
Linear Algebra I, Sheet 2, MT2019
Pudding

I would really appreciate feedback on ways in which these comments and solutions could be
improved and made more helpful, so please let me know about typos (however trivial), mistakes,
alternative solutions, or additional comments that might be useful.

I’m not going to give full details/proofs for every question, but hopefully I’ll give something useful
against which you can compare your thinking.

Vicky Neale (vicky.neale@maths)

P1. Use EROs to explore for which real numbers a, b, c, d the 2 × 2 matrix

(

a b

c d

)

is

invertible.

The key to this question is to keep careful track of the various cases—we must be sure that we

aren’t dividing by 0, but also that we have covered all eventualities.

Case 1: a 6= 0.
We have

(

a b 1 0
c d 0 1

)

−−−−−→
R1→

1

a
R1

(

1 b

a

1

a
0

c d 0 1

)

−−−−−−−→
R2→R2−

c

R 1

(

1 b

a

1

a
0

0 d− bc

a
− c

a
1

)

.

If d− bc

a
= 0, then we have a zero row and so the matrix is not invertible.

So we continue on the assumption that d− bc

a
6= 0. Applying further EROs, we get

−−−−−−−−→
R2→

a

ad−bc
R2

(

1 b

a

1

a
0

0 1 − c

ad−bc

a

ad−bc

)

−−−−−−−−→
R1→R1−

b

a
R2

(

1 0 d

ad−bc
− b

ad−bc

0 1 − c

ad−bc

a

ad−bc

)

.

We conclude that if d− bc

a
6= 0, then the matrix is invertible, with inverse

1

ad− bc

(

d −b

−c a

)

.

Case 2: a = 0.
We use EROs again:

(

0 b 1 0
c d 0 1

)

−−−−→
R1↔R2

(

c d 0 1
0 b 1 0

)

.

If b = 0, then the matrix is not invertible.
We proceed assuming that b 6= 0, and continue to apply EROs:

−−−−−→
R2→

1

b
R2

(

c d 0 1
0 1 1

b
0

)

−−−−−−−→
R1→R1−dR2

(

c 0 −d

b
1

0 1 1

b
0

)

.

If c = 0, then the matrix is not invertible.
Continuing on the assumption that c 6= 0, we get

−−−−−→
R1→

1

c
R1

(

1 0 − d

bc

1

c

0 1 1

b
0

)

.
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We see that if a = 0 and bc 6= 0 then the matrix is invertible, with inverse

1

bc

(

−d b

c 0

)

.

We seem to have different answers for the two cases (depending on whether a = 0 or not). Happily,
when we look more closely at these we find that the answers are the same in both cases.

Having done our exploration, we might write up the argument by starting with a statement of
the result and then giving a proof. For example, our statement might be
Claim The matrix

(

a b

c d

)

is invertible if and only if ad− bc 6= 0. In the case that it is invertible, the inverse is

1

ad− bc

(

d −b

−c a

)

.

I have chosen not to do that in these solutions, to illustrate how I might go about finding such a
statement without already knowing the answer.

The quantity ad−bc is called the determinant of the matrix. You will study determinants further
in Linear Algebra II next term.
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P2. Pick a matrix from question S1. Can you find any relationships between the rows of
the matrix? Or between the columns? Does this relate to whether the matrix is invertible?
Try this for each of the matrices from S1.

It would be a good idea to try question S1 before reading this solution, or at least to look at the

solutions to that question.

Let’s look at the second and third ones first.
We found using EROs that the second matrix is not invertible. Looking carefully at the EROs

used, the key point was that R3 = 2R1, so we can apply an ERO to create a zero row.
More generally, we can see that if one row is a scalar multiple of another, then the matrix is not

invertible because we can apply an ERO to create a zero row (or we already have a zero row).
In the third case, looking back at the EROs we see that the key was that R3 −

3

2
R1 = R2 +

1

2
R1.

Rearranging, this becomes 2R1 + R2 − R3 = 0. This is a more complex relationship than one row
being a scalar multiple of another, but could be thought of as a generalisation of it.

The name for this sort of relationship is that the rows R1, R2 and R3 are linearly dependent,
because there is a nontrivial linear combination of them that is 0. We’ll explore these ideas more
during the Linear Algebra I course, and you’ll encounter them again in the context of invertibility of
matrices when studying determinants in Linear Algebra II next term.

Examining the rows of the first matrix in S1, we see that there is no linear dependence between
them: they are linearly independent. If λ1R1 + λ2R2 = 0, then λ1 = λ2 = 0.

It is possible to do something similar with the columns too. The columns of the first matrix in
S1 are linearly independent. For the second matrix, we have C1 − 2C2 + C3 = 0. For the third, we
have −81C1 + 60C2 − 51C3 + 14C4 = 0.

The coefficients in the last of those are not the sorts of numbers that I can just spot by staring
at the columns! To find them, I solved the equation









−2 0 4 3
1 7 5 −6
−3 7 13 0
0 1 2 3

















a

b

c

d









=









0
0
0
0









,

using EROs to reduce the equation to a convenient form from which I could read off a solution. Can
you see why this matrix equation is relevant? The fact that the matrix isn’t invertible means that
there isn’t a unique choice for the coefficients, which is how we can hope to find nonzero coefficients
for a linear dependence.

It might now be interesting to look back at P1, thinking about the invertibility of a general 2× 2
matrix by considering whether the rows are linearly dependent.
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P3.The two-dimensional plane R
2 is a vector space. Which subsets of R

2 themselves
have the structure of a vector space (using the same operations of addition and scalar
multiplication as in R

2)?

This question is about investigating the subspaces of R2—we’ll look at the notion of subspace in
lectures.

The subspace {(0, 0)} is not very exciting, but is a perfectly good vector space.
If we have a subspace containing a nonzero point, then we must have all scalar multiples of that

point, so we have the whole of a straight line automatically (the straight line passing through the
origin and the given point).

In fact, any straight line through the origin is a subspace of R2. (But a straight line not through
the origin cannot be a subspace—can you see why?)

If we have a straight line and another point not on the line, then a consequence of the vector
space axioms is that we must have the whole of R2. Can you prove this?

This relates to ideas of linear dependence and dimension, which we’ll explore later in Linear
Algebra I.
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