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1 Introduction

These notes are to accompany the 2019–20 Oxford Prelims course Linear
Algebra I.

This course is an introduction to Linear Algebra. We’ll meet matrices,
and how we can use them to solve systems of simultaneous linear equations.
We’ll also meet vector spaces, and explore some of their properties.

There are several resources that will help you as you study the course:

- the lectures

- these notes

- the problems sheets, with starter, main course and pudding problems

- the solutions to the starter and pudding problems
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- each other

- tutorials in college.

In places, you will find blanks in these notes. They are there deliberately!
We’ll fill in these blanks during lectures.

I’ll regularly be uploading new versions of these notes during the term,
both as I review material for later lectures, and as I fix any typos we spot
along the way.

I have included the notes from last year’s course, so that you can look
ahead if you want to, but please be aware that things might change signifi-
cantly. I have clearly marked the point where we switch from updated 2019
notes to the old 2018 notes. To find this point in an electronic copy of these
notes, search for “2018 course” and you’ll find my note.

If I find (or am told about) further typos then I will continue to fix them.
The version on the course materials website will always be the most up-to-
date version, so if you think that you have found a typo then please check
there before emailing me.

Acknowledgements

These notes, and the lectures they accompany, are extremely closely based
on those produced by Dr Peter Neumann, which in turn built on notes by
previous lecturers. The same applies to the problems sheets.

I would like these notes to be as useful as possible. If you (whether
student or tutor) think that you’ve noticed a typo, or mistake, or part that
is unclear, please check the current, up-to-date, notes on the website, to see
whether I’ve already fixed it. If not, please email me (vicky.neale@maths)
and I’ll do something about it, and (with your permission) thank you here.

Thanks to Jacob Armstrong, Harry Best, Dan Claydon, Raymond Dou-
glas, Liam Hopson, Dominik Koller, Amrit Lohia, Gianmarco Luppi, Shaun
Marshall and Jingjie Yang for helping to fix glitches in these notes, problems
sheets and solutions.

2 Linear equations and matrices

2.1 Systems of linear equations

You already have experience from school of solving systems of simultaneous
equations such as
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{

3x + 5y = −1
4x − y = 10

(1)

In this course, we’ll explore this in more generality. What if there are
more equations? What if there are more unknowns? For example







8x − 7y + 6z = 59
x + 2z = 9
3x + 2y − z = 11

(2)

or







x + y + z + w = 2
−x + y − z + w = 0
3x + 2y − 10w = 7

(3)

How can we tell whether there is a solution? How can we tell whether
there are many solutions? How can we (efficiently) find all the solutions?

Solving systems of simultaneous linear equations is important across the
whole of mathematics, as well as in many other disciplines that use tools
from mathematics. You’ll find the ideas that we develop in this course being
useful in many other courses.

You already have strategies for solving systems of equations such as those
above. Such strategies may not be practical if the system has hundreds
of equations in hundreds of variables. One of our goals is to understand
strategies that can be effectively employed by a computer.

Matrices and the beginnings of matrix algebra

Writing a system of equations in the form (1) or (2) or (3) is visually conve-
nient for seeing what is going on, but is not always convenient for manipula-
tion. We can use matrices to record the key information—the coefficients.

For example, the key information in (1) is the matrix

(

3 5
4 −1

)

record-

ing the coefficients from the left-hand side, and the matrix

(

−1
10

)

recording

the data from the right-hand side.
Similarly, the data from (2) can be recorded using the two matrices





8 −7 6
1 0 2
3 2 −1



 and





59
9
11
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and from (3) using




1 1 1 1
−1 1 −1 1
3 2 0 −10



 and





2
0
7



 .

Definition. For m, n ≥ 1, an m × n matrix is a rectangular array with m

rows and n columns. For us, the entries will be real or complex numbers (it
is possible to be more general).

We number the rows as 1, 2, . . . , m from top to bottom, and the columns
1, 2, . . . , n from left to right.

We refer to the entry in row i and column j as the (i, j) entry. If the
matrix is A, then we record the (i, j) entry as aij, and often write the matrix
as A = (aij).

Remark. There are variations on this notation, depending on context and
on personal preference. The same is true for other pieces of mathematical
notation too!

Definition. A 1×n matrix is called a row vector. An m×1 matrix is called
a column vector. An n× n matrix is called a square matrix. If A = (aij) is a
square matrix and aij = 0 whenever i 6= j, then we say that A is a diagonal
matrix.

Example. A row vector

A column vector

A square matrix that is not diagonal

A square matrix that is diagonal
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Definition. The zero matrix has all entries 0: if A = (aij) is the m×n zero
matrix then aij = 0 for 1 ≤ i ≤ m, 1 ≤ j ≤ n. We write A = 0 (or maybe
A = 0m×n).

Definition. The entries of a matrix are called scalars. We often write F for
the set from which the entries come. (Secretly, F will usually be a field.) For
us, usually F = R or F = C, but occasionally F = Q or another set.

We write Mm×n(F) = {A : A is an m× n matrix with entries from F}.
We sometimes write Fn for M1×n(F) or Fm for Mm×1(F). Whether we

mean row vectors or column vectors will depend on context.

We introduced matrices as a way to record data from systems of equa-
tions. But what is really important about matrices is not just that they
record information tidily, but rather that (if the conditions are right) we
can manipulate matrices: we can, sometimes, add and multiply matrices, for
example.

Definition (Addition of matrices). Let A = (aij), B = (bij) be m × n

matrices. We define the sum A+B = (cij) to have (i, j) entry cij = aij + bij.
We describe the addition as coordinatewise.

Remark. We have defined addition of matrices only when the matrices have
the same size. We can’t add any old pair of matrices.

Definition (Scalar multiplication of matrices). Let A = (aij) ∈ Mm×n(F)
and take λ ∈ F. Define λA to be the m×n matrix with (i, j) entry λaij. We
call this scalar multiplication.

Addition and scalar multiplication of matrices have some familiar, and
useful, properties.

Proposition 1. Take A, B, C ∈ Mm×n(F) and λ, µ ∈ F. Then

(i) A+ 0m×n = 0m×n + A = A;

(ii) A+ B = B + A (addition is commutative);

(iii) A+ (B + C) = (A+B) + C (addition is associative);

(iv) λ(µA) = (λµ)A;

(v) (λ+ µ)A = λA+ µA;

(vi) λ(A+ B) = λA+ λB.
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Proof. Exercise.

We would like to multiply matrices. The definition of matrix multipli-
cation can look a little mysterious at first. As we’ll see, matrices can be
interpreted as describing certain geometric transformations. We then want
matrix multiplication to correspond to composition of these transformations
(doing one and then another). This informs why we define multiplication in
the way we do.

In order to multiply matrices, we need to take care that the sizes of the
matrices are compatible.

Definition. Take A ∈ Mm×n(F), B ∈ Mn×p(F). Then AB is the m × p

matrix with (i, j) entry

ai1b1j + ai2b2j + · · ·+ ainbnj =
n
∑

k=1

aikbkj.

Remark. I visualise matrix multiplication using a hand gesture. I cannot
capture this in written lecture notes, but I shall demonstrate and describe it
in the lecture!

Remark. Note that the number of columns of A must equal the number of
rows of B.

Example.





8 −7 6
1 0 2
3 2 −1









1 1 1 1
−1 1 −1 1
3 2 0 −10



 =





33 13 15 −59

15





Remark. We have defined matrix multiplication in such a way that we can
see how to implement it on a computer. But how long will it take for a
computer to run such a calculation?

To multiply two n× n matrices in this way, for each of the n2 entries we
must multiply n pairs and carry out n − 1 additions. So the process takes
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around n3 multiplications and n2(n − 1) additions. When n is large, these
are very large numbers!

In 1969, Strassen gave a faster algorithm, which has since been improved
on. It is not known whether these algorithms give the fastest possible calcula-
tions. Such research falls into the field of computational complexity, drawing
on ideas from both mathematics and computer science.

Like addition, multiplication of matrices also has some useful properties.

Proposition 2. Let A, A′ ∈ Mm×n(F), B, B′ ∈ Mn×p(F), C ∈ Mp×q(F),
and λ ∈ F. Then

(i) A(BC) = (AB)C (multiplication is associative);

(ii) (A+ A′)B = AB + A′B;

(iii) A(B + B′) = AB + AB′;

(iv) (λA)B = A(λB) = λ(AB).

Remark. (ii) and (iii) together are known as distributivity of multiplication
over addition.

Proof. Exercise.

Definition. Let A, B ∈ Mn×n(F). We say that A and B commute if AB =
BA.

Remark. Take A ∈ Mm×n(F), B ∈ Mn×m(F). Then we can define both
AB and BA. Note that AB is an m×m matrix, and BA is an n×n matrix,
so if m 6= n then certainly AB 6= BA. If m = n, then we may or may not
have AB = BA—it depends.

Definition. Let A = (aij) ∈ Mn×n(F). We say that A is

diagonal if aij = 0 whenever i 6= j;

upper triangular if aij = 0 whenever i > j;

lower triangular if aij = 0 whenever i < j.

Example. diagonal (this is also both upper and lower triangular)

upper triangular
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lower triangular

Definition. The n× n identity matrix In has (i, j) entry

{

1 if i = j

0 if i 6= j
.

Example.

I3 =





1 0 0
0 1 0
0 0 1



 .

Lemma 3. Take A ∈ Mm×n(F), B ∈ Mn×p(F). Then AIn = A and InB =
B.

Proof. Exercise.

Definition. We say that A ∈ Mn×n(F) is invertible if there exists B ∈
Mn×n(F) such that AB = In = BA.

Lemma 4. If A ∈ Mn×n(F) is invertible, then it has a unique inverse B ∈
Mn×n(F) such that AB = BA = In.

Proof. Suppose that B, C ∈ Mn×n(F) are both inverses for A. [Secret aim:
B = C]

Then AB = BA = In and AC = CA = In
so B = BIn = B(AC) = (BA)C = InC = C.

Definition. If A ∈ Mn×n(F) is invertible, then we write A−1 for its inverse.

Proposition 5. Let A, B be invertible n×n matrices. Then AB is invertible,
and (AB)−1 = B−1A−1.

Proof. Exercise.

Definition. The transpose of A = (aij) ∈ Mm×n(F) is the n×m matrix AT

with (i, j) entry aji.
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Example.
(

1 −3
0 2

)T

=

( )

.

Remark. We sometimes write a column vector as the transpose of a row
vector:









1
−3
0
2









=
(

1 −3 0 2
)T

.

Definition. We say that A ∈ Mn×n(R) is orthogonal if AA
T = In = ATA.

Equivalently, A is invertible and A−1 = AT .

We say that A ∈ Mn×n(C) is unitary if AA
T
= In = A

T
A. (By A we

mean the matrix obtained from A by replacing each entry by its complex
conjugate.)

Remark. We’ll explore orthogonal (and perhaps unitary) matrices later in
the course. Look out for them in other courses, such as Geometry!

2.2 Solving systems of simultaneous linear equations
using matrices

Let’s revisit the examples from earlier:

{

3x + 5y = −1
4x − y = 10

(1)







8x − 7y + 6z = 59
x + 2z = 9
3x + 2y − z = 11

(2)







x + y + z + w = 2
−x + y − z + w = 0
3x + 2y − 10w = 7

(3)

We can represent each system of equations as an equation involving ma-
trices.

(

3 5
4 −1

)(

x

y

)

=

(

−1
10

)

(1)
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8 −7 6
1 0 2
3 2 −1









x

y

z



 =





59
9
11



 (2)





1 1 1 1
−1 1 −1 1
3 2 0 −10













x

y

z

w









=





2
0
7



 (3)

How might we go about solving such an equation?
Here’s how I might try to solve the system (2), without using matrices.







8x − 7y + 6z = 59
x + 2z = 9
3x + 2y − z = 11

(2)

I can divide the top equation by 8: the given system of equations is
equivalent to











x − 7

8
y + 3

4
z = 59

8

x + 2z = 9

3x + 2y − z = 11

(2′)

Now the first equation gives x in terms of y and z. By subtracting suitable
multiples of the first equation from the second and third, I can eliminate x

from each of them: our system of equations is equivalent to











x − 7

8
y + 3

4
z = 59

8

7

8
y + 5

4
z = 13

8

37

8
y − 13

4
z = −89

8

(2′′)

(In this case, we might have subtracted multiples of the second equation
from the first and third at the outset, but I’m trying to avoid strategies that
rely on particular features of the specific equations.)

Now we have two equations in just two variables—we can solve these to
find y and z, and then use the first equation to determine x. How do we
solve them? Well, “do the same again”! Concretely, I can divide the second
equation by the coefficient of y, 7

8
. The system of equations is equivalent to











x − 7

8
y + 3

4
z = 59

8

y + 10

7
z = 13

7

37

8
y − 13

4
z = −89

8

(2′′′)
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Now I can subtract an appropriate multiple of the second equation from
the third, to eliminate y: the system of equations is equivalent to











x − 7

8
y + 3

4
z = 59

8

y + 10

7
z = 13

7

− 69

7
z = −138

7

(2′′′′)

Now the third equation tells us that z = 2, so the second tells us that
y = 13

7
− 10

7
z = −1, and finally the first tells us that x = 59

8
+ 7

8
y − 3

4
z = 5.

Excitingly,

(a) this method generalises nicely; and

(b) this method looks nicer when recorded with matrices!

The strategy is called Gaussian elimination, although Gauss was not the
first person to use it (see the Historical interlude).

Here are a couple of important subtleties:

1. At two points I divided by a coefficient. Happily, this coefficient was
not 0. If it had been 0, I definitely wouldn’t have been able to divide
by it. But. . . if the coefficient had been 0 then I’d have had an equation
in which I’d effectively already eliminated that variable, which would
only have made life easier. Executive summary: this is not a problem,
we just have to think about our general strategy in a way that takes
account of the possibility.

2. At each stage I carefully wrote “the system of equations is equivalent
to”. So x, y, z satisfy the original equations if and only if x = 5,
y = −1, z = 2. This is true because each of my steps was reversible.
(Did you check? If not, go back and check now!)

We might summarise the general strategy for a system of m equations in
variables x1, . . . , xn as follows.

• Swap equations if necessary to make the coefficient of x1 in the first
equation nonzero.

• Divide through the first equation by the coefficient of x1.

• Subtract appropriate multiples of the first equation from all other equa-
tions to eliminate x1 from all but the first equation.
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• Now the first equation will tell us the value of x1 once we have deter-
mined the values of x2, . . . , xn, and we have m− 1 other equations in
n− 1 variables.

• Use the same strategy to solve these m−1 equations in n−1 variables.

How can we carry out this process conveniently using matrices?

2.3 Elementary Row Operations (EROs)

Definition. Take a system of linear equations Ax = b. To get the augmented
matrix A | b, take the m× n matrix A and adjoin b as an (n+ 1)th column.

Remark. The augmented matrix A | b records all the data from the system
Ax = b.

Definition. There are three elementary row operations (EROs) on an aug-
mented matrix A | b:

• for some 1 ≤ r < s ≤ m, interchange rows r and s;

• for some 1 ≤ r ≤ m and λ 6= 0, multiply (every entry of) row r by λ;

• for some 1 ≤ r, s ≤ m with r 6= s and λ ∈ F, add λ times row r to row
s.

Remark. Notice that each type of elementary row operation does not change
the set of solutions of the corresponding system of equations. Each ERO is
invertible.

These three (categories of) elementary row operations can be used to
carry out Gaussian elimination. By applying them in an appropriate order,
we can put any augmented matrix A | b into a form E | d from which it is
easier to determine whether the system has any solutions.

Definition. We say that an m× n matrix E is in echelon form if

(i) if row r of E has any nonzero entries, then the first of these is 1;

(ii) if 1 ≤ r < s ≤ m and rows r, s of E contain nonzero entries, the first
of which are erj and esk respectively, then j < k (the leading entries of
lower rows occur to the right of those in higher rows);

(iii) if row r of E contains nonzero entries and row s does not (that is,
esj = 0 for 1 ≤ j ≤ n), then r < s (zero rows, if any exist, appear
below all nonzero rows).
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Remark. We can use EROs not only to reduce the matrix of coefficients A
to echelon form, but also to reduce the augmented matrix A | b to echelon
form, so we do not particularly distinguish between these.

Example.





0 1 2 3 0
1 2 3 4 2
2 3 4 5 0



 −−−−→
R1↔R2





1 2 3 4 2
0 1 2 3 0
2 3 4 5 0





−−−−−−−→
R3→R3−2R1





1 2 3 4 2


 −−−−−−−→





1 2 3 4 2




−−−−−−−→





1 2 3 4 2
0 1 2 3 0
0 0 0 0 1





This calculation was on the augmented matrix of the equations

y + 2z + 3w = 0
x + 2y + 3z + 4w = 2
2x + 3y + 4z + 5w = 0

. (4)

Each ERO that we applied to the augmented matrix did not change the set
of solutions. So the solutions to (4) are precisely the solutions to

x + 2y + 3z + 4w = 2
y + 2z + 3w = 0

0 = 1
. (5)

Clearly there are no solutions to (5), because of the third equation, so there
are no solutions to (4)—we say that the system of equations is inconsistent.

Definition. Let E | d be the m× (n+ 1) augmented matrix of a system of
equations, where E is in echelon form. We say that variable xj is determined
if there is i such that eij is the leading entry of row i of E (so eij = 1).
Otherwise we say that xj is free.
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Remark. If the last rows of E | d are zero, then they can be deleted (they
record that 0 = 0). So we focus on the remaining (nonzero) rows.

If the final row records that 0 = 1, then the equations are inconsistent. If
not, then the equations have at least one solution. We can choose arbitrary
values for the free variables. Now work up from the last equation to the first.
If row i has its leading 1 in position (i, j), then the corresponding equation
records

xj +
n
∑

k=j+1

eikxk = di

and we already know the values of xk for j + 1 ≤ k ≤ n, so we can read off
the value of xj.

Example. If a system of linear equations has been reduced to the echelon
form

x1 − x2 + 2x3 − 2x4 = 0
x2 − 7x3 + 5x4 = 2

x4 = 0

with corresponding matrix





1 −1 2 −2 0
0 1 −7 5 2
0 0 0 1 0





then variables x1, x2, x4 are determined while x3 is free.
The solutions are

x4 = 0

x2 = 2 + 7x3 − 5x4 = 2 + 7x3

x1 = x2 − 2x3 + 2x4 = (2 + 7x3)− 2x3 = 2 + 5x3

.

2.4 Historical interlude 1

It’s good to know something about the history of our subject.
You can find an overview of the history of matrices and determinants on

the very useful MacTutor website:
http://www-history.mcs.st-and.ac.uk/HistTopics/Matrices_and_determinants.html

This describes how the ideas of “Gaussian” elimination go back to China
in the first century BCE. This is described in a work called Jiuzhang suanshu,
or Nine Chapters on the Mathematical Art—see for example
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http://www-history.mcs.st-and.ac.uk/HistTopics/Nine_chapters.html

and
http://www-history.mcs.st-and.ac.uk/HistTopics/Chinese_overview.html.

Carl Friedrich Gauss
http://www-history.mcs.st-and.ac.uk/Biographies/Gauss.html

wrote about what we now call Gaussian elimination in the context of
solving equations as part of his study of the orbit of the asteroid Pallas.

Apparently the first person to use the word ‘matrix’ in this mathematical
context was James Joseph Sylvester
http://www-history.mcs.st-and.ac.uk/Biographies/Sylvester.html

who was for a while the Savilian Professor of Geometry here in Oxford.
(The current Savilian Professor of Geometry is Frances Kirwan.) MacTutor
has a picture of the page on which Sylvester introduced the word ‘matrix’
http://www-history.mcs.st-and.ac.uk/Bookpages/Sylvester9.gif

2.5 Reduced row echelon (RRE) form

Definition. We say that an m × n matrix is in reduced row echelon form
(RRE form) if it is in echelon form and if each column containing the leading
entry of a row has all other entries 0.

Example. We started with matrix




0 1 2 3 0
1 2 3 4 2
2 3 4 5 0





earlier, and put it into echelon form




1 2 3 4 2
0 1 2 3 0
0 0 0 0 1



 .

That leaves some nonzero entries in columns where we don’t want them. We
can clear them by using EROs—specifically by subtracting suitable multiples
of rows from other rows.





1 2 3 4 2
0 1 2 3 0
0 0 0 0 1



 −−−−−−→
R1→



 0 1 2 3 0
0 0 0 0 1





−−−−−−→
R1→



 0 1 2 3 0
0 0 0 0 1
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Remark. We can always take a matrix in echelon form and put it in RRE
form using EROs.

Let E be an m×n matrix in echelon form. Take a row with leading entry
eij = 1. For 1 ≤ k ≤ i − 1, subtract ekj times row i from row k. These are
EROs, and make all the entries above eij into 0. Doing this for each leading
entry produces a matrix in RRE form.

Remark. It is handy to have an augmented matrix in echelon form if we
want to see whether the system of equations has any solutions. Putting the
matrix into reduced row echelon form makes it particularly convenient to
read off the solutions (if there are any).

Question What is the RRE form of an invertible square matrix?

Theorem 6. An invertible n× n matrix can be reduced to In using EROs.

Proof. Take A ∈ Mn×n(F) with A invertible.
Let E be an RRE form of A. [Secret aim: E = In. To show this, it’s

enough to show that every variable is determined, there are no free variables.]
We can obtain E from A by EROs, and EROs do not change the solution

set of the system of equations Ax = 0. If Ax = 0, then x = Inx = (A−1A)x =
A−1(Ax) = A−10 = 0, so the only n × 1 column vector x with Ax = 0 is
x = 0. (Here 0 is the n× 1 column vector of zeros.) So the only solution of
Ex = 0 is x = 0.

We can read off solutions to Ex = 0. We could choose arbitrary values
for the free variables—but the only solution is x = 0, so there are no free
variables. So all the variables are determined, so each column must contain
the leading entry of a row (which must be 1). Since the leading entry of a
row comes to the right of leading entries of rows above, it must be the case
that E = In.

2.6 Elementary matrices and the use of EROs to com-
pute inverses

Definition. For an ERO on an m × n matrix, we define the corresponding
elementary matrix to be the result of applying that ERO to Im.

Remark. • The ERO of interchanging rows r and s has elementary ma-
trix
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—that is, Im but with 0 in positions (r, r) and (s, s) and 1 in positions
(r, s) and (s, r).

• The ERO of multiplying row r by λ 6= 0 has elementary matrix

—that is, Im but with λ in position (r, r).

• The ERO of adding λ times row r to row s has elementary matrix

—that is, Im but with λ in position (s, r).

• Since each ERO is invertible, so are the corresponding elementary ma-
trices. The inverse of an ERO is an ERO, and the inverse of an ele-
mentary matrix is another elementary matrix.

Lemma 7. Let A be an m× n matrix, let B be obtained from A by applying
an ERO. Then B = EA, where E is the elementary matrix for that ERO.

Proof. Exercise.

Theorem 8. Let A be an invertible n × n matrix. Let X1, X2, . . . , Xk be
a sequence of EROs that take A to In. Let B be the matrix obtained from In
by this same sequence of EROs. Then B = A−1.

Remark. The sequence of EROs X1, X2, . . . , Xk that take A to In exists
by Theorem 6.

Proof. Let Ei be the elementary matrix corresponding to ERO Xi.
Then applying X1, X2, . . . , Xk to A gives matrix Ek · · ·E2E1A = In,
and applying X1, X2, . . . , Xk to In gives matrix Ek · · ·E2E1 = B.
So BA = In, so B = A−1.
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Remark. In the proof of Theorem 8, we show that BA = In, and claim that
this means that B = A−1. But our definition of the inverse would require us
also to show that AB = In. In the context of this proof, we don’t need to do
any more. Why is this? Well, we know that E1, . . . , Ek are invertible, and
so B = Ek · · ·E2E1 is a product of invertible matrices and hence invertible,
say with inverse B−1. Now we know that BA = In (we proved this), and we
can premultiply both sides by B−1 and postmultiply both sides by B to get
AB = In.

Example. Let’s find the inverse of

A =









1 1 1 1
1 2 3 4
1 4 9 16
1 8 27 64









(note the special form of this matrix—it is an example of a Vandermonde
matrix ).

We use EROs to reduce the matrix to RRE form, and for convenience
apply these same EROs to I4 at the same time.









1 1 1 1 1 0 0 0
1 2 3 4 0 1 0 0
1 4 9 16 0 0 1 0
1 8 27 64 0 0 0 1









R2→R2−R1, R3→R3−R1

−−−−−−−−−−−−−−−→
R4→R4−R1









1 1 1 1 1 0 0 0








−−−−−−−→

















−−−−−−−→

















−−−−−−−→
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−−−−−−−→

















−−−−−−−→









1 0 0 0 4 −13

3

3

2
−1

6

0 1 0 0 −6 19

2
−4 1

2

0 0 1 0 4 −7 7

2
−1

2

0 0 0 1 −1 11

6
−1 1

6









so

A−1 =









4 −13

3

3

2
−1

6

−6 19

2
−4 1

2

4 −7 7

2
−1

2

−1 11

6
−1 1

6









=
1

6









24 −26 9 −1
−36 57 −24 3
24 −42 21 −3
−6 11 −6 1









(and a quick check would confirm that multiplying this by A gives I4—useful
when you’re doing computations by hand and want to know whether you’ve
made an arithmetic error!).

Remark. This is not hugely exciting for a human to carry out, but it is
very efficient for a computer. Next term, in Linear Algebra II, you’ll meet
determinants of matrices (if you haven’t already done so), and it is possible
to use these to compute inverses. But it is staggeringly inefficient to find
inverses this way. Using EROs, we can invert an n × n matrix using no
more than 2n3 arithmetical operations, which even for say a 30× 30 matrix
takes a fraction of a second on a computer. See the problems sheet for a
question relating to this. The Numerical Analysis course in Part A goes into
more detail about efficient computations with matrices—this is extremely
important in modern life, as well as mathematically interesting.
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3 Vector spaces

3.1 Familiar vectors

You might have met vectors previously, perhaps in geometry or mechanics.
In these contexts, we often work with vectors in two or three dimensions, and
a vector has both length and direction. We can add (and subtract) vectors,
and we can multiply vectors by scalars (real numbers).

A vector space is a generalisation of this idea. We work more abstractly,
concentrating on the properties that we want vectors to have. The theory
then applies to familiar vectors in two and three dimensions, but also to other
contexts: real vector spaces in higher dimensions, complex vector spaces,
spaces of functions, vector spaces over finite fields, . . . . We need to identify
the key properties that a vector space should have—called axioms—and then
we can explore theorems that apply to any object satisfying the axioms.

As with other aspects of mathematics, it is important that we use the for-
mal definitions when proving formal statements—we need a precise definition
of a vector space, and an object is a vector space if and only if it satisfies that
definition, so the only properties we can use when proving results are either
in the definition or are properties that we’ve already proved are consequences
of the definition. But, again as with other aspects of mathematics, we also
need an informal intuition about what a vector space is, to help us “sniff
out” possible results that we might seek to prove, to help us to understand
and internalise theorems, and to help us have a broad understanding of what
the concept means. So we’ll explore plenty of examples, not only the familiar
cases of 2D and 3D real vectors.

3.2 What is a vector space?

To define a vector space, we need an underlying field F. In a field, we can add,
subtract, multiply, and divide by nonzero elements, and arithmetic works as
we expect. A field always contains an additive identity 0 and a multiplicative
identity 1. For us, generally F = R or F = C (other fields are available).

Definition. Let F be a field. A vector space over F is a non-empty set V

together with a map V × V → V given by (v, v′) 7→ v + v′ (called addition)
and a map F × V → V given by (λ, v) 7→ λv (called scalar multiplication)
that satisfy the vector space axioms

• u+ v = v + u for all u, v ∈ V (addition is commutative);

• u+ (v +w) = (u+ v) +w for all u, v, w ∈ V (addition is associative);
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• there is 0V ∈ V such that v + 0V = v = 0V + v for all v ∈ V (existence
of additive identity);

• for all v ∈ V there exists w ∈ V such that v+w = 0V = w+v (existence
of additive inverses);

• λ(u + v) = λu + λv for all u, v ∈ V , λ ∈ F (distributivity of scalar
multiplication over vector addition);

• (λ + µ)v = λv + µv for all v ∈ V , λ, µ ∈ F (distributivity of scalar
multiplication over field addition);

• (λµ)v = λ(µv) for all v ∈ V , λ, µ ∈ F (scalar multiplication interacts
well with field multiplication);

• 1v = v for all v ∈ V (identity for scalar multiplication).

Example. We write Rn for the set of n-tuples (v1, . . . , vn) with v1, . . . ,
vn ∈ R. Then Rn is a real vector space under componentwise addition and
scalar multiplication:

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yy)

and λ(x1, . . . , xn) = (λx1, . . . , λxn).

These satisfy the vector space axioms.
We think of R2 as the Cartesian plane, and R3 as three-dimensional space.

We can also consider n = 1: R1 is a real vector space, which we think of as
the real line. We tend to write it simply as R.

Example. The field C is a real vector space, it is essentially the same as R2.

Example. For m, n ≥ 1, the set Mm×n(R) is a real vector space (see
Proposition 1).

Definition. Elements of V are called vectors.
Elements of F are called scalars.
If V is a vector space over R, then we say that V is a real vector space.
If V is a vector space over C, then we say that V is a complex vector

space.
If V is a vector space over F, then we say that V is an F vector space.

Remark. Our main focus in this course will be real vector spaces. Most of
the theory works over any field, but sometimes it makes a difference (as we’ll
see, for example for inner products).
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Lemma 9. Let V be a vector space over F. Then there is a unique additive
identity element 0V .

Proof. Exercise.

Remark. Where it will not be ambiguous, we often write 0 for 0V .

Lemma 10. Let V be a vector space over F. Take v ∈ V . Then there
is a unique additive inverse for v. That is, if there are w1, w2 ∈ V with
v + w1 = 0V = w1 + v and v + w2 = 0V = w2 + v, then w1 = w2.

Proof. Exercise.

Remark. Using the notation of Lemma 10, we write −v for the unique
additive inverse of v.

Proposition 11. Let V be a vector space over a field F. Take v ∈ V , λ ∈ F.
Then

(i) λ0V = 0V ;

(ii) 0v = 0V ;

(iii) (−λ)v = −(λv) = λ(−v);

(iv) if λv = 0V then λ = 0 or v = 0V .

Proof. (i) We have

λ0V = λ(0V + 0V ) (definition of additive identity)

= λ0V + λ0V (distributivity of scalar · over vector +).

Adding −(λ0V ) to both sides, we have

λ0V + (−(λ0V )) = (λ0V + λ0V ) + (−(λ0V ))

so 0V = λ0V (using definition of additive inverse, associativity of addi-
tion, definition of additive identity).

(ii) Exercise (hint: in F we have 0 + 0 = 0).

(iii) We have

λv + λ(−v) = λ(v + (−v)) (distributivity of scalar · over vector +)

= λ0V (definition of additive inverse)

= 0V (by (ii).

So λ(−v) is the additive inverse of λv (by uniqueness), so λ(−v) =
−(λv).

Similarly, we see that λv + (−λ)v = 0V and so (−λ)v = −(λv).
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(iv) Suppose that λv = 0V , and that λ 6= 0. [Secret aim: v = 0V ]

Then λ−1 exists in F, and

λ−1(λv) = λ−10V

so

(λ−1λ)v = 0V (scalar · interacts well with field ·, and by (i))

so
1v = 0V

so v = 0V (identity for scalar multiplication).

3.3 Historical interlude 2

We have just met a lovely, clean, polished definition of a vector space. This
reflects how we think about vector spaces today, but says nothing about how
vector spaces were first studied. The development of mathematics is compli-
cated: people have ideas, build on others’ ideas, overlook or misunderstand
ideas, have ideas that others have already had, and so on. When you stand
on the top of a hill, it is easy to look around and survey the landscape, to
pick out the most interesting features, and to look down to see what your
route up should be next time, but when you stand at the foot of a hill and
are surveying the landscape, there is lots to explore and it might not even be
apparent that there is a hill, let alone that it would be an enlightening hill
to climb. Successive generations of mathematicians are like pioneers of the
hills, passing on tips and maps to those who follow (or occasionally losing
the map altogether), but fashions change, technology improves, and some
expeditions that seemed important at the time turn out to be less significant
generations later.

This course may be about Linear Algebra, but the development of the
subject is anything but linear (and many of the ideas were studied in detail
long before the phrase “linear algebra” started to be used). You can read an
overview of the development of the ideas behind vector spaces on MacTutor.
http://www-groups.dcs.st-and.ac.uk/history/HistTopics/Abstract_linear_spaces.htm

The MacTutor biography of Alexandre-Théophile Vandermonde is inter-
esting, not least because it suggests that there is no evidence that Vander-
monde studied the determinants named after him.
http://www-groups.dcs.st-and.ac.uk/history/Biographies/Vandermonde.html
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3.4 Subspaces

Whenever we have a mathematical object with some structure, we want to
consider subsets that also have that same structure.

Definition. Let V be a vector space over F. A subspace of V is a non-empty
subset of V that is closed under addition and scalar multiplication, that is,
a subset U ⊆ V such that

(i) U 6= ∅ (U is non-empty);

(ii) u1 + u2 ∈ U for all u1, u2 ∈ U (U is closed under addition);

(iii) λu ∈ U for all u ∈ U , λ ∈ F (U is closed under scalar multiplication).

Definition. Note that the sets {0V } and V are always subspaces of V . The
subspace {0V } is sometimes called the zero subspace or the trivial subspace.
Subspaces other than V are called proper subspaces.

Theorem 12 (Subspace Test). Let V be a vector space over F, let U be a
subset of V . Then U is a subspace if and only if

(i) 0V ∈ U ; and

(ii) λu1 + u2 ∈ U for all u1, u2 ∈ U and λ ∈ F.

Proof. (⇒) Assume that U is a subspace of V .

• 0V ∈ U : Since U is a subspace, it is non-empty, so there exists u0 ∈ U .

Since U is closed under scalar multiplication, 0u = 0V ∈ U (using
Proposition 11).

• λu1 + u2 ∈ U for all u1, u2 ∈ U and all λ ∈ F: Take u1, u2 ∈ U , and
λ ∈ F. Then λu1 ∈ U because U is closed under scalar multiplication,
so λu1 + u2 ∈ U because U is closed under addition.

(⇐) Assume that 0V ∈ U and that λu1 + u2 ∈ U for all u1, u2 ∈ U and
λ ∈ F.

• U is non-empty: have 0V ∈ U .

• U is closed under addition: for u1, u2 ∈ U have u1+u2 = 1·u1+u2 ∈ U .

• U is closed under scalar multiplication: for u ∈ U and λ ∈ F, have
λu = λu+ 0V ∈ U .
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So U is a subspace of V .

Notation If U is a subspace of the vector space V , then we write U ≤ V .
(Compare with U ⊆ V , which means that U is a subset of V but we do not
know whether it is a subspace.)

Proposition 13. Let V be a vector space over F, and let U ≤ V . Then

(i) U is a vector space over F; and

(ii) if W ≤ U then W ≤ V (“a subspace of a subspace is a subspace”).

Proof. (i) We need to check the vector space axioms, but first we need to
check that we have legitimate operations.

Since U is closed under addition, the operation + restricted to U gives
a map U × U → U .

Since U is closed under scalar multiplication, that operation restricted
to U gives a map F× U → U .

Now for the axioms.

Commutativity and associativity of addition are inherited from V .

There is an additive identity (by the Subspace Test).

There are additive inverses: if u ∈ U then multiplying by −1 ∈ F and
applying Proposition 11(iii) shows that −u ∈ U .

The other four properties are all inherited from V .

(ii) This is immediate from the definition of a subspace.

Definition. Let V be a vector space over F. Take A, B ⊆ V and take λ ∈ F.
We define A+ B := {a+ b : a ∈ A, b ∈ B} and λA := {λa : a ∈ A}.

Proposition 14. Let V be a vector space. Take U , W ≤ V . Then U +W ≤
V and U ∩W ≤ V .

Proof. Exercise.
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3.5 More examples of vector spaces

Example. Consider a system of homogeneous linear equations with real
coefficients:

a11x1 + a12x2 + · · ·+ a1nxn = 0

a21x1 + a22x2 + · · ·+ a2nxn = 0 (6)

...
...

am1x1 + am2x2 + · · ·+ amnxn = 0.

(We say this is homogeneous because all the real numbers on the right are
0.)

Let V be the set of real solutions of (6). Then V is a real vector space.
This becomes more apparent if we write the equations in matrix form. We
see that (6) corresponds to Ax = 0, where A = (aij) ∈ Mm×n(R), x is an
n × 1 column vector of variables, and 0 is shorthand for 0n×1. Then each
element of V can be thought of as an n× 1 column vector of real numbers.

To show that V is a vector space, we show that it is a subspace of Rn.
Clearly V is non-empty, because 0 ∈ V .
For v1, v2 ∈ V , we have Av1 = 0 and Av2 = 0, so A(v1+v2) = Av1+Av2 =

0 + 0 = 0, so v1 + v2 ∈ V . So V is closed under addition.
For v ∈ V and λ ∈ F, we have A(λv) = λ(Av) = λ0 = 0, so λv ∈ V . So

V is closed under scalar multiplication.
So V ≤ Rn, so V is a vector space (by Proposition 13).

Example. Let n be a non-negative integer. The set of polynomials cnx
n +

· · · + c1x + c0 with c0, c1, . . . , cn ∈ R (that is, real polynomials with degree
≤ n) is a real vector space.

Example. Let X be a set. Define RX := {functions f with f : X → R}, the
set of real-valued functions on X. This is a real vector space with operations
of pointwise addition and pointwise multiplication by a real number: for
x ∈ X, we define (f + g)(x) = f(x) + g(x) and (λf)(x) = λf(x).

One important example is RR, the vector space of all real-valued functions
of a real variable.

Example. The set of real sequences (an) forms a real vector space. We
add sequences term by term, and we multiply a sequence by a scalar λ by
multiplying each term by λ. This is essentially the vector space RN.

One interesting subspace of RN is the space of convergent sequences. You
will define and study convergence of real sequences in the Analysis I course.
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Example. In Analysis II, you will learn about continuity and differentiability
of functions R → R. It turns out that {f ∈ RR : f is continuous} and
{f ∈ RR : f is differentiable} are important subspaces of RR.

Example. We can study the solutions of a homogeneous linear second-order
differential equation. These are twice-differentiable functions y that satisfy
an equation y′′+a(x)y′+b(x)y = 0. This equation is linear because y and its
derivatives occur only to the first power and are not multiplied together. And
it is homogeneous because of the 0 on the right-hand side. Such equations
are important in many applications of mathematics.

The set S of solutions of this homogeneous linear second-order differential
equation is a vector space, a subspace of RR. Indeed, S is clearly non-empty
(it contains the 0 function), and if w = u + λv where u, v ∈ S and λ ∈ R,
then

w′′ + a(x)w′ + b(x)w = (u′′ + λv′′) + a(x)(u′ + λv′) + b(x)(u+ λv)

= (u′′ + a(x)u′ + b(x)u) + λ(v′′ + a(x)v′ + b(x)v)

= 0

so w ∈ S. So, by the Subspace Test, S ≤ RR.
This generalises to homogeneous linear differential equations of any order.

3.6 Subspaces of R, R2, R3

Example. What are the subspaces of R?
Let V = R, let U be a non-trivial subspace of V . [Thinking geometrically,

we might have a theory about what U looks like.]
Then there exists u0 ∈ U with u0 6= 0. Take x ∈ R. Let λ = x

u0

. Then
x = λu0 ∈ U , because U is closed under scalar multiplication. So U = V .

So R has no non-zero proper subspaces.

Example. What are the subspaces of R2?
Let V = R2, let U be a non-trivial subspace of V . [Thinking geometrically,

we might have a theory about what U looks like.]
Then there exists u0 ∈ U with u0 6= 0, say u0 = (a, b). We have

Span(u0) = {λu0 : λ ∈ R} ⊆ U (see the next section for more on the
span of a set).
Case 1 Span(u0) = U .

If a 6= 0, then let m = b
a
. Then Span(u0) = {(x, y) ∈ R2 : y = mx}.

If a = 0, then Span(u0) = {(0, y) : y ∈ R}.
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So if U is the span of a single element, then geometrically it is a line in R2

through the origin, and every such line in R2 through the origin corresponds
to a subspace.
Case 2 Span(u0) 6= U .

Then there is some u1 = (c, d) ∈ U \ Span(u0).

Consider the matrix

(

a b

c d

)

. Applying any sequence of EROs to this

matrix gives a matrix whose rows are in U . The matrix must have RRE form
(

1 0
0 1

)

. So U contains the vectors (1, 0) and (0, 1), and hence U = R2.

So the only non-zero proper subspaces of R2 correspond geometrically to
lines in R2 through the origin.

Example. The only non-trivial proper subspaces of R3 correspond geomet-
rically to lines and planes through the origin. Exercise: prove this!

4 Bases

One key goal of this section is to develop a sensible notion of the ‘dimension’
of a vector space. In order to do this, we need to develop some theory that
is in itself both important and interesting.

4.1 Spanning sets

Lemma 15. Let V be a vector space over F, take u1, u2, . . . , um ∈ V .
Define U := {α1u1 + · · ·+ αmum : α1, . . . , αm ∈ F}. Then U ≤ V .

Proof. Idea: use Subspace Test.

• 0V ∈ U : have 0V = 0u1 + · · ·+ 0um ∈ U .

• λv1 + v2 ∈ U : take v1, v2 ∈ U , say v1 = α1u1 + · · · + αmum and
v2 = β1u1 + · · · + βmum, where α1, . . . , αm, β1, . . . , βm ∈ F. Take
λ ∈ F.

Then λv1 + v2 = (λα1 + β1)u1 + · · ·+ (λαm + βm)um ∈ U .

So, by the Subspace Test, U ≤ V .

Definition. Let V be a vector space over F, take u1, u2, . . . , um ∈ V . A
linear combination of u1, . . . , um is a vector α1u1 + · · ·+ αmum for some α1,
. . . , αm ∈ F.
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We define the span of u1, . . . , um to be Span(u1, . . . , um) := {α1u1+ · · ·+
αmum : α1, . . . , αm ∈ F}. “the smallest subspace of V that contains u1, . . . ,
um”

There are other notations for the span of a set of vectors, for example
you might see Sp(u1, . . . , um) or 〈u1, . . . , um〉.

More generally, we can define the span of any set S ⊆ V (even a po-
tentially infinite set S). We define Span(S) := {α1s1 + · · · + αmsm : m ≥
0, s1, . . . , sm ∈ S, α1, . . . , αm ∈ F}.

Remark. Note that a linear combination only ever involves finitely many
elements of S, even if S is infinite.

Remark. The convention is that
∑

i∈∅ αiui is 0V (the ‘empty sum’), so
Span ∅ = {0V }.

Remark. For any S ⊆ V , we have Span(S) ≤ V . Lemma 15 shows this in
the case that S is finite. Exercise: prove it in the general case.

Definition. Let V be a vector space over F. If S ⊆ V is such that V =
Span(S), then we say that S spans V , and that S is a spanning set for V .

Example. { , } spans R2. So does { , }.
But { , } does not.

4.2 Linear independence

Definition. Let V be a vector space over F. We say that v1, . . . , vm ∈ V

are linearly dependent if there are α1, . . . , αm ∈ F, not all 0, such that
α1v1+ · · ·+αmvm = 0. If v1, . . . , vm are not linearly dependent, then we say
that they are linearly independent.

We say that S ⊆ V is linearly independent if every finite subset of S is
linearly independent.

Remark. So v1, . . . , vm ∈ V are linearly independent if and only if the only
linear combination of them that gives 0V is the trivial combination, that is,
if and only if α1v1 + · · ·+ αmvm = 0 implies α1 = · · · = αm = 0.
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Example. • { , } ⊆ R2 is linearly independent.

• { , } ⊆ R2 is linearly dependent.

• For V a real vector space, if S ⊆ V and 0V ∈ S, then S is linearly
dependent.

• For V a real vector space, v1, v1, v2, . . . , vm are linearly dependent.

• For V a real vector space, {v} is linearly independent if and only if
v 6= 0V .

Lemma 16. Let v1, . . . , vm be linearly independent in an F-vector space V .
Let vm+1 ∈ V be such that vm+1 6∈ Span(v1, . . . , vm). Then v1, v2, . . . , vm,
vm+1 are linearly independent.

Proof. Take α1, . . . , αm+1 ∈ F such that α1v1 + · · ·+ αm+1vm+1 = 0.
[Secret aim: α1 = · · · = αm+1 = 0.]
If αm+1 6= 0, then we have

vm+1 = −
1

αm+1

(α1v1 + · · ·+ αmvm) ∈ Span(v1, . . . , vm),

which is a contradiction.
So αm+1 = 0, so α1v1 + · · ·+ αmvm = 0.
But v1, . . . , vm are linearly independent, so this means that α1 = · · · =

αm = 0.

4.3 Bases

Definition. Let V be a vector space. A basis of V is a linearly independent
spanning set.

If V has a finite basis, then we say that V is a finite-dimensional vector
space.

Remark. Not every vector space is finite-dimensional. For example, the
space of real sequences does not have a finite basis. But in this course
we’ll generally study finite-dimensional vector spaces. The courses on Func-
tional Analysis in Part B will explore the theory of infinite-dimensional vector
spaces. Where possible, we work with general vector spaces, but sometimes
we’ll need to specialise to the finite-dimensional case.
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Example. Let’s work in Rn. For 1 ≤ i ≤ n, let ei be the row vector with
coordinate 1 in the ith entry and 0 elsewhere.

Then e1, . . . , en are linearly independent: if α1e1 + · · · + αnen = 0 then
by looking at the ith entry we see that αi = 0 for all i.

Also, e1, . . . , en span Rn, because (a1, . . . , an) = a1e1 + · · ·+ anen.
So e1, . . . , en is a basis of Rn. We call it the standard basis of Rn.

Example. Consider V = Mm×n(R). For 1 ≤ i ≤ m and 1 ≤ j ≤ n, let Eij

be the matrix with a 1 in entry (i, j) and 0 elsewhere. Then {Eij : 1 ≤ i ≤
m, 1 ≤ j ≤ n} is a basis for V , called the standard basis of Mm×n(R).

Proposition 17. Let V be a vector space over F, let S = {v1, . . . , vn} ⊆ V .
Then S is a basis of V if and only if every vector in V has a unique expression
as a linear combination of elements of S.

Proof. (⇒) Suppose that S is a basis of V .
Take v ∈ V .
[Secret aim: there are unique α1, . . . , αn ∈ F such that v = α1v1 + · · ·+

αnvn.]
Since S spans V , there are α1, . . . , αn ∈ F such that v = α1v1+· · ·+αnvn.
Suppose that also we have β1, . . . , βn ∈ F such that v = β1v1+ · · ·+βnvn.
[Secret aim: αi = βi for all i.]
Then α1v1 + · · ·+ αnvn = β1v1 + · · ·+ βnvn,
so (α1 − β1)v1 + · · ·+ (αn − βn)vn = 0V .
But S is linearly independent, so α1 − β1 = · · · = αn − βn = 0,
that is, αi = βi for all i.
So the linear combination is unique.

(⇐) Suppose that every vector in V has a unique expression as a linear
combination of elements of S.

• S spanning set: for any v ∈ V we can write v as a linear combination
of elements of S. So Span(S) = V .

• S linearly independent: for α1, . . . , αn ∈ F, if α1v1 + · · ·+ αnvn = 0 =
0v1 + · · ·+ 0vn, then by uniqueness we have αi = 0 for all i.

So S is a basis for V .

Remark. Proposition 17 gives a very helpful way to understand the idea of
a basis!

Remark. Proposition 17 tells us that S is a basis of V if and only if the map
Fn → V given by (α1, . . . , αn) 7→ α1v1+ · · ·+αnvn is bijective. We can think
of (α1, . . . , αn) as the coordinates of v = α1v1+ · · ·+αnvn with respect to the
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basis v1, . . . , vn. Here the order of the basis vectors v1, . . . , vn is important,
so we omit the curly braces.

Where possible, it is generally nicer to avoid picking a basis—often it is
more convenient to avoid using coordinates. But sometimes coordinates are
good.

Example. Consider V = M2×2(R). The standard basis for this space is
E = {E11, E12, E21, E22}, where

E11 =

(

1 0
0 0

)

, E12 =

(

0 1
0 0

)

, E21 =

(

0 0
1 0

)

, E22 =

(

0 0
0 1

)

.

Here we also consider a different basis F = {B1, B2, B3, B4} where

B1 =

(

0 1
−1 0

)

, B2 =

(

0 1
1 0

)

, B3 =

(

1 0
0 1

)

, B4 =

(

1 0
0 −1

)

.

Let’s consider A =

(

2 1
−1 0

)

. With respect to the standard basis, A has

coordinate vector









2
1
−1
0









. With respect to the basis F , A has coordinate

vector









1
0
1
1









.

Question Does a vector space always have a basis?

Proposition 18. Let V be a vector space over F. Suppose that V has a finite
spanning set S. Then S contains a linearly independent spanning set.

Remark. That is, if V has a finite spanning set, then V has a basis. We
say nothing here about what happens if V does not have a finite spanning
set. This question is addressed in the Part B course on Set Theory (using
the Axiom of Choice).

Proof. Let S be a finite spanning set for V .
Take T ⊆ S such that T is linearly independent, and T is a largest such

set (any linearly independent subset of S has size ≤ |T |).
[Secret aim: T is linearly independent and spanning.]
Suppose, for a contradiction, that Span(T ) 6= V .
Then, since Span(S) = V , there must exist v ∈ S \ Span(T ).
Now by Lemma 16 we see that T ∪ {v} is linearly independent, and

T ∪ {v} ⊆ S, and |T ∪ {v}| > |T |, which contradicts our choice of T .
So T spans V , and by our choice is linearly independent.
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4.4 Dimension

Theorem 19 (Steinitz Exchange Lemma). Let V be a vector space over
F. Take X ⊆ V . Suppose that u ∈ Span(X) but that u 6∈ Span(X \ {v})
for some v ∈ X. Let Y = (X \ {v}) ∪ {u} (“exchange u for v”). Then
Span(Y ) = Span(X).

Proof. Since u ∈ Span(X), there are α1, . . . , αn ∈ F and v1, . . . , vn ∈ X

such that u = α1v1 + · · ·+ αnvn.
There is v ∈ X such that u 6∈ Span(X \ {v}). Without loss of generality,

we may assume that v = vn. Since u 6∈ Span(X \ {vn}), we see that αn 6= 0.
So we can divide by αn and rearrange, to obtain

vn =
1

αn

(u− α1v1 − · · · − αn−1vn−1).

Now if w ∈ Span(Y ) then we have an expression of w as a linear combi-
nation of elements of Y . We can replace u by α1v1 + · · ·+αnvn to express w
as a linear combination of elements of X. So Span(Y ) ⊆ Span(X).

And if w ∈ Span(X) then we have an expression of w as a linear combi-
nation of elements of X. We can replace vn by 1

αn
(u−α1v1−· · ·−αn−1vn−1)

to express w as a linear combination of elements of Y . So Span(Y ) ⊇
Span(X).

Remark. The Steinitz Exchange Lemma is called a lemma, which sounds
unimportant, and it looks a bit like a niche technical result. But in fact it
is completely fundamental to defining the dimension of a vector space. For
the purposes of Prelims, you can safely ignore the rest of this remark, but
perhaps some of you will be interested to peek ahead. If you choose the Rings
and Modules course in Part A, you will (unsurprisingly) learn about modules.
A module is a bit like a vector space, but the scalars come from a ring. In a
ring, we can add, subtract and multiply, but there is no requirement about
being able to divide. For example, the integers form a ring (and every field
is also a ring). It turns out that the Steinitz Exchange Lemma doesn’t in
general work for modules (can you spot the crucial moment in the proof
where it mattered that the scalars came from a field?), and that has all sorts
of interesting consequences for modules. Anyway, back to Prelims work.

Theorem 20. Let V be a vector space. Let S, T be finite subsets of V . If S
is linearly independent and T spans V , then |S| ≤ |T |. “linearly independent
sets are at most as big as spanning sets”

Proof. Assume that S is linearly independent and that T spans V .
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List the elements of S as u1, . . . , um and the elements of T as v1, . . . , vn.
[Idea: use the Steinitz Exchange Lemma to swap out elements of T and

replace them by elements of S, while still having a spanning set of V . We
cannot run out of elements of T before we run out of elements of S, or a
remaining element of S would have to be a linear combination of the ones
swapped into T .]

Let T0 be the list v1, . . . , vn.
Since Span(T0) = V , there is some i such that u1 ∈ Span(v1, . . . , vi).

Choose the least such i.
Then u1 ∈ Span(v1, . . . , vi) but u1 6∈ Span(v1, . . . , vi−1).
Let T1 be the list u1, v1, . . . , vi−1, vi+1, . . . , vn.
Then the Steinitz Exchange Lemma shows that Span(T1) = Span(T0) =

Span(T ).
We continue inductively.
Suppose that for some j with 1 ≤ j < m we have a list Tj where the first

j elements are uj, . . . , u1, the remaining elements are in T , and Span(Tj) =
Span(T ).

Now uj+1 ∈ Span(T ), so uj+1 ∈ Span(Tj), so there is some v in the list
Tj such that uj+1 is in the span of v and its predecessors, but uj+1 is not in
the span of the predecessors of v.

Note that v cannot be any of u1, . . . , uj, because uj+1 6∈ Span(u1, . . . , uj)
(since S is linearly independent), so v ∈ T .

Let Tj+1 be the list obtained from Tj by removing v, and adding uj+1 at
the start.

Then the Steinitz Exchange Lemma shows that Span(Tj+1) = Span(Tj) =
Span(T ).

After j steps, we have replaced j members of T by j members of S.
We cannot run out of members of T before we run out of members of

S: otherwise a remaining element of S would be a linear combination of the
elements of S already swapped into the list Tn. So we must have m ≤ n.

Corollary 21. Let V be a finite-dimensional vector space. Let S, T be bases
of V . Then S and T are finite, and |S| = |T |.

Proof. Since V is finite-dimensional, it has a finite basis B. Say |B| = n.
Now B is a spanning set and |B| = n, so by Theorem 20 any finite linearly

independent subset of V has size at most n.
Since S is a basis of V , it is linearly independent, so every finite subset

of S is linearly independent.
So in fact S must be finite, and |S| ≤ n. Similarly, T is finite and |T | ≤ n.
Now S is linearly independent and T is spanning, so by Theorem 20

|S| ≤ |T |.
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Applying Theorem 20 with the roles of S and T reversed shows that
|S| ≥ |T |.

So |S| = |T |.

Remark. Corollary 21 is crucial for allowing us to define the notion of di-
mension. It all relies on the Steinitz Exchange Lemma!

Definition. Let V be a finite-dimensional vector space. The dimension of
V , written dimV , is the size of any basis of V .

Example. The vector space Rn has standard basis e1, . . . , en, and hence
has dimension n.

Example. The vector space Mm×n(R) has dimension mn (see the standard
basis from earlier).

4.5 Row rank

Here is an important example of the dimension of a vector space.

Definition. Let A be anm×nmatrix over F. We define the row space of A to
be the span of the subset of Fn consisting of the rows of A, and we denote it by
rowsp(A). We define the row rank of A to be rowrank(A) := dim rowsp(A).

Remark. We’ll revisit this in detail later in the course.

Remark. We define the column space and column rank of a matrix analo-
gously.

Lemma 22. Let A be an m×n matrix, and let B be a matrix obtained from
A by a finite sequence of EROs. Then rowsp(A) = rowsp(B). In particular,
rowrank(A) = rowrank(B).

Proof. Exercise. Hint: check that each of the three types of ERO does not
change the row space.

4.6 Historical interlude 3

MacTutor has a biography of Ernst Steinitz, after whom the Steinitz Ex-
change Lemma is named.
http://www-groups.dcs.st-and.ac.uk/history/Biographies/Steinitz.html

I mentioned the Axiom of Choice in the context of proving that every
vector space has a basis. You can read more about this, and about the
history of set theory, on MacTutor.
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http://www-groups.dcs.st-and.ac.uk/history/HistTopics/Beginnings_of_set_theory.h

I said that in this course we’ll mostly concentrate on vector spaces over R
and C, but that other fields are available. For example, there are finite fields.
You’ll start to meet some of these in the Prelims Groups and Group Actions
course, and can study them further in Rings and Modules in Part A. Vector
spaces over finite fields are fertile sources for interesting mathematics. For
example, they are important in information theory and coding theory (which
you can choose to study in Part B). The subject was pioneered by Claude
Shannon.
http://www-groups.dcs.st-and.ac.uk/history/Biographies/Shannon.html

5 Bases and subspaces

5.1 Bases of subspaces

Proposition 23. Let U be a subspace of a finite-dimensional vector space
V . Then

(a) U is finite-dimensional, and dimU ≤ dimV ; and

(b) if dimU = dimV , then U = V .

Proof. Let n = dimV .

(a) By Theorem 20, every linearly independent subset of V has size at most
n.

Let S be a largest linearly independent set contained in U , so |S| ≤ n.

[Secret aim: S spans U .]

Suppose, for a contradiction, that Span(S) 6= U .

Then there exists u ∈ U \ Span(S).

Now by Lemma 16 S∪{u} is linearly independent, and |S∪{u}| > |S|,
which contradicts our choice of S.

So U = Span(S) and S is linearly independent, so S is a basis of U ,
and as we noted earlier |S| ≤ n.

(b) If dimU = dimV , then there is a basis S of U with dimU elements.
Then S is a linearly independent subset of V with size dimV . Now
adding any vector to S must give a linearly dependent set as every
linearly independent subset of V has size at most n, so S must span
V . So V = Span(S) = U .
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Remark. In (b) here we used the very useful fact that in an n-dimensional
vector space, any linearly independent set of size n is a basis. Similarly, any
spanning set of size n is a basis.

Theorem 24. Let U be a subspace of a finite-dimensional vector space V .
Then every basis of U can be extended to a basis of V . That is, if u1, . . . ,
um is a basis of U , then there are vm+1, . . . , vn ∈ V such that u1, . . . , um,
vm+1, . . . , vn is a basis of V .

Health warning. Theorem 24 does not say that if U ≤ V and if we have a
basis of V then there is a subset that is a basis of U . The reason it does not
say this is that in general this is false.

Let V = R2. Pick a basis of V . Is there a subset of your basis that is a
basis for U1 = Span((1, 0))? Is there a subset of your basis that is a basis for
U2 = Span((−3, 142))? Now pick a basis of U1 or U2. Can you extend it to
a basis of V ?

It is very easy to assume that if you have a basis of V then there is a
subset that is a basis of U . But it is not true. Please try not to do this!

Proof. Let u1, . . . , um be a basis of U , let v1, . . . , vn be a basis of V .
Idea: start with u1, . . . , um, and add vectors vi till we reach a basis of V .
Let S0 = {u1, . . . , um}.
Then S0 is certainly linearly independent.
For 1 ≤ i ≤ n, we define a new set Si in such a way that it is still linearly

independent. We define

Si =

{

Si−1 if vi ∈ Span(Si−1)

Si−1 ∪ {vi} if vi 6∈ Span(Si−1).

If Si−1 is linearly independent, then so is Si (immediately in one case,
and using Lemma 16 in the other case). So, by induction, Sn is linearly
independent.

Also, we always have vi ∈ Span(Si), and Span(Si) ⊆ Span(Sn), so vi ∈
Span(Sn) for 1 ≤ i ≤ n. So Span(Sn) = V .

So Sn is a basis of V , and by construction u1, . . . , um ∈ Sn.

Question Let S be a finite set of vectors in Rn. How can we (efficiently)
find a basis of Span(S)?
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Example. Let S = {(0, 1, 2, 3), (1, 2, 3, 4), (2, 3, 4, 5)} ⊆ R4. Let’s find a
basis for Span(S).

Let A be the matrix with rows from S: define A =





0 1 2 3
1 2 3 4
2 3 4 5



. So

Span(S) = rowsp(A).
Applying EROs to A does not change the row space (Lemma 22).
Reduce A to echelon form. Conveniently, we did this in a previous exam-

ple, and found echelon form

E =





1 2 3 4
0 1 2 3
0 0 0 0



 .

Now Span(S) = rowsp(E) = Span{(1, 2, 3, 4), (0, 1, 2, 3)}.
And {(1, 2, 3, 4), (0, 1, 2, 3)} is clearly linearly independent: if we take λ,

µ ∈ R such that λ(1, 2, 3, 4) + µ(0, 1, 2, 3) = (0, 0, 0, 0) then λ = 0 (look at
first coordinate) and so µ = 0 (look at second coordinate).

So {(1, 2, 3, 4), (0, 1, 2, 3)} is a basis for Span(S).

General strategy Let m = |S|. Write the m elements of S as the rows of
an m× n matrix A.

Use EROs to reduce A to matrix E in echelon form. Then rowsp(E) =
rowsp(A) = Span(S), by Lemma 22.

The nonzero rows of E are certainly linearly independent. So the nonzero
rows of E give a basis for Span(S).

5.2 Sums and intersections of subspaces, and the di-
mension formula

We previously claimed that the sum and intersection of two subspaces is a
subspace, but the proof was an exercise. This result is now central to what
we are doing, so this is a good time to prove it carefully. This is a recap of
Proposition 14.

Proposition. Let V be a vector space over F. Take U , W ≤ V . Then
U +W ≤ V and U ∩W ≤ V .

Proof. Idea: use Subspace Test.
U +W

• 0V : We have 0V ∈ U and 0V ∈ W (since U , W ≤ V ),

so 0V = 0V + 0V ∈ U +W .
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• λv1 + v2: Take v1, v2 ∈ U +W and λ ∈ F.

Then v1 = u1 + w1 and v2 = u2 + w2 for some u1, u2 ∈ U and w1,
w2 ∈ W .

Now λu1+u2 ∈ U and λw1+w2 ∈ W , because U , W ≤ V , so λv1+v2 =
(λu1 + u2) + (λw1 + w2) ∈ U +W .

So, by the Subspace Test, U +W ≤ V .
U ∩W

• 0V : We have 0V ∈ U , 0V ∈ W (since U , W ≤ V )

so 0V ∈ U ∩W .

• λv1 + v2: Take v1, v2 ∈ U ∩W and λ ∈ F.

Then v1, v2 ∈ U so λv1 + v2 ∈ U ,

and v1, v2 ∈ W so λv1 + v2 ∈ W ,

so λv1 + v2 ∈ U ∩W .

So, by the Subspace Test, U ∩W ≤ V .

The next result is particularly useful.

Theorem 25 (Dimension Formula). Let U , W be subspaces of a finite-
dimensional vector space V over F. Then dim(U + W ) + dim(U ∩ W ) =
dimU + dimW .

Proof. Take a basis v1, . . . , vm of U ∩W .
Now U ∩W ≤ U and U ∩W ≤ W , so by Theorem 24 we can extend this

basis to a basis v1, . . . , vm, u1, . . . , up of U , and a basis v1, . . . , vm, w1, . . . ,
wq of W .

With this notation, we see that dim(U ∩ W ) = m, dimU = m + p and
dimW = m+ q.

Claim. v1, . . . , vm, u1, . . . , up, w1, . . . , wq is a basis of U +W .

Proof of claim. Call this collection of vectors S.
Note that all these vectors really are in U+W (for example, u1 = u1+0V ∈

U +W ).

spanning: Take x ∈ U +W . Then x = u+ w for some u ∈ U , w ∈ W .

Since v1, . . . , vm, u1, . . . , up span U , there are α1, . . . , αm, α
′
1, . . . ,

α′
p ∈ F such that u = α1v1 + · · ·+ αmvm + α′

1u1 + · · ·+ α′
pup.
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Similarly, there are β1, . . . , βm, β
′
1, . . . , β

′
q ∈ F such that w = β1v1 +

· · ·+ βmvm + β′
1w1 + · · ·+ β′

qwq.

Then x = u + w = (α1 + β1)v1 + · · · + (αm + βm)vm + α′
1u1 + · · · +

α′
pup + β′

1w1 + · · ·+ β′
qwq ∈ Span(S).

And certainly Span(S) ⊆ U +W .

So Span(S) = U +W .

lin indep: Take α1, . . . , αm, β1, . . . , βp, γ1, . . . , γq ∈ F such that

α1v1 + · · ·+ αmvm + β1u1 + · · ·+ βpup + γ1w1 + · · ·+ γqwq = 0. (7)

Then α1v1 + · · ·+ αmvm + β1u1 + · · ·+ βpup = −(γ1w1 + · · ·+ γqwq).

The vector on the left-hand side is in U , and the vector on the right-
hand side is in W . So they are both in U ∩W .

So there are λ1, . . . , λm ∈ F such that −(γ1w1 + · · ·+ γqwq) = λ1v1 +
· · ·+ λmvm,

that is, γ1w1 + · · ·+ γqwq + λ1v1 + · · ·+ λmvm = 0.

But {v1, . . . , vm, w1, . . . , wq} is linearly independent, so γ1 = · · · = γq =
0.

Returning to equation 7, this means that

α1v1 + · · ·+ αmvm + β1u1 + · · ·+ βpup = 0.

But {v1, . . . , vm, u1, . . . , up} is linearly independent, so α1 = · · · = αm =
β1 = · · · = βp = 0.

So S is linearly independent.

This proves the claim.
So S is a basis of U +W , so

dim(U +W ) = m+ p+ q = (m+ p) + (m+ q)−m

= dimU + dimW − dim(U ∩W ).

Example. Let V be a vector space of dimension 10. Let X, Y be subspaces
of dimension 6. Then X + Y ≤ V so dim(X + Y ) ≤ dimV = 10 (using
Proposition 23). So, by the dimension formula,

dim(X ∩ Y ) = dim(X) + dim(Y )− dim(X + Y ) ≥ 6 + 6− 10 = 2.
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5.3 Direct sums of subspaces

Definition. Let U , W be subspaces of a vector space V . If U ∩W = {0V }
and U +W = V , then we say that V is the direct sum of U and W , and we
write V = U ⊕W .

In this case, we say that W is a direct complement of U in V (and vice
versa).

Proposition 26. Let U , W be subspaces of a finite-dimensional vector space
V . The following are equivalent:

(i) V = U ⊕W ;

(ii) every v ∈ V has a unique expression as u+w where u ∈ U and w ∈ W ;

(iii) dimV = dimU + dimW and V = U +W ;

(iv) dimV = dimU + dimW and U ∩W = {0V };

(v) if u1, . . . , um is a basis for U and w1, . . . , wn is a basis for W , then
u1, . . . , um, w1, . . . , wn is a basis for V .

Proof. Exercise.
Hint: (i) ⇔ (ii) follows from the definition of direct sum.
Try using the dimension formula to prove that (i)/(ii) are equivalent to

(iii), (iv), (v).

Health warning. It is not the case that if V = U⊕W then every basis of V
is the union of a basis of U and a basis of W . Can you find a counterexample
to show this?

5.4 Historical interlude 4

This course is about linear algebra. The word ‘algebra’ comes from the title of
the work Hisab al-jabr w’al-muqabala by Abu Ja’far Muhammad ibn Musa
Al-Khwarizmi. You can read about his life and work on MacTutor. Our
word ‘algorithm’ comes from the title of a Latin translation of a work by Al-
Khwarizmi on Hindu-Arabic numerals (the word derives from Al-Khwarizmi’s
name).
http://www-groups.dcs.st-and.ac.uk/history/Biographies/Al-Khwarizmi.html

We have spent time in this course discussing equations. This would all
look very different had Robert Recorde not invented the equals sign =, which
he did in a book called The Whetstone of Witte, in 1557. As MacTutor
describes, he wrote that he had chosen the symbol, using two parallel line
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segments, “bicause noe 2 thynges can be moare equalle”. You can read more
about Recorde (who studied at Oxford) on MacTutor, where you can also
find an image of the famous page from The Whetstone of Witte.
http://www-groups.dcs.st-and.ac.uk/history/Biographies/Recorde.html

http://www-groups.dcs.st-and.ac.uk/history/Bookpages/Recorde4.jpeg

6 Linear transformations

We have objects with some structure (vector spaces). This section is about
structure-preserving maps between these objects. You will see a similar phe-
nomenon in lots of other contexts too—whenever we have objects with some
kind of structure, we can ask about structure-preserving maps between ob-
jects. (This can lead to further abstraction, which is explored in Category
Theory, an interesting part of mathematics and currently a Part C course.)

6.1 What is a linear transformation?

Definition. Let V , W be vector spaces over F. We say that a map T : V →
W is linear if

(i) T (v1 + v2) = T (v1) + T (v2) for all v1, v2 ∈ V (preserves additive stuc-
ture); and

(ii) T (λv) = λT (v) for all v ∈ V and λ ∈ F (respects scalar multiplication).

We call T a linear transformation or a linear map.

Proposition 27. Let V , W be vector spaces over F, let T : V → W be
linear. Then T (0V ) = 0W .

Remark. The additive identity is an important part of the vector space
structure, and Proposition 27 confirms that a linear map respects the additive
identity too. In particular, if T : V → W has T (0V ) 6= 0W , then T is certainly
not linear. This can be very useful in practice!

Remark. A closer examination of Proposition 27 shows that either one of
the two conditions for linearity is enough to guarantee that T (0V ) = 0W .
That is, if T is any map that preserves additive structure then T (0V ) = 0W ,
and if T is any map that respects scalar multiplication then T (0V ) = 0W .

Proof. Let z = T (0V ) ∈ W .
Then z + z = T (0V ) + T (0V ) = T (0V + 0V ) = T (0V ) = z (using the

assumption to see that T (0V ) + T (0V ) = T (0V + 0V )),
so z = 0W .
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Proposition 28. Let V , W be vector spaces over F, let T : V → W . The
following are equivalent:

(i) T is linear;

(ii) T (αv1 + βv2) = αT (v1) + βT (v2) for all v1, v2 ∈ V and α, β ∈ F;

(iii) for any n ≥ 1, if v1, . . . , vn ∈ V and α1, . . . , αn ∈ F then T (α1v1 +
· · ·+ αnvn) = α1T (v1) + · · ·+ αnT (vn).

Proof. Exercise.

Remark. In practice, I most often think about linear maps using (ii) from
Proposition 28.

Example. • Let V be a vector space. Then the identity map idV : V →
V given by idV (v) = v for all v ∈ V is a linear map.

• Let V , W be vector spaces. The zero map 0 : V → W that sends every
v ∈ V to 0W is a linear map. (In particular, there is at least one linear
map between any pair of vector spaces.)

• For m, n ≥ 1, let V = Rn
col = Mn×1(R) and W = Rm

col = Mm×1(R).
Take A ∈ Mm×n(R). Define the left multiplication map LA : V → W

by LA(v) = Av for v ∈ V . This is a linear map. (We proved this in
Proposition 2.)

Similarly, we have a right multiplication map RA : Rm → Rn sending
v to vA (row vectors).

• Take m, n, p ≥ 1. Let V = Mn×p(R), let W = Mm×p(R). Take
A ∈ Mm×n(R). The left multiplication map V → W sending X to AX

is a linear map.

• Let V be a vector space over F with subspaces U , W such that V =
U ⊕W . For v ∈ V there are unique u ∈ U , w ∈ W such that v = u+w

(see Proposition 26). Define P : V → V by P (v) = w.

Claim. P is a linear map.

Proof. Take v1, v2 ∈ V and α1, α2 ∈ F.

[Secret aim: P (α1v1 + α2v2) = α1P (v1) + α2P (v2).]

Then there are u1, u2 ∈ U , w1, w2 ∈ W such that v1 = u1 + w1 and
v2 = u2 + w2.
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Now

α1v1 + α2v2 = α1(u1 + w1) + α2(u2 + w2)

= (α1u1 + α2u2) + (α1w1 + α2w2)

where the first bracket is in U and the second is in W , so P (α1v1 +
α2v2) = α1w1 + α2w2 = α1P (v1) + α2P (v2).

The linear map P is called the projection of V onto W along U .

• For A = (aij) ∈ Mn×n(R), we define the trace of A to be tr(A) :=
a11+a22+ · · ·+ann (the sum of the entries on the main diagonal of A).

The map tr : Mn×n(R) → R is a linear map.

• Let Rn[x] be the vector space of polynomials of degree at most n. Define
D : Rn[x] → Rn[x] by p(x) 7→ p′(x), that is, D(anx

n+ · · ·+a1x+a0) =
nanx

n−1+ · · ·+a1. This is a linear map from Rn[x] to Rn[x]. We could
also think of it as a linear map Rn[x] to Rn−1[x].

• Let C1(R) be the subspace of RR consisting of differentiable functions
f : R → R. The differential operator D : C1(R) → RR sending f to f ′

is a linear map.

• Let C∞(R) be the subspace of RR consisting of differentiable functions
f : R → R that are infinitely differentiable. The differential operator
D : C∞(R) → C∞(R) sending f to f ′ is a linear map.

• LetX be a set, let V = RX . For a ∈ X, the evaluation map Ea : V → R

sending f to f(a) is a linear map.

6.2 Useful ways to combine linear transformations

We can add linear transformations (pointwise), and we can multiply a linear
transformation by a scalar (pointwise).
Question Do linear transformations themselves form a vector space?

Proposition 29. Let V , W be vector spaces over F. For S, T : V → W and
λ ∈ F, define S + T : V → W by (S + T )(v) = S(v) + T (v) for v ∈ V , and
define λS : V → W by (λS)(v) = λS(v) for v ∈ V . With these operations
(and the zero map 0 : V → W we saw in an earlier example), the set of
linear transformations V → W forms a vector space.

Proof. Exercise.
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We can also compose linear transformations.

Proposition 30. Let U , V , W be vector spaces over F. Let S : U → V and
T : V → W be linear. Then T ◦ S : U → W is linear.

Proof. Take u1, u2 ∈ U and λ1, λ2 ∈ F. Then

(T ◦ S)(λ1u1 + λ2u2) = T (S(λ1u1 + λ2u2)) (definition of composition)

= T (λ1S(u1) + λ2S(u2)) (S is linear)

= λ1T (S(u1)) + λ2T (S(u2)) (T is linear)

= λ1(T ◦ S)(u1) + λ2(T ◦ S)(u2) (defn of composition)

so T ◦ S is linear by Proposition 28.

Remark. We often write T ◦ S as TS. The notation T ◦ S removes any
possible ambiguity about the order of the functions.

Definition. Let V , W be vector spaces, let T : V → W be linear. We say
that T is invertible if there is a linear transformation S : W → V such that
ST = idV and TS = idW (where idV and idW are the identity maps on V

and W respectively). In this case, we call S the inverse of T , and write it as
T−1.

Remark. T is a function, so if it is invertible then it has a unique inverse
(you saw this in the Introduction to University Maths course), so there is no
ambiguity in writing T−1.

Proposition 31. Let V , W be vector spaces. Let T : V → W be linear.
Then T is invertible if and only if T is bijective.

Proof. (⇒) If T is invertible, then it is certainly bijective (see the Introduc-
tion to University Maths course).
(⇐) Assume that T is bijective.

Then T has an inverse function S : W → V .
[Secret aim: S is linear.]
Take w1, w2 ∈ W and λ1, λ2 ∈ F.
[Secret aim: S(λ1w1 + λ2w2) = λ1S(w1) + λ2S(w2).]
Let v1 = S(w1), v2 = S(w2). Then T (v1) = TS(w1) = w1 and T (v2) =

TS(w2) = w2.
Now

S(λ1w1 + λ2w2) = S(λ1T (v1) + λ2T (v2))

= S(T (λ1v1 + λ2v2)) since T is linear

= λ1v1 + λ2v2 as S is inverse to T

= λ1S(w1) + λ2S(w2).

So S is linear.
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Proposition 32. Let U , V , W be vector spaces. Let S : U → V and
T : V → W be invertible linear transformations. Then TS : U → W is
invertible, and (TS)−1 = S−1T−1.

Proof. Exercise.

6.3 Rank and nullity

Definition. Let V , W be vector spaces. Let T : V → W be linear. We
define the kernel (or null space) of T to be

kerT := {v ∈ V : T (v) = 0W}.

We define the image of T to be

ImT := {T (v) : v ∈ V }.

Remark. This definition of image is the same for any function between any
two sets.

Lemma 33. Let V , W be vector spaces. Let T : V → W be linear. For v1,
v2 ∈ V , T (v1) = T (v2) if and only if v1 − v2 ∈ kerT .

Proof. For v1, v2 ∈ V , we have

T (v1) = T (v2) ⇔ T (v1)−T (v2) = 0W ⇔ T (v1 − v2) = 0W ⇔ v1 − v2 ∈ kerT.

Here is a very useful corollary, one that is very helpful in practice.

Corollary 34. Let V , W be vector spaces. Let T : V → W be linear. Then
T is injective if and only if kerT = {0V }.

Proof. (⇐) Assume that kerT = {0V }.
Take v1, v2 ∈ V with T (v1) = T (v2).
Then, by Lemma 33, v1 − v2 ∈ kerT , so v1 = v2.
So T is injective.

(⇒) Assume that kerT 6= {0V }. Then there is v ∈ kerT with v 6= 0V .
Then T (v) = T (0V ), so T is not injective.

Here are some useful properties of kernels and images.

Proposition 35. Let V , W be vector spaces over F. Let T : V → W be
linear. Then
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(i) kerT is a subspace of V and ImT is a subspace of W ;

(ii) if A is a spanning set for V , then T (A) is a spanning set for ImT ; and

(iii) if V is finite-dimensional, then kerT and ImT are finite-dimensional.

Proof. (i) Note that kerT ⊆ V and ImT ⊆ W .

kerT Note that T (0V ) = 0W so 0V ∈ kerT .

Take v1, v2 ∈ kerT and λ ∈ F, so T (v1) = T (v2) = 0W .

Then T (λv1 + v2) = λT (v1) + T (v2) = λ0W + 0W = 0W , so λv1 + v2 ∈
kerT .

So, by the Subspace Test, kerT ≤ V .

ImT We have T (0V ) = 0W so 0W ∈ ImT .

Take w1, w2 ∈ ImT and λ ∈ F. Then there are v1, v2 ∈ V such that
T (v1) = w1 and T (v2) = w2.

Then λw1 + w2 = λT (v1) + T (v2) = T (λv1 + v2) ∈ ImT .

So, by the Subspace Test, ImT ≤ W .

(ii) Let A be a spanning set for V .

Take w ∈ ImT . Then w = T (v) for some v ∈ V .

Now there are v1, . . . , vn ∈ A and α1, . . . , αn ∈ F such that v =
α1v1 + · · ·+ αnvn.

So (by Proposition 28)

w = T (v) = T (α1v1 + · · ·+ αnvn) = α1T (v1) + · · ·+ αnT (vn),

so w ∈ Span(T (A)).

So T (A) spans ImT .

(iii) Assume that V is finite-dimensional. Then kerT ≤ V so kerT is finite-
dimensional by Proposition 23. Also, ImT is finite-dimensional by (ii).

Definition. Let V , W be vector spaces with V finite-dimensional. Let T :
V → W be linear. We define the nullity of T to be null(T ) := dim(kerT ),
and the rank of T to be rank(T ) := dim(ImT ).

The next theorem is very important!
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Theorem 36 (Rank-Nullity Theorem). Let V , W be vector spaces with V

finite-dimensional. Let T : V → W be linear. Then dimV = rank(T ) +
null(T ).

Proof. Take a basis v1, . . . , vn for kerT , where n = null(T ).
Since kerT ≤ V , by Theorem 24 this can be extended to a basis v1, . . . ,

vn, v
′
1, . . . , v

′
r of V .

Then dim(V ) = n+ r.
For 1 ≤ i ≤ r, let wi = T (v′i).

Claim. {w1, . . . , wr} is a basis for ImT .

Proof of claim
spanning:

By Proposition 35, T (v1), . . . , T (vn), T (v
′
1), . . . , T (v

′
r) span ImT .

But v1, . . . , vn ∈ kerT , so T (v1) = · · · = T (vn) = 0W , so these vectors do
not contribute.

So in fact w1, . . . , wr span ImT .
linearly independent:

Take α1, . . . , αr ∈ F such that α1w1 + · · ·+ αrwr = 0W ,
that is, α1T (v

′
1) + · · ·+ αrT (v

′
r) = 0W ,

but T is linear so this becomes T (α1v
′
1 + · · ·+ αrv

′
r) = 0W .

So α1v
′
1 + · · ·+ αrv

′
r ∈ kerT ,

so there are β1, . . . , βn ∈ F such that α1v
′
1+ · · ·+αrv

′
r = β1v1+ · · ·+βnvn,

that is, β1v1 + · · ·+ βnvn − α1v
′
1 − · · · − αrv

′
r = 0V .

But v1, . . . , vn, v
′
1, . . . , v

′
r are linearly independent, so β1 = · · · = βn =

α1 = · · · = αr = 0.
So w1, . . . , wr are linearly independent.
This proves the claim.
Now using the claim we have rankT = r,
and so dim(V ) = n+ r = null(T ) + rank(T ).

Here are a couple of useful results in their own right that also illustrate
the usefulness of the Rank-Nullity Theorem.

Corollary 37. Let V be a finite-dimensional vector space. Let T : V → V

be linear. The following are equivalent:

(i) T is invertible;

(ii) rankT = dimV ;

(iii) nullT = 0.
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Proof. (i)⇒(ii):
Assume that T is invertible.
Then T is bijective (by Proposition 31), so is surjective, so ImT = V , so

rankT = dimV .
(ii)⇒(iii):

Assume that rankT = dimV .
Then, by Rank-Nullity, nullT = 0.

(iii)⇒(i):
Assume that nullT = 0.
Then kerT = {0V },
so T is injective (by Corollary 34).
Also, by Rank-Nullity, rankT = dimV and ImT ≤ V , so ImT = V , so

T is surjective.
So T is bijective, so T is invertible (by Proposition 31).

The next result is important, and we’ll use it again later in the course.

Corollary 38. Let V be a finite-dimensional vector space. Let T : V → V

be linear. Then any one-sided inverse of T is a two-sided inverse, and so is
unique.

Proof. Suppose that T has a right inverse S : V → V , so T ◦ S = idV .
Since idV is surjective, T is surjective, so rankT = dimV .
So, by Corollary 37, T is invertible, say with two-sided inverse S ′.
Then S ′ = S ′ ◦ idV = S ′ ◦ (T ◦ S) = (S ′ ◦ T ) ◦ S = idV ◦S = S.
So S is the (unique) two-sided inverse.
If instead we suppose that T has a left inverse S : V → V , so S ◦T = idV ,

then T is injective so nullT = 0, and the argument is similar to the previous
one.

Lemma 39. Let V and W be vector spaces, with V finite-dimensional. Let
T : V → W be linear. Let U ≤ V . Then dimU−nullT ≤ dimT (U) ≤ dimU .
In particular, if T is injective then dimT (U) = dimU .

Proof. Let S : U → W be the restriction of T to U (that is, S(u) = T (u) for
all u ∈ U).

Then S is linear, and kerS ≤ kerT so nullS ≤ nullT . Also, ImS = T (U).
By Rank-Nullity, dimT (U) = dim ImS = dimU − nullS ≤ dimU and

dimT (U) = dimU − nullS ≥ dimU − nullT .
If T is injective, then nullT = 0, so dimT (U) = dimU .
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7 Linear transformations and matrices

7.1 The matrix of a linear map with respect to given
bases

We saw examples of linear maps arising from multiplying by a matrix: for
A ∈ Mm×n(R), we defined LA : Rn

col → Rm
col by LA(v) = Av, and we defined

RA : Rm → Rn by RA(v) = vA.
Question Does every linear map between real vector spaces have this form
for a suitable matrix A?

Definition. Let V be an n-dimensional vector space over F, let v1, . . . , vn
be a basis of V . Let W be an m-dimensional vector space over F, let w1, . . . ,
wm be a basis of W . Let T : V → W be a linear transformation. We define
an m × n matrix for T as follows. For 1 ≤ j ≤ n, T (vj) ∈ W so T (vj) is
uniquely expressible as a linear combination of w1, . . . , wm: there are unique
aij (for 1 ≤ i ≤ m) such that T (vj) = a1jw1 + · · ·+ amjwm. That is,

T (v1) = a11w1 + a21w2 + · · ·+ am1wm

T (v2) = a12w1 + a22w2 + · · ·+ am2wm

...
...

T (vn) = a1nw1 + a2nw2 + · · ·+ amnwm.

We say that M(T ) = (aij) is the matrix for T with respect to these ordered
bases for V and W .

Remark. • The jth column of M(T ) lists the coefficients of T (vj) with
respect to the chosen basis for W .

• The matrix M(T ) above depended on our choice of bases. Different
bases will in general give different matrices. This turns out to be in-
teresting, and we’ll explore it further soon.

• The order of the basis vectors mattered too.

• Sometimes it can be helpful to record the bases more explicitly. If
BV is an ordered basis for V and BW is an ordered basis for W , then
mathematicians sometimes write BV

MBW
(T ) (or other variants on this)

for the matrix for T with respect to these ordered bases.

• If V = W and we use the same ordered basis for both domain and
codomain of T : V → V , then we talk about the matrix for T with
respect to this basis.
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• If we have a linear map T : V → W , then by writing vectors in V

and W using coordinates with respect to given ordered bases, we can
interpret T as left multiplication by M(T ). See Proposition 40 for more
on this.

Example. Let T : R3 → R3 be defined by T (x, y, z) = (0, x, y). This is
linear (exercise!).

What is the matrix for T with respect to the standard basis for R3? We
have

T (1, 0, 0) = ( , , )

T (0, 1, 0) = ( , , )

T (0, 0, 1) = ( , , )

so the matrix is

M(T ) =







 .

Note that T 2 6= 0 but that T 3 = 0 (exercise!). And M(T )2 6= 0 but
M(T )3 = 0 (exercise!).

Example. Take A = (aij) ∈ Mm×n(F) and consider LA : Fn
col → Fm

col defined
by LA(v) = Av.

Take the standard basis e1, . . . , en for Fn
col (where ei is the n-vector that

has 1 in position i and 0 elsewhere), and the standard basis f1, . . . , fm of
Fm
col (where fj is the m-vector that has 1 in position j and 0 elsewhere).
Then for 1 ≤ i ≤ n we have

LA(ei) = Aei = ith column of A =











a1i
a2i
...

ami











= a1if1 + · · ·+ amifm.

So M(LA) = A — we obtain the matrix A from which we started.

Proposition 40. Let V be an n-dimensional vector space over F, let BV be
an ordered basis for V . Let W be an m-dimensional vector space over F, let
BW be an ordered basis for W . Then
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(i) the matrix of 0 : V → W is 0m×n;

(ii) the matrix of idV : V → V is In;

(iii) if S : V → W , T : V → W are linear and α, β ∈ F, then M(αS+βT ) =
αM(S) + βM(T ).

Moreover, let T : V → W be linear, with matrix A with respect to BV and
BW . Take v ∈ V with coordinates xT = (x1, . . . , xn)

T with respect to BV .
Then Ax is the coordinate vector of T (v) with respect to BW .

Proof. (i), (ii), (iii): Exercise.
For the last part, say that basis BV is v1, . . . , vn, and basis BW is w1, . . . ,

wm. Saying that v has coordinates (x1, . . . , xn)
T means that v =

∑n

j=1
xjvj.

Then

T (v) = T (
n
∑

j=1

xjvj)

=
n
∑

j=1

xjT (vj) as T linear

=
n
∑

j=1

xj

(

m
∑

i=1

aijwi

)

by definition of A

=
m
∑

i=1

(

n
∑

j=1

aijxj

)

wi

so with respect to basis BW , we see that T (v) has ith coordinate
∑n

j=1
aijxj =

(Ax)i.

Proposition 41. Let U , V , W be finite-dimensional vector spaces over F,
with ordered bases BU , BV , BW respectively. Say BU has size m, BV has
size n, BW has size p. Let S : U → V and T : V → W be linear. Let A be
the matrix of S with respect to BU and BV . Let B be the matrix of T with
respect to BV and BW . Then the matrix of T ◦S with respect to BU and BW

is BA.

Proof. Note that A is an n × m matrix, and B is a p × n matrix, so the
product matrix BA is defined, and is a p×m matrix.

Let BU be u1, . . . , um

BV be v1, . . . , vn
BW be w1, . . . , wp.
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As usual, write A = (aij) and B = (bij).
By definition of A and B, we have

S(ui) =
n
∑

j=1

ajivj for 1 ≤ i ≤ m and T (vj) =

p
∑

k=1

bkjwk for 1 ≤ j ≤ n.

Now for 1 ≤ i ≤ m we have

(T ◦ S)(ui) = T (S(ui)) = T

(

n
∑

j=1

ajivj

)

=
n
∑

j=1

ajiT (vj) since T is linear

=
n
∑

j=1

aji

p
∑

k=1

bkjwk

=

p
∑

k=1

(

n
∑

j=1

bkjaji

)

wk

but
n
∑

j=1

bkjaji is both the (k, i) entry of the matrix for T ◦ S with respect to

BU and BW , and also the (k, i) entry of the matrix BA.

Remark. This is why we define multiplication of matrices in the way that
we do!

Remark. As we are about to see, this gives a relatively clear and painless
proof that matrix multiplication is associative (see Proposition 2).

Corollary 42. Take A ∈ Mm×n(F), take B ∈ Mn×p(F), take C ∈ Mp×q(F).
Then A(BC) = (AB)C.

Proof. We consider the left multiplication maps LA : Fn
col → Fm

col and LB :
F
p
col

→ Fn
col and LC : Fq

col
→ F

p
col
.

With respect to the standard bases of these spaces, the matrix of LA is
A, the matrix of LB is B, and the matrix of LC is C.

Hence, by Proposition 41, A(BC) is the matrix of LA ◦ (LB ◦LC) : F
q
col

→
Fm
col, and (AB)C is the matrix of (LA ◦ LB) ◦ LC : Fq

col
→ Fm

col with respect
to the standard bases of the relevant spaces.

But composition of functions is associative, so LA ◦ (LB ◦ LC) = (LA ◦
LB) ◦ LC ,

so A(BC) = (AB)C.
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Corollary 43. Let V be a finite-dimensional vector space. Let T : V → V

be an invertible linear transformation. Let v1, . . . , vn be a basis of V . Let A
be the matrix of T with respect to this basis (for both domain and codomain).
Then A is invertible, and A−1 is the matrix of T−1 with respect to this basis.

Proof. Exercise.

Corollary 44. Let A be an n × n matrix. Any one-sided inverse of A is a
two-sided inverse.

Proof. This follows from Corollary 38 (the corresponding result for linear
transformations) and Proposition 41 (relating matrices and linear transfor-
mations).

7.2 Change of basis

Question Take two matrices for the same linear transformation with respect
to different bases. How are the matrices related?

Example. Define T : R2 → R2 by T (x, y) = (2x+ y, 3x− 2y).
What is the matrix of T with respect to the standard basis e1, e2?
We have

T (1, 0) = (2, 3)

T (0, 1) = (1,−2)

so the matrix for T with respect to this basis is

A =

(

2 1
3 −2

)

.

Let f1 = (1,−2) and f2 = (−2, 5). Then f1, f2 is a basis of R2.
What is the matrix of T with respect to the basis f1, f2?
We have

T (f1) = (0, 7) = 14f1 + 7f2

T (f2) = (1,−16) = −27f1 − 14f2

so the matrix for T with respect to this basis is

B =

(

14 −27
7 −14

)

.

How are these two matrices related?
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Here is a blank space for a (hopefully helpful) diagram that I plan to draw
in the lecture.

We can take f1, f2 and write them with respect to e1, e2: we have

f1 = e1 − 2e2

f2 = −2e1 + 5e2

so we get a ‘change of basis matrix’

P =

(

1 −2
−2 5

)

.

Then we apply T using matrix A, which takes as input a vector written
with respect to e1, e2 and returns a vector written with respect to e1, e2.

Then we rewrite the answer in terms of f1, f2, using P−1.
This process corresponds to the matrix product P−1AP .
Note that

P−1 =

(

5 2
2 1

)

,

so

P−1AP =

(

5 2
2 1

)(

2 1
3 −2

)(

1 −2
−2 5

)

=

(

5 2
2 1

)(

0 1
7 −16

)

=

(

14 −27
7 −14

)

= B.

Can we do something like this in general?
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Theorem 45 (Change of basis theorem). Let V , W be finite-dimensional
vector spaces over F. Let T : V → W be linear. Let v1, . . . , vn and v′1, . . . ,
v′n be bases for V . Let w1, . . . , wm and w′

1, . . . , w
′
m be bases for W . Let

A = (aij) ∈ Mm×n(F) be the matrix for T with respect to v1, . . . , vn and
w1, . . . , wm. Let B = (bij) ∈ Mm×n(F) be the matrix for T with respect to

v′1, . . . , v
′
n and w′

1, . . . , w
′
m. Take pij, qij ∈ F such that v′i =

n
∑

j=1

pjivj and

w′
i =

m
∑

j=1

qjiwj. Let P = (pij) ∈ Mn×n(F) and Q = (qij) ∈ Mm×m(F).

Then B = Q−1AP .

Proof. By definition of A and B, for 1 ≤ i ≤ n we have

T (vi) =
m
∑

j=1

ajiwj and T (v′i) =
m
∑

j=1

bjiw
′
j.

Note that Q must be invertible. Let (rij) = Q−1, so wi =
m
∑

j=1

rjiw
′
j.

Now

T (v′i) = T

(

n
∑

j=1

pjivj

)

=
n
∑

j=1

pjiT (vj) as T is linear

=
n
∑

j=1

pji

m
∑

k=1

akjwk

=
m
∑

k=1

(

n
∑

j=1

akjpji

)

wk

=
m
∑

k=1

(

n
∑

j=1

akjpji

)(

m
∑

ℓ=1

rℓkw
′
ℓ

)

=
m
∑

ℓ=1

(

m
∑

k=1

n
∑

j=1

rℓkakjpji

)

w′
ℓ.

The coefficient of w′
ℓ in this sum is the (ℓ, i) entry of B, the matrix for T

with respect to v′1, . . . , v
′
n and w′

1, . . . , w
′
m, but we have also just seen that

it is the (ℓ, i) entry of Q−1AP .

57



So B = Q−1AP .

The following result follows immediately from the Change of basis theo-
rem, but is sufficiently useful that it is worth recording it separately.

Corollary 46 (Change of basis theorem, version 2). Let V be a finite-
dimensional vector space. Let T : V → V be linear. Let v1, . . . , vn and
v′1, . . . , v

′
n be bases for V . Let A be the matrix of T with respect to v1, . . . ,

vn. Let B be the matrix of T with respect to v′1, . . . , v
′
n. Let P be the change

of basis matrix, that is, the n× n matrix (pij) such that v′i =
∑n

j=1
pjivj.

Then B = P−1AP .

Proof. Immediate from the Change of basis theorem.

Remark. The change of basis matrix P is the matrix of the identity map
idV : V → V with respect to the basis v′1, . . . , v

′
n for V as domain and the

basis v1, . . . , vn for V as codomain.

Definition. Take A, B ∈ Mn×n(F). If there is an invertible n×n matrix P

such that P−1AP = B, then we say that A and B are similar.

Remark. So two matrices representing the same linear transformation from
a finite-dimensional vector space to itself, but with respect to different bases,
are similar.

7.3 Historical interlude 5

In a course such as this, the lecturer’s job is to try to present the material
in a way that is comprehensible, arranged in a sensible order, and where the
theorems are all true. But mathematics does not arrive like that—proving
theorems that have not been proved before is difficult, and mathematicians
try many ideas that do not work before they find ones that do. The mathe-
matician Julia Robinson summed this up eloquently when she was asked to
describe her typical week:

“Monday — tried to prove theorem

Tuesday — tried to prove theorem

Wednesday — tried to prove theorem

Thursday — tried to prove theorem

Friday — theorem false”
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You can read more about the life and work of Julia Robinson on MacTu-
tor, or in the book Julia: A life in mathematics by Constance Reid (published
by the Mathematical Association of America, 1996), which is where I found
the above quote.
http://www-history.mcs.st-andrews.ac.uk/Biographies/Robinson_Julia.html

7.4 Matrices and rank

For a matrix A ∈ Mm×n(F), we have defined the row space and row rank,
and analogously the column space and column rank.
Question Are rowrank(A) and colrank(A) related?

Remark. From the definitions, we see that colsp(A) = rowsp(AT ) and
so colrank(A) = rowrank(AT ). Similarly, rowsp(A) = colsp(AT ) and so
rowrank(A) = colrank(AT ).

Proposition 47. Take A ∈ Mm×n(F), let r = colrank(A). Then there are
invertible matrices P ∈ Mn×n(F) and Q ∈ Mm×m(F) such that Q−1AP has

the block form

(

Ir 0r×s

0t×r 0t×s

)

where s = n− r and t = m− r.

Proof. Idea: consider LA, and find suitable bases for domain and codomain
with respect to which LA has matrix in the given block form.

Consider LA : Fn
col → Fm

col defined by LA(v) = Av. This is linear.
We have seen that with respect to the standard bases of Fn

col and Fm
col the

matrix for LA is A.
We have ImLA = colspA (because if ei is a standard basis vector of Fn

col

then LA(ei) is the ith column of A), so rank(LA) = colrank(A) = r.
By Rank-Nullity, null(LA) = n− r = s. Take a basis v1, . . . , vs of kerLA,

and extend to a basis v1, . . . , vs, v
′
1, . . . , v

′
r of F

n
col.

For 1 ≤ j ≤ r, let wj = LA(v
′
j). Then, as in the proof of Rank-Nullity,

w1, . . . , wr is a basis of Im(LA), and we can extend this to a basis w1, . . . ,
wr, wr+1, . . . , wm of Fm

col.
Take the ordered bases v′1, . . . , v

′
r, v1, . . . , vs for Fn

col and w1, . . . , wr,
wr+1, . . . , wm of Fm

col.
What is the matrix for LA with respect to these?
We have LA(v

′
j) = wj for 1 ≤ j ≤ r

and LA(vi) = 0 for 1 ≤ i ≤ s,
so the matrix is

(

Ir 0r×s

0t×r 0t×s

)

.

So, by the Change of basis theorem (Theorem 45), there are invertible
P ∈ Mn×n(F) and Q ∈ Mm×m(F) such that Q−1AP has this form.
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Proof. (Sketch of an alternative argument.)
Just as we have elementary row operations (EROs), we can define ele-

mentary column operations (ECOs). And analogously to reduced row eche-
lon form (RRE form), we can consider reduced column echelon form (RCE
form).

Take A, and use EROs to reduce it to E in RRE form. Now use ECOs
to reduce E to F in RCE form. We consider the structure of F .

Any zero rows of F are below any nonzero rows, and any zero columns
are to the right of any nonzero columns.

If a column contains the leading entry of a row, then it has exactly one 1
and all other entries 0.

Also, if a row contains the leading entry of a column, then it has exactly
one 1 and all other entries 0.

So F has the form
(

Ir 0r×s

0t×r 0t×s

)

.

Lemma 48. Take A ∈ Mm×n(F). Let R be an invertible m×m matrix, let
P be an invertible n× n matrix. Then

(i) rowsp(RA) = rowsp(A) and so rowrank(RA) = rowrank(A);

(ii) colrank(RA) = colrank(A);

(iii) colsp(AP ) = colsp(A) and so colrank(AP ) = colrank(A);

(iv) rowrank(AP ) = rowrank(A).

Proof. Write R = (rij).

(i) Let x1, . . . , xm ∈ Fn
row be the m rows of A.

Then the ith row of RA is ri1x1 + · · ·+ rimxm — a linear combination
of the rows of A, so is in rowsp(A).

So rowsp(RA) ≤ rowsp(A).

But R is invertible, so we can apply the same argument to see that
rowsp(A) = rowsp(R−1(RA)) ≤ rowsp(RA).

So rowsp(RA) = rowsp(A), and so rowrank(RA) = rowrank(A).

(ii) Let y1, . . . , yn ∈ Fm
col be the n columns of A.

Then the ith column of RA is Ryi,
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so colsp(RA) = LR(colsp(A)).

But R is invertible, so null(LR) = 0, so Corollary 37 tells us that
dim(LR(colsp(A)) = dim colsp(A).

So colrank(RA) = colrank(A).

(iii) and (iv) Since P is invertible, P T is also invertible, with inverse (P−1)T .
Now applying the above argument to (AP )T = P TAT shows both that
colsp(AP ) = colsp(A) so colrank(AP ) = colrank(A), and also that
rowrank(AP ) = rowrank(A).

Theorem 49. Let A be an m× n matrix. Then colrank(A) = rowrank(A).

Proof. By Proposition 47, there are an invertible n × n matrix P and an
invertible m × m matrix Q such that Q−1AP = B, where B has the block
form

(

Ir 0r×s

0t×r 0t×s

)

.

By Lemma 48, rowrank(Q−1AP ) = rowrank(A) and colrank(Q−1AP ) =
colrank(A).

But rowrank(B) = colrank(B) = r,
so rowrank(A) = colrank(A).

Definition. Let A be an m× n matrix. The rank of A, written rank(A), is
the row rank of A (which we have just seen is also the column rank of A).

Remark. Let T : V → W be linear. Let BV , BW be ordered bases of V , W
respectively. Let A be the matrix for T with respect to BV and BW . Then
rank(A) = rank(T ).

Proposition 50. Let A be an m×n matrix. Let x be the n×1 column vector
of variables x1, . . . , xn. Let S be the solution space of the system Ax = 0 of m
homogeneous linear equations in x1, . . . , xn, that is, S = {v ∈ Fn

col
: Av = 0}.

Then dimS = n− colrankA.

Proof. Consider LA : Fn
col → Fm

col defined by LA(v) = Av.
Let e1, . . . , en be the standard basis of Fn

col.
Then, as in the proof of Lemma 48, Im(LA) is spanned by Ae1, . . . ,

Aen, and Aei is the ith column of A, so Im(LA) = colsp(A), so rank(LA) =
colrankA.

By definition, ker(LA) = S.
So, by Rank-Nullity, dimS + colrankA = dimFn

col = n.
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8 Inner product spaces

As you might have seen in geometrical contexts, there are various types of
product of two real vectors. The cross product (written x × y or x ∧ y) is
powerful in R3, but does not naturally generalise. The scalar product (written
x · y) does generalise nicely. Some of the theory works over an arbitrary field
F. Sometimes we need to specialise to R or to C. Scalar products and related
ideas are important in geometry, dynamics, quantum physics, . . . .

8.1 Bilinear forms

Definition. Let V be a vector space over F. A bilinear form on V is a
function of two variables from V taking values in F, often written 〈−,−〉 :
V × V → F, such that

(i) 〈α1v1 + α2v2, v3〉 = α1〈v1, v3〉+ α2〈v2, v3〉 for all v1, v2, v3 ∈ V and α1,
α2 ∈ F; and

(ii) 〈v1, α2v2 + α3v3〉 = α2〈v1, v2〉+ α3〈v1, v3〉 for all v1, v2, v3 ∈ V and α2,
α3 ∈ F.

Remark. Condition (i) says that 〈−,−〉 is linear in the first variable when
we fix the second variable, and condition (ii) similarly the other way round.

Example. For x = (x1, . . . , xn) ∈ Fn and y = (y1, . . . , yn) ∈ Fn, we define
〈x, y〉 = x1y1 + · · ·+ xnyn. This gives a bilinear form.

In R2 and R3, this is the familiar dot product, or scalar product, often
written x · y. We use this terminology in higher dimensions too.

Example. Take A ∈ Mn×n(F). For x, y ∈ Fn, define 〈x, y〉 = xAyT . This
gives a bilinear form on Fn.

Remark. Officially, xAyT is a 1 × 1 matrix, not an element of F. But it is
completely natural to identify the 1×1 matrix with the corresponding scalar
(to think of them as the same).

Remark. Note that the usual scalar product from the previous example is
an example of this in the special case that A = In, because x · y = xyT .

Definition. Let V be a vector space over F. Let 〈−,−〉 be a bilinear form
on V . Take v1, . . . , vn ∈ V . The Gram matrix of v1, . . . , vn with respect to
〈−,−〉 is the n× n matrix (〈vi, vj〉) ∈ Mn×n(F).
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Proposition 51. Let V be a finite-dimensional vector space over F. Let
〈−,−〉 be a bilinear form on V . Let v1, . . . , vn be a basis for V . Let
A ∈ Mn×n(F) be the associated Gram matrix. For u, v ∈ V , let x =
(x1, . . . , xn) ∈ Fn and y = (y1, . . . , yn) ∈ Fn be the unique coordinate vec-
tors such that u = x1v1 + · · · + xnvn and v = y1v1 + · · · + ynvn. Then
〈u, v〉 = xAyT .

Remark. So the bilinear form of the second example above essentially de-
scribes all linear forms on finite-dimensional vector spaces.

Proof. We have

〈u, v〉 = 〈
n
∑

i=1

xivi,

n
∑

j=1

yjvj〉

=
n
∑

i=1

xi〈vi,
n
∑

j=1

yjvj〉 using linearity in the first entry

=
n
∑

i=1

xi

n
∑

j=1

yj〈vi, vj〉 using linearity in the second entry

=
n
∑

i=1

n
∑

j=1

xiyjaij

= xAyT .

Definition. We say that a bilinear form 〈−,−〉 : V × V → F is symmetric
if 〈v1, v2〉 = 〈v2, v1〉 for all v1, v2 ∈ V .

8.2 Inner product spaces

Definition. Let V be a real vector space. We say that a bilinear form
〈−,−〉 : V × V → R is positive definite if 〈v, v〉 ≥ 0 for all v ∈ V , with
〈v, v〉 = 0 if and only if v = 0.

Definition. An inner product on a real vector space V is a positive definite
symmetric bilinear form on V .

We say that a real vector space is an inner product space if it is equipped
with an inner product. Unless otherwise specified, we write the inner product
as 〈−,−〉.

Definition. Let V be a real inner product space. For v ∈ V , we define the
norm (or magnitude or length) of v to be ‖v‖ :=

√

〈v, v〉.
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Remark. You might have seen that in R2 or R3 we have x ·y = ‖x‖‖y‖ cos θ,
where θ is the angle between the vectors x and y. In general, we can use
this idea to define a notion of angle in an abstract inner product space V :

we define the angle between nonzero vectors x, y ∈ V to be cos−1

(

〈x,y〉
‖x‖‖y‖

)

,

where this is taken to lie in the interval [0, π]. We’ll see later that
∣

∣

∣

〈x,y〉
‖x‖‖y‖

∣

∣

∣ ≤ 1

for any nonzero vectors x, y in an inner product space, and so this definition
does make sense.

Example. The dot product on Rn is an inner product. We noted earlier that
it is a bilinear form, and it is clearly symmetric. If x = (x1, . . . , xn) ∈ Rn

and x 6= 0, then x · x = x2
1 + · · ·+ x2

n > 0, so the dot product is also positive
definite.

The inner product space consisting of Rn equipped with the dot product
is known as n-dimensional Euclidean space. The dot product also turns Rn

col

into an inner product space.

Example. Let V = Rn[x], the vector space of polynomials of degree ≤ n

with real coefficients. For f , g ∈ V , define

〈f, g〉 =

∫ 1

0

f(x)g(x)dx.

Then 〈−,−〉 is bilinear and symmetric.
If f ∈ V and f 6= 0, then f(a) = 0 for only finitely many a in [0, 1], and

[f(x)]2 > 0 at other x, and we find that
∫ 1

0
f 2(x)dx > 0. So 〈−,−〉 is positive

definite.
So 〈−,−〉 is an inner product on V .

Proposition 52. Let V be a finite-dimensional real inner product space.
Take u ∈ V \ {0}. Define u⊥ := {v ∈ V : 〈v, u〉 = 0}. Then u⊥ is a subspace
of V , and dim u⊥ = dimV − 1, and V = Span(u)⊕ u⊥.

Proof. Consider f : V → R given by f(v) = 〈v, u〉.
Since 〈−,−〉 is bilinear, f is linear.
By definition, u⊥ = ker(f), so u⊥ is a subspace of V .
Also, Im(f) ≤ R and dim(Im(f)) > 0 (because 〈u, u〉 > 0 so Im(f)

contains a nonzero real number), so dim Im(f) = 1.
So, by Rank-Nullity, dimV = dim(u⊥) + 1.
Take v ∈ Span(u) ∩ u⊥. Then v = λu for some λ ∈ R, and 〈v, u〉 = 0.
So 0 = 〈v, u〉 = 〈λu, u〉 = λ〈u, u〉, but 〈u, u〉 > 0 so this gives λ = 0.
So Span(u) ∩ u⊥ = {0}.
So, by Proposition 26, V = Span(u)⊕ u⊥.
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Definition. Let V be an inner product space. We say that {v1, . . . , vn} ⊆ V

is an orthonormal set if for all i, j we have

〈vi, vj〉 = δij =

{

1 if i = j

0 if i 6= j.

Lemma 53. Let {v1, . . . , vn} be an orthonormal set in an inner product space
V . Then v1, . . . , vn are linearly independent.

Proof. Take α1, . . . , αn ∈ F such that α1v1 + · · ·+ αnvn = 0.
Then for 1 ≤ i ≤ n we have

0 = 〈0, vi〉 = 〈α1v1 + · · ·+ αnvn, vi〉

= α1〈v1, vi〉+ · · ·+ αn〈vn, vi〉

= αi

so α1 = · · · = αn = 0.

Remark. So a set of n orthonormal vectors in an n-dimensional vector space
is a basis.

Theorem 54. Let V be an n-dimensional real inner product space. Then
there is an orthonormal basis v1, . . . , vn of V .

Proof. By induction on n = dimV .
n = 0: nothing to prove
n = 1: Take v ∈ V with v 6= 0. Let v1 =

v
‖v‖

.
Then

〈v1, v1〉 =
〈v, v〉

‖v‖2
= 1

and {v1} is a basis of V ,
so {v1} is an orthonormal basis of V .

induction step: Fix n ≥ 1, and suppose that the result holds for real inner
product spaces with dimension n− 1.

Take v ∈ V with v 6= 0. Let v1 =
v

‖v‖
, then ‖v1‖ = 1 as above.

Let U = v⊥1 . Then, by Proposition 52, V = Span(v1)⊕ U .
The restriction of 〈−,−〉 to U ×U makes U an inner product space, and

dimU = n − 1 (by Proposition 52). So, by the induction hypothesis, there
is an orthonormal basis v2, . . . , vn of U .

Since V = Span(v1)⊕ U , we see that v1, v2, . . . , vn is a basis for V .
Now for 2 ≤ i ≤ n we have 〈v1, vi〉 = 0 (because U = v⊥1 ),
so v1, v2, . . . , vn is an orthonormal basis of V .
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8.3 Orthogonal matrices

In a previous definition, we said that a matrix X ∈ Mn×n(R) is orthogonal
if XXT = In = XTX. Equivalently, X is orthogonal if X is invertible and
X−1 = XT .

Lemma 55. Take X ∈ Mn×n(R). Consider Rn equipped with the usual
inner product 〈x, y〉 = x · y. The following are equivalent:

(i) XXT = In;

(ii) XTX = In;

(iii) the rows of X form an orthonormal basis of Rn;

(iv) the columns of X form an orthonormal basis of Rn
col
;

(v) for all x, y ∈ Rn, we have xX · yX = x · y.

Proof. (i) ⇔ (ii): For any A, B ∈ Mn×n(R), we have AB = In if and only if
BA = In (Corollary 44).
(i) ⇔ (iii): Say the rows of X are x1, . . . , xn.

Note that the (i, j) entry of XXT is xi · xj.
But XXT = In if and only if the (i, j) entry of XXT is δij.

(ii) ⇔ (iv): Say the columns of X are y1, . . . , yn.
We see that the (i, j) entry of XTX is yi · yj.

(i) ⇒ (v): We can think of x · y as xyT .
Assume that XXT = In.
Take x, y ∈ Rn.
Then

(xX) · (yX) = (xX)(yX)T

= (xX)(XTyT )

= x(XXT )yT

= xIny
T

= xyT

= x · y.

(v) ⇒ (iii): Assume that xX · yX = x · y for all x, y ∈ Rn.
Let e1, . . . , en be the standard basis of Rn.
Then eiX is the ith row of X.
We have eiX · ejX = ei · ej = δij
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so e1X, . . . , enX is an orthonormal set of n vectors in Rn and hence a
basis.

So the rows of X form an orthonormal basis of Rn.

Remark. Condition (v) says that the map RX : Rn → Rn sending x to xX

preserves the inner product, and hence preserves length and angle. Such a
map is called an isometry of the Euclidean space Rn. So Lemma 55 says that
X is orthogonal if and only if the map RX is an isometry.

8.4 The Cauchy-Schwarz Inequality

Theorem 56 (Cauchy-Schwarz Inequality). Let V be a real inner product
space. Take v1, v2 ∈ V . Then |〈v1, v2〉| ≤ ‖v1‖‖v2‖, with equality if and only
if v1, v2 are linearly dependent.

Proof. If v1 = 0 then the inequality is clear, so assume that v1 6= 0.
For t ∈ R, consider 〈tv1 + v2, tv1 + v2〉. Since 〈−,−〉 is bilinear and

symmetric, we have

〈tv1 + v2, tv1 + v2〉 = t2〈v1, v1〉+ 2t〈v1, v2〉+ 〈v2, v2〉

= ‖v1‖
2t2 + 2t〈v1, v2〉+ ‖v2‖

2.

This is a quadratic in t.
But also 〈tv1+v2, tv1+v2〉 = ‖tv1+v2‖

2 ≥ 0 for all t ∈ R, so the quadratic
has non-positive discriminant.

So (2〈v1, v2〉)
2 − 4‖v1‖

2‖v2‖
2 ≤ 0

so |〈v1, v2〉| ≤ ‖v1‖‖v2‖.
When do we have equality?
If |〈v1, v2〉| = ‖v1‖‖v2‖, then the discriminant is 0, so the quadratic has

a repeated root. So there is some α ∈ R such that ‖αv1 + v2‖ = 0 and
so αv1 + v2 = 0 (as 〈−,−〉 is positive definite), so v1 and v2 are linearly
dependent.

Conversely, if v1, v2 are linearly dependent and v1 6= 0 then v2 = λv1 for
some λ ∈ R,

so |〈v1, v2〉| = |λ|〈v1, v1〉 = |λ|‖v1‖
2

and ‖v1‖‖v2‖ =
√

〈v1, v1〉
√

〈v2, v2〉 = |λ|‖v1‖
2

so we have equality.
If v1 = 0 then we clearly have equality.

8.5 Complex inner product spaces

Definition. Let V be a complex vector space. A function 〈−,−〉 : V ×V →
C is a sesquilinear form if
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(i) 〈α1v1 + α2v2, v3〉 = α1〈v1, v3〉+ α2〈v2, v3〉 for all v1, v2, v3 ∈ V and α1,
α2 ∈ C; and

(ii) 〈v1, v2〉 = 〈v2, v1〉 for all v1, v2 ∈ V .

In particular, we have 〈v, v〉 ∈ R for all v ∈ V . We say that a sesquilinear
form is positive definite if 〈v, v〉 ≥ 0 for all v ∈ V , with 〈v, v〉 = 0 if and only
if v = 0.

A complex inner product space is a complex vector space equipped with
a positive definite sesquilinear form.

Remark. Positive definite sesquilinear forms are often called Hermitian
forms, and complex inner product spaces are often called Hermitian spaces.

You will explore inner product spaces further in future Linear Algebra
courses.

8.6 Historical interlude 6

We’ve seen a few named mathematicians in the last few lectures, so here are
some MacTutor biographies.

Jorgen Gram
http://www-history.mcs.st-andrews.ac.uk/Biographies/Gram.html

Augustin-Louis Cauchy
http://www-history.mcs.st-andrews.ac.uk/Biographies/Cauchy.html

Hermann Schwarz
http://www-history.mcs.st-andrews.ac.uk/Biographies/Schwarz.html

(Note that there have been mathematicians called Schwartz—with a t—
but this Schwarz has no t.)

Hermitian forms are named after Charles Hermite
http://www-history.mcs.st-andrews.ac.uk/Biographies/Hermite.html

Incidentally, I was interested in the word ‘sesquilinear’, so I looked up
its etymology. It turns out that the prefex ‘sesqui-’ comes from Latin, and
means “one and a half”.

If you are interested in the history of mathematics, then you might be
interested in the Part B course on History of Maths. You can find reading
recommendations on the webpage for that course. One good place to start
might be

Jacqueline Stedall, The history of mathematics: a very short introduction
(Oxford University Press, 2012).

To be continued. . . (in Linear Algebra II)
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