Problem Sheet 4

Please send any comments or corrections to martin@stats.ox.ac.uk.

- 1. Let $\mathbb{P}(X = k) = 1/n$ for k = 1, 2, ..., n. Find the mean and variance of X.
- 2. Suppose that the discrete random variables X and Y have joint probability mass function given by

X Y	-1	0	1
-1	$\frac{1}{27}$	$\frac{6}{27}$	$\frac{2}{27}$
0	$\frac{2}{27}$	$\frac{6}{27}$	$\frac{1}{27}$
1	$\frac{3}{27}$	$\frac{2}{27}$	$\frac{4}{27}$

Find the marginal distributions of X and Y. What is the covariance of X and Y? Are X and Y independent?

- 3. Suppose that X and Y are independent Poisson random variables with parameters λ and μ respectively. Find
 - (a) the joint probability mass function $\mathbb{P}(X = k, Y = m)$;
 - (b) $\mathbb{P}(X + Y = n)$ (what is this distribution?);
 - (c) $\mathbb{P}(X = k | X + Y = n)$ (what is this distribution?);
 - (d) $\mathbb{E}[X|X+Y=n].$
- 4. Let X and Y be independent random variables, both with Geometric(p) distribution.
 - (a) Find $\mathbb{P}(X = k | X + Y = n + 1)$, for $k \in \{1, 2, \dots, n\}$.
 - (b) Find the distribution of $\min\{X, Y\}$. [*Hint: consider* $\mathbb{P}(\min\{X, Y\} > k)$, and see Question $\Im(a)$ of sheet \Im .]
- 5. (a) A set of lecture notes has n pages. The number of typos on each page is a Poisson random variable with parameter λ , and is independent of the number of typos on all other pages. What is the expected number of pages with no typos?
 - (b) When reading the notes, you detect each typo with probability p, independently of detecting others. Let M denote the number of typos on a particular page and let D denote the number that you detect on that page. Write down $\mathbb{P}(D = k|M = m)$. Hence, for each $k \ge 0$, find $\mathbb{P}(D = k)$.

- 6. Let X and Y be discrete random variables. Show that the following two definitions are equivalent:
 - (i) X and Y are independent if $\mathbb{P}(X = x, Y = y) = \mathbb{P}(X = x)\mathbb{P}(Y = y)$ for all $x, y \in \mathbb{R}$;
 - (ii) X and Y are independent if $\mathbb{P}(X \in A, Y \in B) = \mathbb{P}(X \in A)\mathbb{P}(Y \in B)$ for all $A, B \subseteq \mathbb{R}$.

Show that if X and Y are independent, then also f(X) and g(Y) are independent for any functions $f, g : \mathbb{R} \to \mathbb{R}$.

- 7. Solve the following recurrence relations:
 - (a) $u_{n+1} = 3u_n + 2$ with $u_0 = 0$.
 - (b) $u_{n+1} = 2u_n + n$ with $u_0 = 1$.
 - (c) $u_{n+1} 5u_n + 6u_{n-1} = 2$ with $u_0 = u_1 = 1$.
 - (d) $u_{n+1} 3u_n + 2u_{n-1} = 1$ with $u_0 = u_1 = 0$.