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ANALYSIS |
A Number Called e

These supplementary notes by H A Priestley provide a (non-examinable) proof of the useful

fact that
1 n
_ (1 + _) |
n

[An alternative, and simpler, proof of the more general result in which z € R>? replaces n can
be based on L’Hopital’s Rule (in Analysis II).]

e.l. The number e is defined to be
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where, by convention, 0! = 1. Problem sheet 5, Q). 5, asked for a proof that the partial sum
sequence of the series above is monotonic increasing and bounded above. Hence it converges to
a real number, so that e is well defined. You were also asked to show e is irrational.

Problem sheet 1, Q.5, introduced sequences
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and asked for a proof that, for all n,
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Example 6.3(c) then applied the Monotonic Sequences Theorem to prove that («,,) converges.

We now provide the desired reconciliation.
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e.2 Proposition.
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Proof. Let s, = Z -
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By the Binomial Theorem
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From this we have lim «,, < e.
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On the other hand, if m,n are natural numbers with m < n, focusing on the first m + 1
terms of «,, we see that
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If we fix m and let n — oo then we have, using the Algebra of Limits and recalling that limits
respect weak inequalities,
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Finally letting m — oo we have e < lim o, and the result follows. U

e.3 Another useful limit.

Proof. See Problem sheet 5, Q. 6. O



