COMPUTATIONAL MATHEMATICS

Vidit Nanda

nanda@maths.ox.ac.uk




Arrays

a Logic

é Programs




ARRAYS

Arrays are grids of numbers/variables/(insert favourite object here)
One-dimensional arrays are vectors (grid =1 x n)
Two-dimensional arrays are matrices (grid = m x n)

The hierarchy keeps going, but let’s stop here for now.

Arrays can be created by using [blah blah moreblah], with semicolons to indicate
“g0 to the next row”

If you try [1 2 -1; 9] then Matlab will yell at you (loudly, and for good reasons).



CONCATENATION AND RANGES

Combining arrays horizontally and vertically is easy:

For assigning equally-spaced numbers, use start : step : stop, eg

Just using start : stop assumes step = 1;

Negative steps are allowed

With great power comes great responsibility: dont do 1:0.1: -2



ARRAY MANIPULATION 1

Here are some common things to do with arrays:

The standard +, - and * operations work directly for matrices (provided the sizes
match as expected)

But behold this affront to common decency: matrix + scalar acts component-wise




ARRAY MANIPULATION 2

Generally, to perform a basic operation elementwise, we have to preface it with
a leading dot (.) like this:

But common functions (sin, tan, exp, log,...) already work elementwise:

The most commonly used built-in functions for manipulating arrays are:
sort(A,d) sort A along dimension d
repmat(A,m,n) concat. A with itself, m horizontal & n vertical copies
reshape(A,m,n) reshape A into an m x n matrix




ARRAY ACCESS

Vector access requires numbers/ranges within parentheses:

For matrices, it's comma-separated pairs of numbers/ranges:




.. BONUS! USEFUL SHORTCUTS




L LoGIc

In Matlab, as in many other languages, there are logical variables which evaluate
to 0 (false) or 1 (true)

And you get logical arrays by evaluating conditionals component-wise, eg:

Other important comparisons: = = checks equality, ~ = checks not-equality




& LOGICAL INDENING

We can use logical arrays to find interesting stuff (that satisfies chosen constraints)
within other arrays. Eg, to find all the positive even numbers:

>> v = [13-427129 -18 6 19]
>> v((mod(v,2) == 0) & v > 0)
ans =
2 12 6
A lot has happened in this one line!

First, a logical array is made for all entries in v whose remainder mod 2 is O:
6 o0 1 1 o 1 oo 1 1 o

Another one is made for all the positive entries
1 1 o 1 1 1 1 o0 1 1

The “bit-wise and” operation, i.e., multiplication, is performed componentwise
e 6 o6 1 o6 1 e o6 1 o

And finally, the entries in v corresponding to the 1 positions are selected

Less slick, but easier for humans to read: find(v) is the same as (v > 0)



= PROGRAMS

For commonly-needed tasks that don’t already have a built-in function, you can write
your own functions and call them from the >> ... prompt

Functions are written into .m-files, each one looks like this:

The first non-commented line is the signature of the function, which defines all the
input and output variables (along with the name --- the file is funcName.m)

The stuff in the body of the function can get complicated and ditficult to keep track
of: as a favour to your future self (and others), please comment generously!



2 PROGRAMS: CONTROL FLOW

Three basic keywords will help organise the complicated interior of your programs:
if, for and while. Here’s if:

Optional!

For more elaborate decision-making, you can string these into longer conditionals:

Can have many!




2 PROGRAMS: CONTROL FLOW

The for loop is for when you want to perform a task a known number of times:

And while is used when you don’t know how many times to loop:




