
COMPUTATIONAL MATHEMATICS
Vidit Nanda

nanda@maths.ox.ac.uk

LECTURE 2

OUTLINE

Arrays

Logic

Programs

ARRAYS
Arrays are grids of numbers/variables/(insert favourite object here)

One-dimensional arrays are vectors (grid = 1 x n)
Two-dimensional arrays are matrices (grid = m x n)
The hierarchy keeps going, but let’s stop here for now.

Arrays can be created by using [blah blah moreblah], with semicolons to indicate
“go to the next row”

>> v = [1 2 -1 9]
v =

1 2 -1 9

>> A = [1 2; -1 9]
A =

1 2
-1 9

If you try [1 2 -1; 9] then Matlab will yell at you (loudly, and for good reasons).

CONCATENATION AND RANGES
Combining arrays horizontally and vertically is easy:

>> [v v]
ans =

1 2 -1 9 1 2 -1 9

For assigning equally-spaced numbers, use start : step : stop, eg

>> r = 1 : 0.1 : 1.55
r =

1.000 1.100 1.200 1.300 1.400 1.500

Just using start : stop assumes step = 1;

>> [v ; v]
ans =

1 2 -1 9
1 2 -1 9

Negative steps are allowed

With great power comes great responsibility: don’t do 1 : 0.1: -2

ARRAY MANIPULATION 1
Here are some common things to do with arrays:

>> transpose(A) or >> A.’ gives the transpose
>> conj(A) is the complex conjugate
>> A’ is the Hermitian conjugate = transpose(conj(A))
>> inv(A) is the inverse matrix (if one exists!)
>> A\b solves Ax = b, and >> b/A solves xA = b
>> det(A) is the determinant

The standard +, - and * operations work directly for matrices (provided the sizes
match as expected)

>> A + 1
ans =

2 3
0 10

But behold this affront to common decency: matrix + scalar acts component-wise

>> A - 1
ans =

0 1
-2 8

ARRAY MANIPULATION 2
Generally, to perform a basic operation elementwise, we have to preface it with
a leading dot (.) like this:

>> A.^2
ans =

1 4
1 81

>> cos(A.^2)
ans =

0.5403 -0.6536
0.5403 0.7767

But common functions (sin, tan, exp, log,…) already work elementwise:

The most commonly used built-in functions for manipulating arrays are:
sort(A,d) sort A along dimension d
repmat(A,m,n) concat. A with itself, m horizontal & n vertical copies
reshape(A,m,n) reshape A into an m x n matrix

>> A.^0.5
ans =

1.0000 + 0.0000i 1.4142 + 0.0000i
0.0000 + 1.0000i 3.0000 + 0.0000i

>> log(A)
ans =

0.0000 + 0.0000i 0.6931 + 0.0000i
0.0000 + 3.1416i 2.1972 + 0.0000i

ARRAY ACCESS
Vector access requires numbers/ranges within parentheses:

>> v(3)
ans =

-1
>> v(end)
ans =

9

For matrices, it’s comma-separated pairs of numbers/ranges:

>> v(2:end);
ans =

2 -1 9
>> v(end-1:end)
ans =

-1 9

>> A(1,2)
ans =

2
>> A(1,:)
ans =

1 2

>> A(:,1)
ans =

1
-1

>> A(3)
ans =

2
????

BONUS! USEFUL SHORTCUTS
eye(n) n x n eye-dentity matrix
zeros(m,n) this should be obvious
ones(m,n) this also
rand(m,n) m x n matrix with uniformly distributed entries in [0,1]
rand(m) same as above, but n = m
randn(m,n) normally distributed, i.e., N(0,1) entries
randn(m) same as above, but with n = m
diag(v) diagonal matrix with diagonal vector v

sum(A,d) sum-vector along dimension d
prod(A,d) product-vector along dimension d
size(A) size vector of A, i.e., [m n] for m x n matrix
max(A) same as above, but n = m
length(v) length of vector v
max(A) vector of maximum entries along columns of A

LOGIC
In Matlab, as in many other languages, there are logical variables which evaluate
to 0 (false) or 1 (true)

>> x = 3
>> x < 7
ans =

logical 1

>> [1 3; 2 4] > [2 3; 0 0]
ans =

2×2 logical array
0 0
1 1

And you get logical arrays by evaluating conditionals component-wise, eg:

>> v = [3 2 -1];
>> length(v) = 4
ans =

logical 0

>> [1 3; 2 4] <= 2
ans =

2×2 logical array
1 0
1 0

Other important comparisons: = = checks equality, ~ = checks not-equality

LOGICAL INDEXING
We can use logical arrays to find interesting stuff (that satisfies chosen constraints)
within other arrays. Eg, to find all the positive even numbers:

>> v = [1 3 -4 2 7 12 9 -18 6 19]
>> v((mod(v,2) == 0) & v > 0)
ans =

2 12 6

A lot has happened in this one line!

First, a logical array is made for all entries in v whose remainder mod 2 is 0:
0 0 1 1 0 1 0 1 1 0

Another one is made for all the positive entries
1 1 0 1 1 1 1 0 1 1

The “bit-wise and” operation, i.e., multiplication, is performed componentwise
0 0 0 1 0 1 0 0 1 0

And finally, the entries in v corresponding to the 1 positions are selected

Less slick, but easier for humans to read: find(v) is the same as (v > 0)

PROGRAMS
For commonly-needed tasks that don’t already have a built-in function, you can write
your own functions and call them from the >> … prompt

Functions are written into .m-files, each one looks like this:

The first non-commented line is the signature of the function, which defines all the
input and output variables (along with the name --- the file is funcName.m)

% comment explaining what this function does
function [out1, out2,…] = funcName(in1, in2,…)

statement 1
statement 2
out1 = …
out2 = …

end

The stuff in the body of the function can get complicated and difficult to keep track
of: as a favour to your future self (and others), please comment generously!

PROGRAMS: CONTROL FLOW
Three basic keywords will help organise the complicated interior of your programs:
if, for and while. Here’s if:

if det(A) ~= 0
B = inv(A);

else
display(‘curses, foiled again!’);

end

For more elaborate decision-making, you can string these into longer conditionals:

if det(A) ~= 0
B = inv(A);

elseif A > 0
display(‘think positive!’);

else
display(‘definitely foiled.’);

end

Optional!

Can have many!

PROGRAMS: CONTROL FLOW
The for loop is for when you want to perform a task a known number of times:

for i=1:100
display(‘my code has no comments. shame!’);

end

And while is used when you don’t know how many times to loop:

n = 20; % total number of prime numbers needed
i = 2; % starting point of search
primes = zeros(n,1); % this stores the answer
while n > 0

if isprime(i) % check prime-ness
n = n-1; % need one fewer prime now
primes(end-n) = i; % fill from the beginning

end
i = i+1; % now to check next number

end

