Linear Algebra I, Sheet 4, MT2019

Bases and subspaces. Dimension formula. Direct sums.

Main course

1. Find the row rank of each of the following matrices:

	$\binom{2}{2}$	4	-3	0		(1)	2	3	0		1 / 1	2	3	0
(a)	1	-4	3	0	(b)	2	3	4	1	(c)	2	3	4	2
	3	-5	2	1 /		3	4	5	2 /		3	4	5	2 /

2. Let V be a vector space and let U, W be subspaces of V. Show that $U \setminus W$ is never a subspace. Find a necessary and sufficient condition for $U \cup W$ to be a subspace.

3. Let $V = \mathbb{R}^n$ where $n \ge 2$, and let U and W be subspaces of V of dimension n-1.

(a) Show that if $U \neq W$ then $\dim(U \cap W) = n - 2$.

(b) Now suppose that $n \ge 3$ and let U_1, U_2, U_3 be three distinct subspaces of dimension n-1. Must it be true that $\dim(U_1 \cap U_2 \cap U_3) = n-3$? Give a proof or find a counterexample.

(c) Show that if dim $U \leq n-2$ then there are infinitely many different subspaces X such that $U \leq X \leq V$.

4. Let $V = \mathbb{R}^4$, and let

$$X = \{ (x_1, x_2, x_3, x_4) \in V : x_2 + x_3 + x_4 = 0 \},\$$

$$Y = \{ (x_1, x_2, x_3, x_4) \in V : x_1 + x_2 = x_3 - 2x_4 = 0 \}.$$

Find bases for $X, Y, X \cap Y$ and X + Y, and write down the dimensions of these subspaces.

5. Let V be an n-dimensional vector space.

(a) Prove that V contains a subspace of dimension r for each r in the range $0 \leq r \leq n$.

(b) Show that if $U_0 \nleq U_1 \gneqq \cdots \gneqq U_k \leqslant V$ (strict containments of subspaces of V) then $k \leqslant n$. Show also that if k = n then dim $U_r = r$ for $0 \leqslant r \leqslant k$.

(c) Let U, W be subspaces of V such that $U \leq W$. Show that there is a subspace X of V such that $W \cap X = U$ and W + X = V.

6. (a) Show that $V = U \oplus W$ if and only if every vector $v \in V$ can be expressed uniquely in the form v = u + w with $u \in U$ and $w \in W$.

(b) Let $V = \mathbb{R}^3$ and $U = \{(x_1, x_2, x_3) \in V : x_1 + x_2 + x_3 = 0\}$. For each of the following subspaces W, either prove that $V = U \oplus W$, or explain why this is not true:

(i)
$$W = \{(x, 0, -x) : x \in \mathbb{R}\};$$

(ii)
$$W = \{(x, 0, x) : x \in \mathbb{R}\};$$

(iii) $W = \{(x_1, x_2, x_3) \in V : x_1 = x_3\}.$

Starter

S1. For each of the following sets S in a vector space V, find a basis for Span(S).

(i)
$$S = \{(1,0,3), (-2,5,4)\} \subseteq \mathbb{R}^3$$

(ii) $S = \{(6,2,0,-1), (3,5,9,-2), (-1,0,7,8), (5,5,-1,2)\} \subseteq \mathbb{R}^4$
(iii) $S = \{(7,-3,2,11,2), (0,4,9,-5,16), (20,-13,16,24,38), (1,12,8,-1,0)\} \subseteq \mathbb{R}^5$

S2. Prove Proposition 26 from the notes: Let U, W be subspaces of a finite-dimensional vector space V. The following are equivalent:

- (i) $V = U \oplus W$;
- (ii) every $v \in V$ has a unique expression as u + w where $u \in U$ and $w \in W$;
- (iii) $\dim V = \dim U + \dim W$ and V = U + W;
- (iv) dim $V = \dim U + \dim W$ and $U \cap W = \{0_V\};$
- (v) if u_1, \ldots, u_m is a basis for U and w_1, \ldots, w_n is a basis for W, then $u_1, \ldots, u_m, w_1, \ldots, w_n$ is a basis for V.

[Note that proving the equivalence of (i) and (ii) is Q6(a) on this sheet!]

S3. Find an example to show that it is not the case that if $V = U \oplus W$ then every basis of V is a union of a basis of U and a basis of W.

Pudding

P1. Find the column rank of each of the matrices in Q1 on this sheet. What do you notice?

P2. Taking A as each of the three matrices in Q1 on this sheet, find all the solutions to Ax = 0 in each case. What do you notice?

P3. Let $V = V_1 \oplus V_2$. Take a subspace $U \leq V$. Must it be true that $U = U_1 \oplus U_2$ where $U_1 \leq V_1$ and $U_2 \leq V_2$? (Find a proof or give a counterexample.)