
Linear Algebra I, Sheet 3, MT2019
Starter

I would really appreciate feedback on ways in which these comments and solutions could be
improved and made more helpful, so please let me know about typos (however trivial), mistakes,
alternative solutions, or additional comments that might be useful.

Vicky Neale (vicky.neale@maths)

S1. Prove Proposition 14 from the lecture notes. That is, let V be a vector space, and
take subspaces U , W 6 V . Then prove that U +W 6 V and U ∩W 6 V .

Claim Let U , W 6 V . Then U +W 6 V .
Proof We use the Subspace Test.

• Since U 6 V , we have 0V ∈ U . Similarly, W 6 V so 0V ∈ W .

Now 0V = 0V + 0V ∈ U +W .

• Take u1 + w1, u2 + w2 ∈ U +W , where u1, u2 ∈ U and w1, w2 ∈ W , and take λ ∈ F (where V

is a vector space over the field F).

Then λ(u1 + w1) + (u2 + w2) = (λu1 + u2) + (λw1 + w2) ∈ U +W , since U and W are both
subspaces.

So, by the Subspace Test, U +W 6 V . �

Claim Let U , W 6 V . Then U ∩W 6 V .
Proof We use the Subspace Test.

• Since U 6 V , we have 0V ∈ U . Similarly, W 6 V so 0V ∈ W .

Now 0V ∈ U ∩W .

• Take v1, v2 ∈ U ∩W , and take λ ∈ F.

Then v1, v2 ∈ U and v1, v2 ∈ W .

Then λv1 + v2 ∈ U , since U is a subspace, and similarly λv1 + v2 ∈ W .

So λv1 + v2 ∈ U ∩W .

So, by the Subspace Test, U ∩W 6 V . �
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S2. For each of the following, give an example or prove that no such example exists, first
when V = R

3, and second when V = M2×2(R).

(i) A set of 2 linearly independent vectors in V .

(ii) A set of 3 linearly independent vectors in V .

(iii) A set of 4 linearly independent vectors in V .

(iv) A spanning set of 2 vectors in V .

(v) A spanning set of 3 vectors in V .

(vi) A spanning set of 4 vectors in V .

For the parts where there are examples, there are many possible examples!

(a) Let V = R
3.

(i) For example, {(1, 0, 0), (0, 1, 0)} is linearly independent.

(But we cannot simply take any set of 2 vectors in V . For example, {(1, 0, 0), (2, 0, 0)} is
not linearly independent.)

(ii) For example, {(1, 0, 0), (0, 1, 0), (0, 0, 1)} is linearly independent.

(iii) There are no sets of 4 linearly independent vectors in V . One way to see this is that V
has dimension 3 — for example we see that the set in (ii) above is a basis with 3 elements
— and so any linearly independent set has size at most 3.

We could also see it directly, rather than by quoting a result. Suppose that a1 =
(a11, a21, a31), a2 = (a12, a22, a32), a3 = (a13, a23, a33), a4 = (a14, a24, a34) are four vectors
in V .

[Secret aim: these four vectors are linearly dependent.]

Take λ1, λ2, λ3, λ4 ∈ R such that λ1a1 + λ2a2 + λ3a3 + λ4a4 = 0.

[Secret aim: there is a solution with λ1, λ2, λ3, λ4 not all 0.]

Then





a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34













λ1

λ2

λ3

λ4









=





0
0
0



 .

If we were to apply EROs to reduce the 3 × 4 matrix to RRE form, we would find that
there is at least one free variable λi, because there can be at most three columns containing
the leading entry of a row. But we can choose any value for a free variable, and so there
is certainly a solution with λ1, λ2, λ3, λ4 not all 0.

(iv) There are no spanning sets of 2 vectors in V . Since V has dimension 3, any spanning set
must contain at least 3 elements. (Or, again, we could see it directly.)

(v) For example, {(1, 0, 0), (0, 1, 0), (0, 0, 1)} is a spanning set.

(vi) For example, {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)} is a spanning set.

(If we have a spanning set with 3 vectors, then we can add any fourth vector at all and
still have a spanning set.)
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(b) Let V = M2×2(R).

(i) For example, {

(

1 0
0 0

)

,

(

0 1
0 0

)

} is linearly independent.

(ii) For example, {

(

1 0
0 0

)

,

(

0 1
0 0

)

,

(

0 0
1 0

)

} is linearly independent.

(iii) For example, {

(

1 0
0 0

)

,

(

0 1
0 0

)

,

(

0 0
1 0

)

,

(

0 0
0 1

)

} is linearly independent.

(iv) There are no spanning sets of 2 vectors in V . The linearly independent set in (iii) above is
in fact the standard basis for V , which has dimension 4, so any spanning set must contain
at least 4 elements.

(v) Similarly to (iv), there are no spanning sets of 3 vectors in V .

(vi) The example from (iii) is also a spanning set with 4 elements — it is a basis.

S3. Let V be the set of polynomials of degree at most 2 with real coefficients. That is,
V = {a0 + a1x + a2x

2 : a0, a1, a2 ∈ R}. Show that this is a vector space (under the usual
polynomial addition and scalar multiplication).
Give a basis B1 for V . Give another basis B2 that shares exactly one element with B1.
Give a third basis B3 that shares no elements with B1 or B2.

To show that V is a vector space, we check the usual list of axioms, noting that V is indeed closed
under addition and scalar multiplication (for example, adding two polynomials of degree at most 2
does give a polynomial of degree at most 2).

I’m not going to write out the whole list of axiom checks here!

There are many possible bases for V — this is the point of the question.
The standard basis, which I’m going to call B1, is B1 = {1, x, x2}. We can see immediately that

this is linearly independent and that it spans V .
An example of another basis that shares exactly one element with B1 is B2 = {1, x+ x2, x− x2}.

To show that this is a basis, since we already know that V has dimension 3 and this is a set of 3
elements, it is enough to prove either that B2 spans or that B2 is linearly independent (we don’t
need to prove both).

To show that B2 is linearly independent: take λ1, λ2, λ3 ∈ R such that λ · 1+λ2(x+x2)+λ3(x−
x2) = 0. Comparing constant coefficients shows λ1 = 0. Comparing coefficients of x and x2 gives
λ2+λ3 = 0 and λ2−λ3 = 0 respectively, and solving these simultaneous equations gives λ2 = λ3 = 0.

A third basis, sharing no elements with B1 or B2, is B3 = {3− x2, πx, 1 + x+ x2}. Again, since
this is a set with dimV elements, to prove that B3 is a basis it suffices to prove that B3 is linearly
independent. We can do this using a similar argument to that used for B2.
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