Linear Algebra I, Sheet 6, MT2019

Matrices of linear transformations, change of basis, rank

Main course

- **1.** Let V be a finite-dimensional vector space, and let U, W be subspaces such that $V = U \oplus W$. Let $T: V \to V$ be a linear transformation with the property that $T(U) \subseteq U$ and $T(W) \subseteq W$.
 - (a) Show that the matrix of T with respect to a basis of V which is the union of bases of U and of W has block form $\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$, where A is the matrix of the restriction of T to U and B is the matrix of the restriction of T to W.
 - (b) Now let $V = \mathbb{R}^4$ and define $T(x_1, x_2, x_3, x_4) = (x_1 + x_2, x_1 x_2, x_4, 0)$. Find 2-dimensional subspaces U and W such that $T(U) \subseteq U$, $T(W) \subseteq W$, and $V = U \oplus W$.
 - (c) For the subspaces U, W you found in (b), find bases B_U for U and B_W for W, and find the matrix of T with respect to $B_U \cup B_W$ as in (a).
- **2.** Let $A \in \mathcal{M}_{n \times n}(\mathbb{R})$. Show that if $A^2 = 0$ then rank $A \leq \frac{1}{2}n$. Show more generally that if $A^k = 0$ then rank $A \leq n(k-1)/k$.
- **3.** Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear map T(x,y,z) = (y,-x,z) for all $(x,y,z) \in \mathbb{R}^3$. Let \mathcal{E} be the standard basis of \mathbb{R}^3 , and let \mathcal{F} be the basis f_1 , f_2 , f_3 where $f_1 = (1,1,1)$, $f_2 = (1,1,0)$ and $f_3 = (1,0,0)$.
 - (a) Calculate the matrix A of T with respect to the standard basis \mathcal{E} of \mathbb{R}^3 .
 - (b) Calculate (directly) the matrix B of T with respect to the basis \mathcal{F} .
 - (c) Let I be the identity map of \mathbb{R}^3 . Calculate the matrix P of I with respect to the bases \mathcal{E} , \mathcal{F} and the matrix Q of I with respect to the bases \mathcal{F} , \mathcal{E} , and check that $PQ = I_3$.
 - (d) What do you predict is true about QBP? Now compute it—were you right?
- **4.** (a) Show that if $X \in \mathcal{M}_{m \times n}(\mathbb{R})$ and $Y \in \mathcal{M}_{n \times m}(\mathbb{R})$ then $\operatorname{tr}(XY) = \operatorname{tr}(YX)$.
- (b) Deduce that if A and B are similar $n \times n$ matrices then tr(A) = tr(B).
- **5.** Let $A \in \mathcal{M}_{m \times n}(\mathbb{R})$ and let $b \in \mathbb{R}_{col}^m$. Prove that
 - (a) if m < n then the system of linear equations Ax = 0 always has a non-trivial solution;
 - (b) if m < n then the system of linear equations Ax = b has either no solution or infinitely many different solutions;
 - (c) if A has rank m then the system of linear equations Ax = b always has a solution;
 - (d) if A has rank n then the system of linear equations Ax = b has at most one solution;
 - (e) if m = n and A has rank n, then the system Ax = b has precisely one solution.
- **6.** Let $n \ge 2$ and let $V_n := \{a_0x^n + a_1x^{n-1}y + \dots + a_ny^n : a_0, a_1, \dots, a_n \in \mathbb{R}\}$, the real vector space of homogeneous polynomials of degree n in two variables x and y. Let B_n be the "natural" ordered basis $x^n, x^{n-1}y, \dots, xy^{n-1}, y^n$ of V_n . Define $L: V_n \to V_{n-2}$ by $L(f) := \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$.
 - (a) Check that L (the two-variable Laplace operator) is a linear transformation.
 - (b) Find the matrix of L with respect to the bases B_n of V_n and B_{n-2} of V_{n-2} .
 - (c) Find the rank of this matrix, and hence find the dimension of $\{f \in V_n : L(f) = 0\}$.

Starter

S1. In each part below, you are given two vector spaces V and W, a linear map $T:V\to W$, and ordered bases B_V and B_W for V and W respectively. Find the matrix A of T with respect to these bases.

- (i) $V = W = \mathbb{R}^3$, with standard basis $B_V = B_W$, and T(x, y, z) = (y, z, 0).
- (ii) $V = \mathbb{R}^5$ with standard basis B_V , and $W = \mathbb{R}^3$ with ordered basis $w_1 = (-1, 1, 0)$, $w_2 = (1, 0, 1)$, $w_3 = (0, 2, 1)$, and $T(x_1, x_2, x_3, x_4, x_5) = (x_1 x_3 + x_4, x_1 + x_2, x_5)$.
- (iii) $V = W = \mathbb{R}^3$, with ordered bases B_V given by $v_1 = (3, -2, 0)$, $v_2 = (1, 1, 1)$, $v_3 = (4, 7, -2)$ and B_W given by $w_1 = (1, 0, 0)$, $w_2 = (0, 1, 1)$, $w_3 = (0, 1, -1)$, and T the identity map.

S2. Let $V = \mathbb{R}_3[x]$ be the real vector space of polynomials of degree at most 3 (as in Sheet 5 Q3). Let B_3 be the ordered basis x^3 , x^2 , x, 1. For each of the following linear maps $T: V \to V$, find the matrix for T with respect to B_3 .

- (i) T = D, differentiation.
- (ii) T(p(x)) = p(x+1).
- (iii) $T(p(x)) = \int_0^1 (t-x)^3 p(t) dt$

S3. For each of the following matrices, use elementary row operations and elementary column operations to reduce the matrix to a block matrix with an identity matrix in the top left-hand corner and 0 elsewhere (as in Proposition 47 of the notes).

(a)
$$\begin{pmatrix} 1 & 2 & -1 \\ 3 & 7 & 4 \\ 5 & -1 & 6 \end{pmatrix}$$
 (b) $\begin{pmatrix} 0 & 1 & 4 & 9 \\ -2 & 8 & -7 & 3 \\ 1 & 5 & -6 & 0 \end{pmatrix}$ (c) $\begin{pmatrix} 7 & -1 & 2 \\ 1 & 0 & -3 \\ 5 & -1 & 8 \end{pmatrix}$

Pudding

P1. S2 above asks you to find the matrix A for differentiation of polynomials of degree at most 3, with respect to the ordered basis x^3 , x^2 , x, 1. Now find the matrix B with respect to the ordered basis 1, x, x^2 , x^3 . Can you find a matrix P such that $B = P^{-1}AP$?

P2. Is it true that if A, B and C are $n \times n$ real matrices then tr(ABC) = tr(BAC)? Is it true that tr(ABC) = tr(BCA)? (Give a proof or counterexample for each.)

P3. Let A be an $n \times n$ real matrix. For each of the following, give a proof or a counterexample.

- (i) If A is similar to 0, then A = 0.
- (ii) If A is similar to I_n , then $A = I_n$.
- (iii) If A is similar to a diagonal matrix, then A is diagonal.
- (iv) If A is similar to a symmetric matrix, then A is symmetric.
- (v) If A is similar to B, then A^2 is similar to B^2 .