Prelims Introductory Calculus MT 2019: Sheet 7

1. Find the gradient ∇f when

(a)
$$f(x,y) = e^{x^2 - y^2} \sin 2xy;$$
 (b) $f(x,y,z) = (x^2 + y^2 + z^2)^{-1/2}.$

2. For each of the following f, sketch some contours f = constant and indicate ∇f by arrows at some points on these curves. Use one set of axes per f.

(a)
$$f(x,y) = xy;$$
 (b) $f(x,y) = \frac{1}{4}x^2 + y^2;$ (c) $f(x,y) = \frac{x}{y}.$

3. Show that there is no function f(x, y, z) such that $\nabla f(x, y, z) = (y, z, x)$.

4. Let $f(x,y) = x^2 y^3$. What is ∇f ? Determine

$$\lim_{t \to 0} \frac{f(\mathbf{a} + t\mathbf{v}) - f(\mathbf{a})}{t}$$

where $\mathbf{a} = (1, 1)$ and $\mathbf{v} = (a, b)$ is a unit vector such that $a^2 + b^2 = 1$. What is the maximum value of the limit that can be obtained by varying the vector \mathbf{v} ?

- 5. A bug in the xy-plane finds itself in a toxic environment. The level of toxicity is given by the function $f(x,y) = 2x^2y 3x^3$. The bug is at the point (1,2). In what direction away from (1,2) should it initially move in order to lower its exposure to the toxin as rapidly as possible?
- 6. Find a unit vector perpendicular to the surface $x^2y + y^2z + z^2x + 1 = 0$ at the point (1, 2, -1). Write down equations of the tangent plane and the normal line at this point.
- 7. Let f and g be sufficiently differentiable functions of x, y, z.
 - (a) Prove that
 - i. $\nabla(fg) = f\nabla g + g\nabla f;$
 - ii. $\nabla(f^n) = nf^{n-1}\nabla f;$

iii.
$$\boldsymbol{\nabla}\left(\frac{f}{g}\right) = \frac{g\boldsymbol{\nabla}f - f\boldsymbol{\nabla}g}{g^2};$$

(b) The Laplacian operator ∇^2 is defined by

$$\boldsymbol{\nabla}^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}.$$

Show that

$$\boldsymbol{\nabla}^2(fg) = f\boldsymbol{\nabla}^2 g + 2(\boldsymbol{\nabla} f) \cdot (\boldsymbol{\nabla} g) + g\boldsymbol{\nabla}^2 f.$$

- 8. Use the Taylor series for a function of two variables to expand the following functions about x = 1, y = 1, to the order shown.
 - (a) $f(x,y) = x^3 + y^2 + 3x^2y$, to all orders;
 - (b) $f(x,y) = x^2 + y + \cos(2\pi xy)$, to second order.