);

 S.conditions

 ineq = x^2 <= -25

 S = solve(ineq, x, 'ReturnConditions', true);

 S.conditions

To list the current assumptions, type:

 assumptions

You can remove the assumptions on a particular variable using

 x = sym('x', 'clear')

Recall that if you want to clear everything and start again, the usual approach is the clear command.
But it is worth mentioning that this will not remove assumptions from variables.1 The clear all

command will do the right thing.

Exercise 2.4 Define z = x + iy where x and y are symbolic variables. Take the complex conjugate of z.
Now modify your code to assume that both x and y are real and run your code again. �

2.2.3 Solving equations numerically

The solve command is used for finding symbolic solutions to equations. This is not always possible,
but numerical (approximate) solutions can usually be found. If solve is unable to find a symbolic
solution, it will try to find a numerical solution.

For example, suppose we wish to solve the equation

sin x = x3 − 5x2 + 4,

and that having plotted the graphs of sin x and x3 − 5x2 + 4 we know that there are three solutions, at
approximately x = −0.90, 0.89 and 4.78 (these approximate solutions were obtained in Exercise 1.12).

To find these solution more precisely, we try solve:

 clear

 syms x

 eqn = sin(x) == x^3 - 5*x^2 + 4;

 solve(eqn, x)

This fails to find an exact symbolic solution but it finds a numerical solution

ans =

0.88543649189409090795806224578236

This solution is neither a double nor a sym class: we’ll see in a moment why it is so accurate. But if
you’re going to do something else with the result, you probably want:

 y = double(solve(eqn, x))

which converts it to a double quantity.
What about the other two solutions? The most common numerical approaches involve providing

either an interval in which to search or an initial guess. Here we outline two possible approaches.

1The variable will be deleted but not the assumption, possibly leading to very subtle and hard-to-find bugs.

CHAPTER 2. ALGEBRAIC EQUATIONS AND CALCULUS 16

The vpasolve command The Symbolic Math Toolbox also has the command vpasolve which uses
“variable-precision arithmetic” (see Appendix B.2 for more information.) One way to use this com-
mand is to provide a search interval:

 vpasolve(eqn, x, [-1 0])

 vpasolve(eqn, x, [0 1])

 vpasolve(eqn, x, [4 5])

ans =

-0.90040020886787653209849187387426

ans =

0.88543649189409090795806224578236

ans =

4.7813983927628242128187791632837

Alternatively, you can provide an initial guess:

 vpasolve(eqn, x, -.9)

 vpasolve(eqn, x, .8)

 y = double(vpasolve(eqn, x, 4.7))

(where the last example shows conversion to double, assuming the solution is to be used in further
calculations.)

Note that the vpasolve command does not respect assumptions on variables.

Alternative approach: fzero for numerical root finding The MATLAB command fzero() does root-
finding: it searches for numerical solutions of f (x) = 0 where f is a function of one variable.

 f = @(x) sin(x) - (x^3 - 5*x^2 + 4);

 format long

 fzero(f, -1)

ans =

-0.900400208867877

Some explanation: the first line creates a MATLAB “anonymous function” (see Appendix B.1), which
is then passed to fzero, along with an initial guess. We can then find the third root:

 fzero(f, 5)

ans =

4.781398392762824

Note that fzero does not work with symbolic expressions or symbolic functions.
Having to enter the same expression again is not optimal and potentially error-prone. Here’s one

approach to convert the symbolic equation “eqn” from above into an appropriate function f:

 % we want the left-hand-side and right-hand-side

 LR = children(eqn)

 f = matlabFunction(LR(1) - LR(2))

 fzero(f, -1)

ans =

-0.900400208867877

Exercise 2.5 Makes a plot showing the roots of x3 + 3x2 − 2x + 1. Then use solve() to find the roots.
Use double() to find numerical approximations to the roots. �

CHAPTER 2. ALGEBRAIC EQUATIONS AND CALCULUS 17

Exercise 2.6 Find real solutions of the equation

x sin x =
1
2

for x in the following ranges: (i) 0 < x < 2; (ii) 2 < x < 4; (iii) 6 < x < 7; (iv) 8 < x < 10. Verify
graphically that there are no solutions in the range 4 < x < 6. �

2.3 Differentiation and the diff command

The Symbolic Math Toolbox can find the derivatives of expressions of one or several variables. In this
section we introduce the diff command, which is the basic differentiation operator for expressions,
and illustrate its use in different situations including finding the coordinates of stationary points.

We start with an example; the derivative of sin x with respect to x is found with the command

 syms x

 diff(sin(x), x)

The general syntax for differentiating an expression expr with respect to a variable var is

 diff(expr, var);

and the derivative of ex2+a2
with respect to x is found with the commands

 syms x a

 z = exp(x^2 + a^2);

 d1 = diff(z, x)

The second derivative of ex2+a2
with respect to x is

 diff(d1, x)

and this same result can also be found all in one go by typing

 diff(z, x, 2)

So the fifth derivative of sin(x2) is achieved

 diff(sin(x^2), x, 5)

Partial differentiation2 of expressions of more than one variable is performed by a straightforward ex-
tension of this procedure. For example, consider the expression sin x cos y; then its second derivatives
are found as follows. First define z = sin x cos y:

 syms x y

 z = sin(x)*cos(y)

Then the second derivative ∂2z/∂x2 is given by

 diff(z, x, 2)

and ∂2z/∂y2 is found with

 diff(z, y, 2)

or by nesting the diff command

 diff(diff(z, y), y)

Thus one way to evaluate the mixed second derivative ∂2z
∂x∂y is:

2This topic may be new to you; it will be covered in lectures this term.

CHAPTER 2. ALGEBRAIC EQUATIONS AND CALCULUS 18

 diff(diff(z, x), y)

This is a bit cumbersome, particularly if you want something like ∂5z
∂x2∂y3 , and instead you can do:

 diff(z, x, x, y, y, y)

For example to verify that the order of differentiation does not matter here:

 diff(z, y, x)

 diff(z, x, y)

Sometimes it is necessary to find the derivative of an expression at a particular point, rather than
as a function of the independent variable(s). This is achieved with a combination of the diff, subs
and sometimes double commands. Thus the value of the first derivative of sin x at x = 6 is given by
the commands

 f = diff(sin(x), x);

 subs(f, x, 6)

and to get a decimal approximation:

 double(subs(f, x, 6))

The following exercises give practice in the diff command and also revise some earlier commands
such as solve and plot.

Exercise 2.7 Find
d

dx

(
(x2 + 1)4

e2x

)
and evaluate it at x = 1. �

Exercise 2.8 Plot the second derivative of x4/(1 + x2) for −5 ≤ x ≤ 5. �

Exercise 2.9 Given y = 12x5 − 15x4 + 20x3 − 330x2 + 600x + 2, find the (x, y) coordinates of any
stationary points (that is, those for which y′(x) = 0). Use MATLAB to plot y so that the real stationary
points are visible. Can you also make a plot to show the complex stationary points? �

Exercise 2.10 If z = ln(x2 + y2) find the value of the constant a such that(
∂z
∂x

)2

+

(
∂z
∂y

)2

= ae−z.

�

Exercise 2.11 Execute this code:

 diff(sym(5))

 diff(5)

and explain the results (hint: what does diff([1 2 5 9]) do?). �

CHAPTER 2. ALGEBRAIC EQUATIONS AND CALCULUS 19

2.3.1 Differentiation of unknown functions

So far only the derivatives of expressions with an explicit form (in terms of one or more independent
variables) have been found. In this section we look at how to differentiate arbitrary functions, say y(x)
or f (x, y), without first giving them an explicit form. For example, we might want to find dy/dx (as a
function of y and x) given that x2 + y2 = 3. However, typing

 syms x y

 diff(y, x)

returns 0 because MATLAB does not know that we intended y to depend on x; x and y are free inde-
pendent variables and are treated as such.

This difficulty is addressed in the Symbolic Math Toolbox by using y(x); MATLAB interprets this
syntax to mean that y(x) depends on x. Thus we have

 clear

 syms y(x)

 diff(y,x)

 diff(y,x,2)

Note here the syms y(x) also makes x a symbolic variable. In fact let’s take a closer look

 whos

and see that y(x) is a “symfun”—a symbolic function, and x is a sym. In fact, the command “syms y(x)”
is a shortcut for:

 x = sym('x')

 y(x) = sym('y(x)')

Differentiation and the “symfun”

The syntax here is quite important. Note the following:

 x = sym('x')

 f = sym('f(x)') % this is probably a mistake

 g(x) = sym('g(x)')

Here g is a symfun but f is just the expression f (x): probably not what was intended. Note also the
difference

 A = diff(g, x) % yes, A is a symfun for the deriv

 B = diff(g(x), x) % gives an expression, not a symfun

 C = diff(f, x) % gives an expression, not a symfun

 %D = diff(f(x), x) % would give an error

 whos A B C

The distinction between an expression and a symfun is usually not important but in some cases—
such as dealing with differential equations—it makes an important difference. In summary, when it
matters, the form syms f(x) is probably less error-prone.

Functions of multiple variables can also be manipulated using symfuns:

 syms f(x,y)

 f

 diff(f, x)

 diff(f, x, 2)

 diff(f, x, y)

 diff(f, x, x, y, y, y)

CHAPTER 2. ALGEBRAIC EQUATIONS AND CALCULUS 20

Using symfuns, the diff command knows the usual rules of differentiation, for instance the addi-
tion, multiplication and quotient rules:

 syms f(x) g(x)

 diff(f + g, x)

 diff(f * g, x)

 diff(f / g, x)

To illustrate an application of this theory, suppose that we wish to find dy/dx (in terms of x and y)
given that x2 + y2 = 3. To do this with MATLAB, first define the given explicit equation by typing

 clear

 syms y(x)

 eq1 = x^2 + y(x)^2 == 3

and then differentiate this equation, assigning the output equation to a new name

 eq2 = diff(eq1, x)

Let’s ask MATLAB to solve the resulting expression for dy/dx:

 solve(eq2, diff(y, x)) % fail

 solve(eq2, diff(y(x), x)) % fail

Hmmm, we’ll have to try a bit harder:

 % use subs to replace the deriv with "dydx"

 syms dydx

 eq3 = subs(eq2, diff(y(x), x), dydx)

 % now solve for dydx

 solve(eq3, dydx)

Exercise 2.12 Find the derivatives of

sin f (x), sin
(

e f (x)
)

, exp
(√

1 + f (x)g(x)
)

.

�

Exercise 2.13 Find dz/dp implicitly (in terms of z and p) given that

p3 + z(p)2 + 3pz(p) = 0.

Try to convince MATLAB to isolate dz/dp, that is, solve for dz/dp. �

2.4 Evaluating limits

This short section introduces the command limit. Its syntax is fairly self-explanatory; for example to
find

lim
x→0

sin x
x

type

 syms x

 limit(sin(x)/x, x, 0)

CHAPTER 2. ALGEBRAIC EQUATIONS AND CALCULUS 21

Left and right limits can also be found; for example to find

lim
x→3+

x2 − 4
x2 − 5x + 6

use the command

 syms x

 expr = (x^2-4)/(x^2-5*x+6);

 limit(expr, x, 3, 'right')

Exercise 2.14 Use MATLAB to evaluate the following limits

(i) lim
x→0

tan x− x
x− sin x

, (ii) lim
x→∞

(
1 +

1
x

)x

.

In each case, make a plot that clearly demonstrates that the limits are correct. �

2.5 Integration

The Symbolic Math Toolbox can evaluate many integrals symbolically, and MATLAB itself can also
provide numerical estimates of most definite integrals.

2.5.1 The int operator

The syntax for integrating an expression expr with respect to a variable var is int(expr,var). For
example, to integrate the expression xeax2

with respect to x type

 syms x a

 int(x*exp(a*x^2), x)

Note that the Symbolic Math Toolbox does not include the arbitrary constant of integration. To evalu-
ate the definite integral ∫ 1

0
xe5x2

dx

type

 int(x*exp(5*x^2), x, 0, 1);

and to evaluate ∫ u

0

dx√
u− x

type

 syms x u

 int(1/sqrt(u-x), x, 0, u);

If the Symbolic Math Toolbox cannot evaluate an integral then it returns a representation of the integral
itself:

 int(x^x, x)

which is a correct answer but probably not what you were hoping for!
At this point you should experiment with some integrals just to see what can be done.

Exercise 2.15 Use MATLAB to integrate the following expressions with respect to x:

(i)
√

ex − 1, (ii) x2(ax + b)5/2, (iii) sinh(6x) sinh4(x), (iv) cosh−6(x), (v) sin(ln(x)),

where a and b are constants. �

CHAPTER 2. ALGEBRAIC EQUATIONS AND CALCULUS 22

Exercise 2.16 Use MATLAB to evaluate the following expressions symbolically:

(i)
∫ 1

1/2

1
1 + x3 dx, (ii)

∫ 1

0
x2 tan−1 x dx, (iii)

∫ ∞

0

1
(1 + x)(1 + x2)

dx. �

From these exercises you will note that the symbolic toolbox can deal with rather nasty integrals
symbolically, and that it easily evaluates many of the integrals found in elementary texts or standard
tables.

Nevertheless one often encounters integrals where it is desirable to have MATLAB evaluate an inte-
gral numerically—for example, because the Symbolic Math Toolbox fails to integrate or the symbolic
calculation is too slow.

2.5.2 Quadrature: numerical evaluation of integrals

You may be aware that the majority of integrals cannot be evaluated symbolically. If the symbolic
toolbox fails to find a symbolic answer to a definite integral, or if you know that the integral in question
cannot be evaluated in terms of known functions, then it may be necessary to evaluate it numerically.

For example, suppose we try to integrate
∫ 1

0 e−t arcsin(t)dt, symbolically by typing

 syms t

 y = exp(-t)*asin(t);

 z = int(y, t, 0, 1)

As we noted before, this returns the symbolic integral expression; the Symbolic Math Toolbox does
not know the answer. MATLAB has a variety of commands for doing numerical integration. This is
known as quadrature. These are independent of the symbolic toolbox so we first convert out expression
to a MATLAB function and call integral(). Continuing our example above:

 ym = matlabFunction(y);

 z = integral(ym, 0, 1)

The integral command has various options related to accuracy of the approximation: see help integral.
To summarize, the int() command is part of the Symbolic Math Toolbox, and tries to evaluate

integrals symbolically; the integral() command is a MATLAB command which evaluates integrals
numerically using quadrature.

Exercise 2.17 Use MATLAB to evaluate the following integrals numerically to six digit accuracy: (i)
∫ 1

0
ex3

dx, (ii)
∫ 10

0

1√
1 + x4

dx, (iii)
∫ 5

0
sin
(

ex/2
)

dx.

�

Exercise 2.18 In this exercise, we explore the function sinc x which is defined as

sinc x =


sin x

x
x 6= 0,

1 x = 0.

(a) Assign the expression sin(x)/x to a variable and then plot it for −30 ≤ x ≤ 30. (Note that
ezplot should have no problem with plotting sin 0

0 . However, you should satisfy yourself that your
graph looks correct at x = 0, given the above definition.)

(b) First, it can be shown that each maximum or minimum of the graph of sinc x corresponds to
a point of intersection of the graphs of sinc x and cos x. Use MATLAB to illustrate this, by drawing
the graphs of sinc x and cos x on the same plot for 0 ≤ x ≤ 10. Then use solve to find numerical
approximations for the x-coordinates of all stationary points of sinc x for 0 < x ≤ 10, and verify that
these are indeed where the two graphs that you have just drawn meet.

(c) Use MATLAB to evaluate the three integrals

(i)
∫ ∞

0
sinc x dx, (ii)

∫ ∞

0
sinc x sinc

x
3

dx, (iii)
∫ ∞

0
sinc x sinc

x
3

sinc
x
5

dx.

CHAPTER 2. ALGEBRAIC EQUATIONS AND CALCULUS 23

What do you think the value of
∫ ∞

0

5

∏
k=0

sinc(x/(2k + 1)) dx is? Use MATLAB to verify your conjecture.

�

Exercise 2.19 (Optional) In this exercise, we use MATLAB to investigate some rational bounds on π.
(a) Verify that ∫ 1

0

x4(1− x)4

1 + x2 dx =
22
7
− π. (2.2)

This is in itself an interesting result, as 22
7 is often used as a rational approximation for π. However,

this result can also be used to obtain bounds on π in the form a/b < π < c/d, where a, b, c and d are
integers.

(b) Verify by hand, no MATLAB, that

1
2

∫ 1

0
x4(1− x)4dx <

∫ 1

0

x4(1− x)4

1 + x2 dx <
∫ 1

0
x4(1− x)4dx.

(c) Evaluate J =
∫ 1

0
x4(1− x)4dx, and hence deduce that

1979
630

< π <
3959
1260

. (2.3)

This gives rational bounds on π. You can now use MATLAB to obtain tighter rational bounds, in the
following manner. It can be shown that the identity (2.2) can be generalized by replacing the powers
of 4 by powers of any integer multiple of 4 as follows.∫ 1

0

x4n(1− x)4n

22(n−1)(1 + x2)
dx = (−1)n(π − Rn),

where n = 1, 2, 3, . . . and Rn is a rational number. (In (2.2) above, n = 1 and R1 = 22/7.) The Symbolic
Math Toolbox should be able to verify this for any given n and compute the corresponding value of
Rn. Then, following the procedure of parts (ii) and (iii) above, new bounds on π can be found.3

(d) Use MATLAB to calculate R5.
(e) Hence find the upper and lower bounds on π for the case when n = 5. Evaluate these both as

rational numbers and in decimal form. You might need variable precision arithmetic (Chapter B.2). �

3It can be shown that the higher the value of n, the tighter the bounds on π, but this is not considered here.

Chapter 3

Differential equations, sums, matrices and
vectors

In this chapter you will learn about:

• solving differential equations;

• sums and products;

• the use of lists and vectors;

• 3D plotting.

3.1 Solving ordinary differential equations using dsolve

The “dsolve” command can be used to find the closed form solutions of many types of differential
equations. For example, to solve the homogeneous differential equation

d2y
dx2 − y = 0

we use the symfun class as follows:

 syms y(x)

 ode = diff(y,x,2) - y == 0

 dsolve(ode)

Notice the way by which the symbolic toolbox gives the constants of integration. The important thing
here is that y(x) was created as a symfun and that the diff(y,x) was used to create the ODE (and
not diff(y(x),x)); this is an example of the toolbox differentiating arbitrary functions, which was
discussed previously in Section 2.3.1.

Inhomogeneous equations are no different; to solve

dy
dx

+
y
x
= x2

type

 clear

 syms y(x)

 ode = diff(y,x) + y/x == x^2

 dsolve(ode)

Sometimes MATLAB does not automatically simplify the solution as much as it could—the solution
of

d3x
dt3 − 3

d2x
dt2 + 3

dx
dt
− x = 16e3t

24

CHAPTER 3. DIFFERENTIAL EQUATIONS, SUMS, MATRICES AND VECTORS 25

is found by typing

 syms x(t)

 ode = diff(x,t,3) - 3*diff(x,t,2) + 3*diff(x,t) - x == 16*exp(3*t)

 soln = dsolve(ode)

 simplify(soln)

To insert initial and/or boundary conditions in MATLAB, proceed as in the following examples. The
solution of the boundary value problem

y′′ + 5y′ + 6y = 0, y(0) = 0, y(1) = 3

is found as follows:

 syms y(x)

 DE = diff(y,x,2) + 5*diff(y,x) + 6*y == 0

 soln = dsolve(DE, y(0)==0, y(1)==3)

We could then plot the solution:

 fplot(soln, [0 1])

 ylim([0 6])

 grid on

 ylabel('y')

Now consider the initial value problem

y′′ = y, y(0) = 1, y′(0) = 0,

which could be solved as follows

 syms y(t)

 DE = diff(y,t,2) == y;

 yp = diff(y,t);

 Y = dsolve(DE, y(0)==1, yp(0)==0)

And again a plot:

 Yp = diff(Y, t);

 clf

 fplot(Y, [0 2])

 hold on

 h = fplot(Yp, [0 2])

 set(h, 'color', 'red', 'linestyle', '-.')

 grid on

 % note how we enter y'(x) here:

 legend('y(x)', 'y''(x)')

Exercise 3.1 Use MATLAB to solve the following differential equations:

(i)
d2y
dx2 + 3

dy
dx

+ 4y = sin x, (ii)
dy
dx

= 3xy, y(0) = 1.

In (ii), plot the solution. �

Exercise 3.2 Solve the differential equation y′′+ y = 0, subject to the initial conditions y(0) = a, y′(0) =
b. Assign the result to a variable and then evaluate the solution at x = π. �

CHAPTER 3. DIFFERENTIAL EQUATIONS, SUMS, MATRICES AND VECTORS 26

3.2 Vectors and lists in Matlab

MATLAB was originally designed to make it easy to manipulate matrices and vectors. A row vector
takes the form [expr1, expr2, expr3,..., exprn], in other words it is a sequence of expressions
enclosed in square brackets. We will often choose to think of this as a list. In a list, order and repetition
are both important.

An example of entering a list is:

 L = [1, 2, 3, 4]

In fact the commas are optional:

 L = [10 12 11 10 9]

Specific elements can be extracted. Here we pick out the third element:

 L(3)

In a similar fashion, you can replace entries of a list:

 L(3) = 42

 L

There is a useful shortcut in list construction of the form “start:step:end”, for example:

 L1 = 1:10

 L2 = 3:2:13

 L3 = 17:-1:10

 L4 = 1.0:0.2:1.6

Lists can be concatenated

 clear

 L1 = [1 2 3];

 L2 = [4 5 6 7];

 L3 = [L1 L2]

Note this makes a longer list rather than making a “list of lists” (the latter can be done in MATLAB

using cell arrays: see Appendix B.3). The number of elements in a list is its length:

 n = length(L3)

You can make an empty list of length zero:

 L = []

 n = length(L)

3.2.1 Symbolic lists

We can also make lists/vectors of symbolic objects and manipulate their elements

 syms x

 L = [sin(x) cos(x) tan(x)]

 L(1)

 diff(L(1), x)

 % in fact we can differentiate all elements at once:

 derivs = diff(L, x)

Every element of a list must be the same type. If you mix sym and double in a list construction,
everything will be cast to sym:

CHAPTER 3. DIFFERENTIAL EQUATIONS, SUMS, MATRICES AND VECTORS 27

 clear

 x = sym(10); y = 11; z = 12;

 L = [x y z];

 a = L(1); b = L(2); c = L(3);

 whos

Notice that L is a 1x3 sym and the a, b, and c are all of class sym.

Exercise 3.3 Design an experiment to check what happens if you replace one element of an existing
sym list with a double. On the other hand, what happens if you replace one element of an existing
double list with a sym? �

3.2.2 Indexing in lists

Ranges of elements can be extracted using the colon notation:

 L = 2:0.1:4

 L(1:3)

 L(2:2:12)

There is also a keyword called “end”

 L(1:end-4)

 L(end-3:end)

You can use one list as indices to access another list:

 I = [1 5 3 2]

 L(I)

 % or directly

 L([1 5 3 2])

This leads to a common design pattern in MATLAB:

 I = find(L > 3.05)

 L(I)

 I = find((L >= 3.1) & (L < 3.8))

 L(I)

Here I is a list of indices satisfying the condition. You can combine the “list accessing a list” pattern
with the “end” keyword. For example, the following will “rotate” a list:

 rotLeft = L([2:end-1 1])

 rotRight = L([end 2:end-1])

(This is a bit of a trick—so called “syntactic sugar”—e.g., you cannot store I = [2:end-1 1].)

3.2.3 Vector operations

To do component-wise operators on a vector, we need special “dot” operators. To raise each element
to a power, use:

 L = [1 2 4 8];

 L3 = L .^ 3

Similarly, to multiple or divide the components of one vector by the components of a another vector
(component-wise multiplication/division), do:

 M = L .* L3

 Z = (L.^4) ./ L - L3

The component-wise multiplication symbol is typically pronounced “dot star”. The usual multiplica-
tion symbol * (without the dot) means matrix multiplication in this context (see Section 3.5).

Vectors and matrices are so fundamental in MATLAB that we return to them in Sections 3.5 and 3.6
but first we look at some applications of lists, namely for set theory and performing sums.

CHAPTER 3. DIFFERENTIAL EQUATIONS, SUMS, MATRICES AND VECTORS 28

3.3 Sets

MATLAB doesn’t have particular support for mathematical sets. (MuPAD does using its worksheet
mode, see Appendix B.4). However, using lists, we can implement some basic ideas of set theory.

The set {1, 2, 3} could be presented by

 S = [1 2 3]

Similarly the set of three polynomial expressions could be

 syms x

 S = [x^2 3*x 2]

Order should not be important and repetitions should be ignored in sets:

 S = [1 3 4 1 2 1] % not really a set

 S = unique(S) % much better

Given two sets A and B, MATLAB can perform the usual set operations of union A ∪ B, intersection
A ∩ B and difference A \ B:

 A = [1 2 3 4]

 B = [2 4 6 8]

 union(A, B)

 intersect(A, B)

 setdiff(A, B)

Exercise 3.4 Use MATLAB to verify that if X = {1, 2, 3, 5}, Y = {2, 3, 4} and Z = {1, 3} then

X− (Y ∪ Z) = (X−Y) ∩ (X− Z) and X ∩ (Y ∪ Z) = (X ∩Y) ∪ (X ∩ Z).

(Of course this does not constitute a proof of the general results!) �

3.4 Sums and products

In this section we look at sums and products in both numerical and symbolic forms using the com-
mands sum, prod, symsum and symprod.

3.4.1 Simple “numerical” sums

Suppose we want to evaluate the three sums

S1 =
10

∑
r=1

r, S2 =
100

∑
i=1

i2, S3 =
100

∑
k=10

1
(k + 1)2 .

One approach is to construct an appropriate vector and then add up the elements:

 r = 1:10;

 S1 = sum(r)

For S2:

 i = 1:100;

 isqr = i.^2;

 sum(isqr)

 % or directly:

 S2 = sum(i.^2)

CHAPTER 3. DIFFERENTIAL EQUATIONS, SUMS, MATRICES AND VECTORS 29

Note that we must use the “dot” component-wise vector operations:

 k = 10:100;

 S3_num = sum(1 ./ (k+1).^2)

Exercise 3.5 Use MATLAB to evaluate the following

(i)
10

∑
r=1

(r2 + 3r− 2), (ii)
50

∑
i=1

2i, (iii)
10

∑
k=1

e−
√

k, (iv)
100

∑
k=1

1√
k

.

�

3.4.2 Products

Products can be approached in a similar fashion using the prod command. If you have not seen it
before, ∏ denotes a product in the same way as ∑ denotes a sum. For example,

5

∏
r=1

(r + 2) = 3× 4× 5× 6× 7 = 2520.

�

Exercise 3.6 Use MATLAB to evaluate the following:

(i)
5

∏
r=1

(r + 2), (ii)
10

∏
r=1

r2.

�

3.4.3 Symbolic manipulation of sums and products

The previous approach uses standard MATLAB (without the Symbolic Math Toolbox) and works for
adding up numbers. But what about sums with variables in the limits? Or infinite sums? For this we
use the symsum command.

Let us now consider a more general case, where the upper limit is replaced by a free variable, n.
For example:

Sn =
n

∑
r=1

r.

Our previous list idea won’t work here, instead:

 syms r n

 Sn = symsum(r, r, 1, n)

(the first r here is the summand, the second is the variable to sum over, see help symsum). Now that
we have Sn we can manipulate it in the usual ways:

 subs(Sn, n, 10)

 % which is the same as:

 sum(1:10)

Infinite sums can be evaluated in this way too.

 clear all

 syms a k

 S = symsum(a^k, k, 1, inf)

CHAPTER 3. DIFFERENTIAL EQUATIONS, SUMS, MATRICES AND VECTORS 30

Why does this output look confusing? Recall that the geometric series converges only for certain
values of a. Let’s use the assumptions features of the symbolic toolbox to clear things up a bit:

 syms a b

 assume(b, 'real')

 assumeAlso(b >= 0)

 assumeAlso(b < 1)

 assumptions(b) % summarize assumptions on b

 subs(S, a, b) % replace a with b

Actually, that was “heavy handed”, how about:

 % this will clear the assumptions on b

 b = sym('b', 'clear')

 % want the magnitude of b to be less than 1

 assume(abs(b) < 1)

 assumptions(b) % summarize assumptions on b

 subs(S, a, b) % replace a with b

Instead of using subs after the fact, you could also make the assumptions first:

 clear all

 syms a k

 assume(abs(a) < 1)

 S = symsum(a^k, k, 1, inf)

Exercise 3.7 Use MATLAB and the Symbolic Math Toolbox to evaluate the following:

(i)
n−1

∑
k=0

ak, (ii)
∞

∑
k=0

1
k!

.

�

Exercise 3.8 Use MATLAB and the Symbolic Math Toolbox to help verify the following:

(i)
∞

∑
n=1

2
(n + 1)(n + 2)

= 1, (ii)
∞

∑
k=0

k2 + k− 1
(k + 2)!

= 0, (iii)
∞

∑
k=1

1
k2 =

π2

6

�

Exercise 3.9 By embedding one symsum command within another, evaluate the double sums

(i)
10

∑
m=0

10

∑
n=0

(2n + 1)em, (ii)
10

∑
n=0

10

∑
m=0

(2n + 1)em, (iii)
10

∑
m=0

m

∑
n=0

(2n + 1)em,

where (i), (ii) should be approximately 4.2162e+06 and (iii) should be 3.814e+06.) �

Exercise 3.10 Use symprod to evaluate the following:

(i)
10

∏
r=1

r2, (ii)
7

∏
r=1

(1− qr), (iii)
∞

∏
r=1

qr, where q ∈ R.

Check that substituting q = 2 gives -78129765 in (ii). Does the Symbolic Math Toolbox give reasonable
answers in (iii)? �

CHAPTER 3. DIFFERENTIAL EQUATIONS, SUMS, MATRICES AND VECTORS 31

3.5 Arrays, matrices and vectors

We saw horizontal row vectors in Section 3.2. Recall the syntax was

 h = [1 2 4 8]

The column vector a = [2, 1, 5, 9]T can be defined in MATLAB by:

 a = [2; 1; 5; 9]

As we saw in Section 3.2, to change the third element to the value 7, type

 a(3) = 7

and then check the result by typing

 a

Vectors can be defined and initialized in various ways; for example a zero column vector can be set up
with the command

 c = zeros(4,1);

and then the entries may be input, for example, one at a time. Similar commands include ones() and
rand().

3.5.1 Matrix definition

Matrices—2D arrays of numbers—can be entered row by row:

 A = [1 2 3; 4 5 6];

The entries of a matrix can be accessed by two indices

 i = 1;

 j = 1;

 A(i,j)

or more directly as in

 A(2,1)

Individual entries can be changed as necessary:

 A(1,2) = -1;

 A

MATLAB does not distinguish between matrices and vectors: they are all just arrays of various sizes.
A MATLAB array can contain symbolic entries but all entries of an array must be the same class.

3.5.2 Rows, columns and submatrices

Suppose that A is a matrix. We can extract the first row of A using:

 A = rand(4,5)

 h = A(1, :)

and you can think of this as “first row, every column” (i.e., the first row of A). Similarly, we get the
second column of A using:

 v = A(:, 2)

We can also extract a submatrix

 B = A(1:2, 1:3);

More generally, the submatrix of rows i to j and columns k to l can be extracted with the command
A(i:j, k:l).

CHAPTER 3. DIFFERENTIAL EQUATIONS, SUMS, MATRICES AND VECTORS 32

3.5.3 Operators on matrices and vectors

As you will be aware, matrix algebra can only be performed on matrices of the right shapes, and we
shall suppose that the operations defined below have a meaning; if the matrices are the wrong shape
MATLAB will probably complain.

In the following table, A and B are matrices, u, v are vectors and s a scalar.

MATLAB command Function
s*A Scalar multiplication by s
A*B Matrix multiplication of A of B
A*v Multiplication of A by vector v
A+B Matrix addition of A and B (component-wise)
A^n Matrix power
A.^n Component-wise exponentiation
A .* B Component-wise multiplication (A, B same size)
A ./ B Component-wise division
inv(A) Matrix inverse (square matrices)
x = A \ b Solve systems of linear equations Ax = b
A-s subtract scalar s from each element
det(A), trace(A) determinant and trace of A
transpose(A) transpose of A
A' conjugate transpose of A
u' * v inner product (dot product) of two column vectors
u * v' outer product of two column vectors
cross(u,v) cross product of two length-3 vectors
eye(n) n× n identity matrix
zeros(n,m) n×m zero matrix
ones(n,m) n×m matrix of ones
size(A) returns [n m] for an n×m matrix

Here are some examples:

 u = rand(3,1)

 v = rand(3,1)

 u' * v

 u * v'

The conjugate transpose and transpose() are the same thing for real matrices. MATLAB users tend to
mostly use '.

In many cases, matrix operators work with symbolic matrices:

 syms x

 A = sym(round(10*rand(4,4)));

 I = sym(eye(4,4));

 B = A - x*I

 inv(B)

 pretty(inv(B))

The output of the above suggests that inverting matrices is rather hard. Happily, it’s not something
we have to do very often—for example, this is not how MATLAB’s “\” solves Ax = b.

Exercise 3.11 Let A =

[
1 2 3
4 5 6

]
, B =

[
1 3 7
4 −5 0

]
and C =

 2 5
4 6
−1 0

.

Use MATLAB to find (where possible) 3A, A− 2B, A+ 2C, AC, CA, AB and AT. Verify that (AC)T =
CT AT. �

CHAPTER 3. DIFFERENTIAL EQUATIONS, SUMS, MATRICES AND VECTORS 33

3.5.4 Simultaneous equations

Exercise 3.12 Consider the set of simultaneous equations

3x + y− z = 1,
5x + y + 2z = 6,

4x− 2y− 3z = 3.

Write this as a system Ax = b, where A is a 3× 3 matrix, x = [x, y, z]T and b is a column vector of
length 3. Use the MATLAB backslash \ command to solve the system of simultaneous equations for x.
�

3.5.5 Eigenvalues and eigenvectors

The eigenvalue problem for a square matrix A is to find nonzero eigenvectors x and associated eigen-
values λ such that:

Ax = λx.

(If you haven’t seen this before, you will soon in linear algebra—skip this for now and come back
later). In MATLAB:

 lambda = eig(A)

 [V,D] = eig(A)

The first form gives a vector of the eigenvalues and the latter gives a diagonal matrix D with the
eigenvalues on the diagonal. The columns of the matrix V contain the eigenvectors.

Exercise 3.13 (a) Use MATLAB to find the eigenvalues and corresponding eigenvectors of the matrix

A =

[
2 3
2 1

]
.

(b) Now use MATLAB to find the eigenvalues and eigenvectors of

(i) A3, (ii) A−1, (iii) A− 6I (where I is the identity), (iv) (A + 3I)−1.

In each case, can you spot the relationship of the eigenvalues and eigenvectors found in (b) to those
found in (a)? �

3.6 Meshgrids and 3D plots

We looked at indexing into vectors in Section 3.2.2. Understanding this enables concise code, particu-
larly for plotting.

3.6.1 Logical masks

Let’s reconsider an example from earlier using the find command:

 L = 2:0.1:4;

 % approach 1

 I = find(L > 3.05);

 L(I)

 % approach 2

 B = L > 3.05;

 L(B)

CHAPTER 3. DIFFERENTIAL EQUATIONS, SUMS, MATRICES AND VECTORS 34

The results of L(I) and L(B) are the same. But compare I and B. Note that I contains just the indices
of those elements which are greater than 3

10 . On the other hand, B contains 1’s where the condition is
true and 0’s where it is false. B is known as a “logical mask”.

Here’s an example of what can be done with this sort of masking

 x = linspace(-1, 1, 512);

 y = cos(2*pi*x);

 y(y > 0) = 0;

 y(x > 0.5) = 2;

 plot(x, y, 'b.-');

Exercise 3.14 Explain what each line of the previous job accomplishes. Change “512” in the above
code to “20” and make the code explicitly display the two logical masks. If you swap the order of the
two “y(...) = ...” lines, does the picture change? Why or why not? �

3.6.2 Meshgrid

We can build special 2D arrays (matrices) of x and y coordinates for use in plotting:

 x = linspace(-2,2,60);

 y = linspace(-1,1,40);

 [xx,yy] = meshgrid(x,y);

 f = sin(2*pi*xx) .* cos(pi*yy);

 figure(1); clf;

 surf(xx, yy, f);

 axis equal

 xlabel('x'); ylabel('y'); zlabel('f');

 figure(2); clf;

 pcolor(xx, yy, f);

 axis equal; axis tight;

 xlabel('x'); ylabel('y');

 colorbar

Meshgrid is essentially the Cartesian product of the 1D grids in the x and y directions. Examine
the following output to understand what meshgrid does:

 x = linspace(-2, 2, 5)

 y = linspace(-1, 1, 4)

 [xx, yy] = meshgrid(x, y)

3.6.3 3D plotting

Exercise 3.15 In the plotting code above, try adding “shading interp”, “shading flat”, or “shading faceted”
after each plot.

After the surf command, try adding these command one after another and examining what each
one does: “shading interp”, “camlight left”, “lighting phong”, “material shiny”.

Use your mouse and the rotate and zoom tools to interact with your figures. �

Next let’s combine meshgrids with logical masks. This gives a way to modify regions for plotting.

CHAPTER 3. DIFFERENTIAL EQUATIONS, SUMS, MATRICES AND VECTORS 35

 x = linspace(-2,2,60);

 y = linspace(-1,1,40);

 [xx,yy] = meshgrid(x,y);

 f = sin(2*pi*xx) .* cos(pi*yy);

 I = (xx > 0) & (yy > 0);

 f(I) = 0; % or try: f(I) = f(I)+1;

 figure(1); clf;

 surf(xx, yy, f);

 axis equal

 xlabel('x'); ylabel('y'); zlabel('f');

 figure(2); clf;

 pcolor(xx, yy, f);

 axis equal; axis tight;

 xlabel('x'); ylabel('y');

 colorbar

Exercise 3.16 Modify the above code so that for every point where f is negative, the value is replaced
with three times its absolute value.

Exercise 3.17 Modify the above code to plot f = 3− (x2 + y2) in the interior of the following triangle.
Set f = 0 outside the triangle.

The interior of the triangle is defined by the inequalities

y < 0.25x + 0.5, x < 1.3 + 0.15y, and y > −0.4x− 0.5.

Also, try setting the outside values to inf and nan (not a number). �

Exercise 3.18 What does this code do?

 A = rand(10,10);

 I = A > 0.8;

 A(~I) = 0;

�

Exercise 3.19 Plot the function besselj(nu,r) where r =
√

x2 + y2 on a circle of radius 20 for various
integer values of ν. Animate your plots over ν = 0, 1, 2, . . . using the pause command. �

Chapter 4

Loops, conditionals and functions

In this chapter you will learn about:

• using MATLAB loops and conditionals;

• writing functions in MATLAB;

• debugging programs.

In this chapter you will consolidate things you have learned so far and you will also be introduced
to some simple programming techniques. The material here is very important and a lot of it will be
needed in the Hilary Term projects; it is therefore crucial that you start Hilary Term Week 3 having
completed Chapter 4.

In addition to being an environment for problem solving and exploring mathematics, MATLAB

is also a programming language. By this we mean that a series of command lines can be written
which, when executed, perform a particular task. You have seen several simple programs already
(and hopefully written a few too). In this chapter you will look at programming in more detail, to
develop longer and more structured command sequences. In particular you will look at some of the
main building blocks of programming, namely loops, conditionals and functions.

4.1 Loops

Sometimes a MATLAB command (or a sequence of commands) may need to be executed a number
of times. The for. . .end control structure is provided exactly for this purpose. For example, say we
wanted to output the squares of the integers from 1 to 5. This could be achieved with the following
command:

 for j = 1:5

 j^2

 end

Essentially, any list can be provided in the “for j = ...” part, although you’ll find most frequently
it is some set of integers.

 for i = 1:2:7

 i

 end

 for c = [4 7 1 4]

 x = sym(pi)/4*j

 s = sin(x)

 end

As another example, a for loop could be used (instead of sum) to find the sum of the cubes of the even
integers between 50 and 100 inclusive.

36

CHAPTER 4. LOOPS, CONDITIONALS AND FUNCTIONS 37

 sumcubes = 0; % set sumcubes to zero initially

 for i = 50:2:100

 sumcubes = sumcubes + i^3;

 end

 sumcubes

Note also that the command line within the loop has been slightly indented; this makes the whole
structure easier for human beings to read (MATLAB doesn’t care).

Exercise 4.1 Use a for loop structure to plot cos(nπx/2) for n = 0, 1, 2, . . . 10. �

Exercise 4.2 Use one or more for loops to find
N

∑
n=1

(2n− 1)2 for each N = 5, 6, . . . , 30. �

Another form of loop is the “while” loop. For example, the sum-of-cubes-of-even-integers problem
from above could be solved using a while loop as follows:

 sumcubes = 0;

 j = 50;

 while (j <= 100)

 sumcubes = sumcubes + j^3;

 j = j+2;

 end

 sumcubes

Exercise 4.3 In a while loop, is the condition—in the case above “(j<=100)”—checked before or after
each iteration? �

4.1.1 Approximate solutions to equations

In this section the for...end structure is illustrated by looking at Newton’s method for finding ap-
proximate solutions to equations of the form f (x) = 0. The process depends on the function being
“approximately linear” when viewed on a small enough interval (the First Year course should make
this more precise).

Starting with a guess at the solution, a, the equation of the tangent through (a, f (a)) is

y− f (a)
x− a

= f ′(a),

and this cuts the x-axis at â = a− f (a)
f ′(a)

. This is (we hope) a better approximation to the root than a.

Say we want to find an approximate solution to

f (x) = x5 − x1.33 − 1 = 0

and we know that an initial approximation to the solution we are interested in is a = 1.5 (e.g., from a
plot). Newton’s method can be used to find a better approximation with the following commands:

 clear

 syms x

 f(x) = x^5 - x^(sym(133)/100) - 1

 fp = diff(f)

 % now use the correction in double

 a = double(1.5);

 a = a - double(f(a) / fp(a))

CHAPTER 4. LOOPS, CONDITIONALS AND FUNCTIONS 38

If we repeat the last command over-and-over (try pressing the up-arrow), we ought to get a better-
and-better approximation to the root. However, this is a little clumsy. Instead we use a loop, repeating
until the approximation is accurate to some required number of significant figures:

 % f and fp as above, then convert to matlab functions

 f_m = matlabFunction(f)

 fp_m = matlabFunction(fp)

 a = 1.5;

 b = inf;

 tol = 10^(-8);

 while (abs(b-a) > tol)

 b = a;

 a = a - f_m(a) / fp_m(a);

 end

 a

(Recall that double variables have roughly 15 decimal digits of accuracy, so convergence cannot be
expected if tol is taken smaller than, say, 1e-14.)

Exercise 4.4 Adapt the Newton’s method example above to find a root of

f (x) = 5− 1
4

cos(3x) = x,

with a starting initial guess of a = 5. Show that the root is 5.24979 to six significant figures. How many
iterations does it take? (Modify the code to tell you this.) Try to use solve to check your answer. �

4.2 Conditionals

The “if. . .else. . .end” construction allows us to choose alternative courses of action during the exe-
cution of a sequence of commands. The general structure is:

if <conditional expression>

<statement sequence>

elseif <conditional expression>

<statement sequence>

else

<statement sequence>

end;

where there can be as many elseif’s as needed (or none at all) and else is also optional.

Here is a simple example:

 x = -3

 if (x > 2)

 y = x + 1;

 elseif (x > 0) && (x <= 2)

 y = x;

 else

 y = x - 1;

 end

 y

CHAPTER 4. LOOPS, CONDITIONALS AND FUNCTIONS 39

The <conditional expression> mentioned above is a MATLAB statement which is either 0 (false)
or non-zero (true). This will usually be a comparison using the equality and inequality operators on
page 13 combined with logic operators: and (“&&”, two ampersands), or (“||”, two vertical bars), not
(“~”, tilde).

4.3 Functions

MATLAB functions are sets of commands which are needed to be used repeatedly, often with differ-
ent parameter values each time. Some programming languages call these “procedures” to distinguish
them from mathematical functions. At any rate, a MATLAB function could be used to define a (math-
ematical) function, to return a matrix, to plot a graph, or to perform a particular calculation. For
example, create an file called “f2c.m” with the following contents:

function c = f2c(x)

%F2C Convert Fahrenheit to Celsius

% F2C(x) converts a temperature in degrees Fahrenheit to

% degrees Celsius.

c = 5/9*(x-32);

% Typically, your function would be longer and would

% include more steps here.

end % optional

Having written this function, you can now use it on the MATLAB command prompt:

 f2c(100)

to see that the answer is approximately 37.8oC. Once you have a function, it can be re-used easily:

 f2c(0)

 f2c(32)

 f2c(80)

 help f2c

 lookfor celsius

The main points to notice are:

• Each function lives in its own .m file. The file name should match the function name.

• You can call functions which are either in the current working directory or in your path.

• Functions may have one or many arguments, or none at all.

• A function can return one or more values, or none at all.

• All communication between the function and whoever called it is through the arguments (in-
puts) and return values (outputs). That is, variables are “local” to the function: you cannot
access variables from wherever the function was called from.1

One of the most important reasons to write functions is to encapsulate a smaller part of a problem:
debug it, polish it, document it, and then use it as part of a larger program without worrying about
how it works. Thus with a few well-designed functions, a programmer can avoid trying to think about
her entire program at once and instead break it down in to manageable chunks.

To help a function be re-usable, there is a specifically formatted comment which forms the “help
text” at the start of the function:

1Global variables are an exception. Many programmers avoid global variables whenever possible. Anyway, type “help
global” to find out more.

CHAPTER 4. LOOPS, CONDITIONALS AND FUNCTIONS 40

• The first line consists of the name of your function and a short summary:
%function y = myfunc(x)

%MYFUNC What is does

• The remaining lines of the comment give detailed usage notes for your function:
%function y = myfunc(x)

%MYFUNC What is does

% A more detailed explanation, by convention intended

% three spaces...

For shorter functions, there are also “inline functions” (also known as anonymous functions) which
do not need a separate .m file. These can be created using the “@” syntax or they can be converted from
symbolic expressions. More details can be found in Appendix B.1.

Exercise 4.5 Write a MATLAB function called c2f which converts temperatures in degrees Celsius to
degrees Fahrenheit. Check your function by evaluating c2f(0) and c2f(37.8). �

Exercise 4.6 Write a function which defines the function f given by

f (x) =

{
x if x ≥ 0,

−x otherwise.

Check your function by finding f (2) and f (−3). Hint: Use the if...end structure within your func-
tion. �

4.4 Examples of functions

This section presents some non-trivial examples of functions. In some cases, there may be existing
implementations in MATLAB or we may not implement the “optimal” or most general approach. In
particular, experienced MATLAB programmers will often try to solve problems by manipulating lists
rather than using loops. We make no such attempt in this section. At any rate, if you think you know
a better approach, implement it and try: the encapsulation principle of functions means it is simple to
“drop in” a replacement implementation.

4.4.1 Finding the arithmetic mean of a set of numbers

This section revises the material on lists covered in Section 3.2. Suppose we wanted to find the arith-
metic mean of a dataset given as a list of elements.

function s = arithmetic_mean(data)

%ARITHMETIC_MEAN Find the arithmetic mean of a list of data

n = length(data);

s = 0;

for i = 1:n

s = s + data(i);

end

s = s / n;

end

An example call of this function would be:

 arithmetic_mean([1 2 3 4 5 6])

CHAPTER 4. LOOPS, CONDITIONALS AND FUNCTIONS 41

4.4.2 Taylor’s theorem

Taylor’s theorem tells us how well a function which is sufficiently differentiable can be approximated
by polynomials in the neighbourhood of a point. The taylor command in the Symbolic Math Toolbox
calculates the Taylor series of a function together with an ‘order’ of the size of the remainder after the
maximum degree polynomial terms which you specify. Thus

 syms x

 taylor(cos(x), x, 0, 'order', 5)

gives the Taylor expansion of cos(x) about zero with the remainder of degree five. The following
function plots the function f and its Taylor polynomials about x = a up to and including a maximal
order for x in a specified interval.

function plot_taylor_poly(f, a, maxdeg, xlim)

%PLOT_TAYLOR_POLY Plot partial Taylor series of a function

figure(1); clf;

h = fplot(f, xlim)

set(h, 'linewidth', 2, 'linestyle', '--')

leg{1} = char(f);

hold on

for i = 1:maxdeg

tay = taylor(f, 'ExpansionPoint', a, 'Order', i)

h = fplot(tay, xlim);

set(h, 'color', [i/maxdeg 0 0])

leg{i+1} = ['taylor' num2str(i-1)];

end

title('partial taylor series')

legend(leg)

For example, try

 syms u

 f = cos(u)

 plot_taylor_poly(f, 1, 4, [0 pi])

The command that builds the legend uses a cell-array (see Appendix B.3 for details).

4.4.3 Euler’s method

You have seen how dsolve can find analytic solutions to some differential equations. However, not all
differential equations have analytic solutions and in such cases approximate solutions may be com-
puted using numerical methods. Matlab includes the commands ode45 and ode15s for solving initial
value problems. But here we write our own basic solver using Euler’s method.

The Mean Value Theorem, which holds for a wide class of functions, says that y(x + h)− y(x) =
hy′(x + θh) for some θ depending on x and h. For suitable functions we can therefore hope that hy′(x)
is a reasonable approximation to y(x + h)− y(x). This is the basis of “Euler’s method”.

For an equation in the form y′(x) = f (x, y(x)) together with an initial condition y(a) = α, say, we
first choose a “step length” h which gives discrete values of xi = a + (i − 1)h, i = 1, 2, Then set
y1 = α and compute approximations yi to y(xi) for i = 2, 3, . . . using

yi = yi−1 + h f (xi−1, yi−1).

Here is one possible implementation, eulers_method.m, of Euler’s method for y′ = f (x, y), with
y(a) = α, for a ≤ x ≤ b = nh (n steps of step size h). The x coordinates are output in xx and the
solution sequence in yy.

CHAPTER 4. LOOPS, CONDITIONALS AND FUNCTIONS 42

function [xx,yy] = eulers_method(f, a, b, alpha, n)

%EULERS_METHOD Solve initial value problem ODEs

% [xx,yy] = eulers_method(f, a, b, alpha, n) calculates an

% approximate solution to solves y'(x) = f(x,y(x)) with initial

% condition y(a) = alpha up until x = b using n steps.

%

% Increasing n generally increases accuracy.

%

% This version works for scalar problems but can be generalized.

h = (b - a) / n; % stepsize

% n steps means n+1 values, allocate storage for soln

xx = linspace(a, b, n+1);

yy = zeros(size(xx));

% initial condition is first entry of solution

yy(1) = alpha;

% now loop, performing Euler updates

for i = 2:(n+1)

yy(i) = yy(i-1) + h*f(xx(i-1), yy(i-1));

end

Hence the approximate solution to

dy
dx

= f (x, y) = −xy, y(0) = 1,

for 0 ≤ x ≤ 10 using 50 steps can be plotted as follows:

 f = @(x,y) (-x*y);

 x0 = 0; y0 = 1;

 [x,y] = eulers_method(f, x0, 10, y0, 50);

 clf;

 plot(x0, y0, 'ro');

 hold on;

 plot(x, y, 'k.-');

For reference, here’s how to use ode45 for this problem:

 [xx2,yy2] = ode45(f, [0 10], y0);

 plot(xx2,yy2, 'g.-')

 legend('IC', 'Euler', 'ode45')

4.4.4 Euclid’s algorithm

Euclid’s algorithm for finding the greatest common divisor of two natural numbers is essentially based
on the observation that if a > b then gcd(a, b) = gcd(a− b, b). Things can be improved by taking off
as much b as possible:

function gcd = euclid(a,b)

%GCD Find the greatest common denominator

if b == 0

gcd = a;

CHAPTER 4. LOOPS, CONDITIONALS AND FUNCTIONS 43

else

gcd = euclid(b, a - b * floor(a/b));

end

Note this function is recursive—it calls itself.

4.4.5 A simple matrix function

Recall we looked at matrices in Section 3.5. The next function creates an n× n matrix with 0’s on the
diagonal, 1’s everywhere below the diagonal and −1’s everywhere above the diagonal.

function A = mymat(n)

%MYMAT Make a matrix

A = zeros(n,n);

for i = 1:n

for j = 1:n

if (i > j)

A(i,j) = 1;

elseif (i < j)

A(i,j) = -1;

else

A(i,j) = 0;

end

end

end

This is perhaps not the most “stylish” way to write this function. A MATLAB pro might write a differ-
ent function:

function A = mymat2(n)

%MYMAT Make a matrix

A = triu(-1*ones(n),1) + tril(ones(n),-1);

But they both work just fine:

 mymat(4)

 mymat2(4)

4.5 Debugging

When you have written a program, you should not be too surprised if it does not work the first time
you try to run it. The program may either crash completely or may give the wrong answer. If you’re
really on a roll, you might take down MATLAB or your operating system too. Don’t worry though,
the rest of the internet is (probably) immune to the bugs in your MATLAB code (this should not be
interpreted as a challenge).

• If the program crashes: This is the easy case, because you often know where to start. MATLAB’s
error message might point you to a line number. At any rate, you should try to locate the line
where it dies.

It may be helpful to remove semi-colons; the program will then print out intermediate calcula-
tions which should make it easier to find the offending line. You should then try to work out
what is wrong. Remember that the error is very often above the line with the apparent error.

Mixing up “=” and “==” is a very common syntax error. If you are copying code from a hardcopy,
be careful about typing the letter O instead of the number zero (don’t laugh: it happens).

CHAPTER 4. LOOPS, CONDITIONALS AND FUNCTIONS 44

• If the program runs but gives the wrong answer: This is the harder case: it may prove quite
difficult to locate and correct the error. The first thing is to convince yourself that your program
is trying to solve the right problem. You should try to run the program for very simple cases,
and find the simplest case in which it gives the wrong answer. Remove all code that is not
used in that particular calculation; this is relatively easy to do by inserting % to make them into
comments.

If you have written functions, test them separately to make sure they behave as you expect.

Add some “debugging output” by removing semi-colons or otherwise printing out intermediate
results. Trace this output manually to find a point where the results don’t match what you
expect.

• Watch out for floating point when you were expected symbolic results (and vice versa). “whos”
is your friend.

• The MATLAB graphical user interface provides various features to help you debug code such as
breakpoints. The command “keyboard” is useful for debugging functions: add this command
to your function and when MATLAB gets there, it gives you access on the command line to the
variables inside you function.

4.6 Further exercise

The following is a final optional exercise on functions.

Exercise 4.7 Write a function that displays the rows of Pascal’s triangle up to and including the nth
row for a given positive integer n. �

Appendix A

Simplification

A key strength of computer algebra systems like the Symbolic Math Toolbox is the ability to manip-
ulate mathematical expressions symbolically. The symbolic manipulation of expressions occasionally
(on a bad day you might say “often”) creates results in a different form than what the user needs. It
is thus useful to know how to persuade the toolbox to change the form of a particular expression into
what is needed. This is more of an art than a science but experience and a working knowledge of the
commands and techniques introduced here can be helpful.

A.1 Expand

The expand command does exactly what its name implies. In this section we will look at how it
works when applied to polynomials and to trigonometric functions. For example the expansion of
(x + 1)(x + z)2 is found by typing

 syms x y z

 expand((x+1)*(x+z)^2)

 pretty(ans)

When applied to trigonometric functions expand uses the sum rules1 to remove multiple angles, re-
placing them with powers:

 expand(cos(2*x))

(remember that in the output cos(x)^2 means cos2 x, etc.) Other examples of the expand command
are

 expand(sin(x+y))

 expand(cos(2*x+y))

 expand(cos(5*x))

 pretty(ans)

Perhaps in the last example above we wished instead to obtain the partial expansion cos 5x = cos 4x cos x−
sin 4x sin x; we could use a little trickery:

 c = expand(cos(x+y))

 c2 = subs(c, y, 4*x)

Hyperbolic expressions can be expanded in much the same manner; for example try

 expand(sinh(3*x))

1cos(x± y) = cos x cos y∓ sin x sin y is an example of a sum rule.

45

APPENDIX A. SIMPLIFICATION 46

A.2 Factor

For polynomials the factor command is in some ways the opposite of expand, and often does as one
would expect:

 syms x y z

 factor(x^5 - x^4 - 7*x^3 + x^2 + 6*x)

 f = x^4 + 4*x^3*y - 7*x^2*y^2 - 22*x*y^3 + 24*y^4

 factor(f)

In the second example above f has been defined first; this is a useful trick with long expressions to
check that they are typed correctly before proceeding. The factor command can also be used on
rational expressions:

 g = factor((x^3 - y^3) / (x^4 - y^4))

 pretty(g)

(where the common factor (x− y) in the numerator and denominator has been cancelled).

Exercise 5.1 Expand the function f = (x + y + 1)3 and then factorise f − 1. �

Exercise 5.2 Use MATLAB to show that

n

∑
r=1

r =
1
2

n(n + 1),

n

∑
r=1

r2 =
1
6

n(n + 1)(2n + 1),

n

∑
r=1

r3 =
1
4

n2(n + 1)2.

(You might want to review Section 3.4.3.) �

A.3 Collect

The command collect is useful when you want to collect terms in powers of a known expression.

 syms x

 g = (cos(x) + 1)*(cos(x) + 2)*(cos(x) + 3)

 collect(g, cos(x))

A.4 Simple and Simplify

The commands simplify() are simple() are the most general of the Symbolic Math Toolbox’s sim-
plification commands and are usually the ones to be tried first. However, they are not always the most
appropriate commands and results can be unpredictable. simple() is particularly interesting because
it outputs the various attempts it makes to the screen.

Positive integer powers of trigonometric and hyperbolic functions are simplified by these rules as
far as possible, as illustrated by the following attempt to simplify sinh4 x− cosh4 x:

 syms x y z

 f = (sinh(x))^4 - (cosh(x))^4

 simplify(f)

The simple command will display its various attempts:

APPENDIX A. SIMPLIFICATION 47

 simple(f)

One of the most useful applications of simplify or simple is when trying to verify that expr == expr2,
where expr1 and expr2 are both expressions. Here is example, an attempt to verify that

1 + tanh2 x
1− tanh2 x

= cosh 2x :

 expr1 = (1+tanh(x)^2) / (1-tanh(x)^2);

 expr2 = cosh(2*x);

 simplify(expr1 - expr2)

The following exercises will give you some practice using the various simplify commands and also
some earlier commands.

Exercise 5.3 Use simplify or Simplify to show that

if y =
1 + sin x
1 + cos x

then
dy
dx

=
cos x + sin x + 1

1 + 2 cos x + cos2 x
;

if y = ln

√
1 + x
1− x

then
dy
dx

= − 1
−1 + x2 ;

if y = ln
(
(1 + x)1/2

(1− x)1/3

)
then

dy
dx

=
−5 + x

6(−1 + x2)
.

�

Exercise 5.4 Consider the general cubic polynomial

f (x) =
1
3

ax3 + bx2 + cx + d,

where a, b, c and d are real constants. If the stationary points of f are at x1 and x2, use MATLAB to show
that

f (x1)− f (x2) = −
a
6
(x1 − x2)

3.

�

Exercise 5.5 Show that the function f = 1/r, where r2 = (x− a)2 + (y− b)2 + (z− c)2 and a, b and c
are constants, is a solution of Laplace’s equation

∂2 f
∂x2 +

∂2 f
∂y2 +

∂2 f
∂z2 = 0.

�

Appendix B

Other advanced topics

B.1 Matlab “handle” functions and anonymous functions

We have seen that functions can be created using .m files (Section 4.3). You can create function handles
using “anonymous functions”. This is most helpful for making a short function, for example:

 alpha = 0.5

 y = @(x) sin(alpha*x)

 y(pi)

You can also create these sorts of functions from symbolic expressions:

 syms x

 y = sin(x)

 ym = matlabFunction(y)

See help function_handle, help anondemo, and help matlabFunction for more information.

B.2 Variable precision arithmetic

“Out-of-the-box” MATLAB focuses on supporting double precision floating point (the double class).
Recall this class represents numbers using a precision of roughly 15 decimal digits. The Symbolic
Math Toolbox (based on MuPAD) adds support for symbolic expressions (using the sym and symfun

classes). The Symbolic Math Toolbox also adds support for Variable Precision Arithmetic via the vpa

class. Having floating point numbers with more than 15 digits can be a useful feature and so this
chapter is essentially for your own interest or reference.

To use variable precision arithmetic, first set the desired precision. Then use vpa() or a quoted
symbolic constructor with a decimal place.

 digits(64)

 a = vpa(2/3)

 b = sym('2.0')/3

Note that b = sym(2.0)/3 won’t work (why not?). Probably the vpa() command is less prone to
accidental unwanted use.

It is worth noting that the clear command does not reset digits to its default value. But clear all

will.

Exercise 6.1 All rational numbers p/q, where p and q are integers (q 6= 0), have a terminating or
(eventually) repeating decimal form. By increasing the precision using digits() as appropriate, find
the exact decimal form of 21/23. �

48

APPENDIX B. OTHER ADVANCED TOPICS 49

Exercise 6.2 The following two expressions are both approximations to π that were discovered by the
Indian mathematician Ramanujan (1887–1920):

π1 =
12√
190

ln((2
√

2 +
√

10)(3 +
√

10))

and

π2 =

√√
92 +

192

22
.

Use VPA to find the absolute errors |π1 − π| and |π2 − π|. Hence determine how good these approxi-
mations actually are. �

B.3 Cell Arrays

Recall that a vector in MATLAB is homogeneous: everything inside it must be the same type (double,
sym, etc). How dull! Cell arrays on the other hand can store anything, even other cell arrays. Make
one like this:

 A = {'Freedom!', sym(2/3), rand(3,3)}
 A{1}
 A{2}
 A{3}

A common use of cell arrays is to store a “list of strings”. This is because an array of strings just
concatenates them. For example:

 L = ['red' 'lorry' 'yellow' 'lorry']

 % output is 'redlorryyellowlorry'

 S = {'red' 'lorry' 'yellow' 'lorry'}
 % output is a 4-element cell array

This is useful for constructing legends for plots when using loops.

B.4 MuPAD worksheets

In addition to the interfaces to MATLAB using the Symbolic Math Toolbox, MuPAD has its own graph-
ical user interface and its own language. The user interface is based on a worksheet model which is
popular with many computer algebra systems. To explore MuPAD, begin by typing

 mupad()

at the MATLAB prompt.

Academic Honesty

In Michaelmas Term you are encouraged to co-operate with fellow students in learning to use the
system and to use MATLAB. The Hilary Term projects, however, must be your own unaided work.

The description of each project gives references to books covering the relevant mathematics; if you
cannot understand some of this then you are free to consult your tutors or others about it, but not
about the project itself. You may discuss with the demonstrators and others the techniques described
in the Michaelmas Term Students’ Guide, and the commands listed in the Hilary Term Students’ Guide
or found in the MATLAB Help pages. You may ask the course director to clarify any obscurity in the
projects.

The projects must be your own unaided work. You will be asked to make a declaration to that
effect when you submit them.

University ICT Regulations

All use of the computing and network facilities in the Oxford University Computing Services, as well
as all other computing and network facilities throughout the University of Oxford and associated Col-
leges, is subject to certain rules. These rules concern what is considered to be unacceptable behaviour
and misuse, as well as what may infringe licence terms or may be otherwise illegal. Note that all use is
permitted for bona fide purposes only, and is subject to proper authorization (which may be provided
either explicitly or implicitly).

The University regards computer misuse as a serious matter which may warrant disciplinary (or even
criminal) proceedings.

The rules by which you have agreed to be bound can be found at the following webpages:

http://www.admin.ox.ac.uk/statutes/regulations/196-052.shtml

https://www.maths.ox.ac.uk/members/it/it-notices-policies

50

http://www.admin.ox.ac.uk/statutes/regulations/196-052.shtml
https://www.maths.ox.ac.uk/members/it/it-notices-policies

	Introduction to Matlab
	What is Matlab?
	What is the Symbolic Math Toolbox?
	What is Octave?
	Learning Matlab

	The command prompt, variables, getting help
	Using Matlab's built-in help system
	Assigning to variables
	Floating-point numbers
	Symbolic computing
	Saving your work in .m file scripts
	Using symbols instead of numbers
	Built-in functions and help

	2D graphics
	Simple line graphs
	Parametric and polar plots

	Algebraic equations and calculus
	Evaluating expressions
	The solve command
	Solving equations symbolically
	Assumptions
	Solving equations numerically

	Differentiation and the diff command
	Differentiation of unknown functions

	Evaluating limits
	Integration
	The int operator
	Quadrature: numerical evaluation of integrals

	Differential equations, sums, matrices and vectors
	Solving ordinary differential equations using dsolve
	Vectors and lists in Matlab
	Symbolic lists
	Indexing in lists
	Vector operations

	Sets
	Sums and products
	Simple ``numerical'' sums
	Products
	Symbolic manipulation of sums and products

	Arrays, matrices and vectors
	Matrix definition
	Rows, columns and submatrices
	Operators on matrices and vectors
	Simultaneous equations
	Eigenvalues and eigenvectors

	Meshgrids and 3D plots
	Logical masks
	Meshgrid
	3D plotting

	Loops, conditionals and functions
	Loops
	Approximate solutions to equations

	Conditionals
	Functions
	Examples of functions
	Finding the arithmetic mean of a set of numbers
	Taylor's theorem
	Euler's method
	Euclid's algorithm
	A simple matrix function

	Debugging
	Further exercise

	Simplification
	Expand
	Factor
	Collect
	Simple and Simplify

	Other advanced topics
	Matlab ``handle'' functions and anonymous functions
	Variable precision arithmetic
	Cell Arrays
	MuPAD worksheets

