
Linear Algebra I, Sheet 7, MT2019
Pudding

I would really appreciate feedback on ways in which these comments and solutions could be
improved and made more helpful, so please let me know about typos (however trivial), mistakes,
alternative solutions, or additional comments that might be useful.

I’m not going to give full details/proofs for every question, but hopefully I’ll give something useful
against which you can compare your thinking.

Vicky Neale (vicky.neale@maths)

P1. Let V be a real inner product space. Suppose that v1, v2 ∈ V have the property
that 〈v1, v〉 = 〈v2, v〉 for all v ∈ V . Does this mean that v1 = v2? Give a proof or
counterexample.

Suppose that 〈v1, v〉 = 〈v2, v〉 for all v ∈ V .
Then, using bilinearity, we have 〈v1 − v2, v〉 = 0 for all v ∈ V .
In particular, this holds when v = v1 − v2, so 〈v1 − v2, v1 − v2〉 = 0.
But the inner product is positive definite, so v1 − v2 = 0.

P2. Let V = R2[x] with the inner product defined in Q3(b). Find an orthonormal basis
of V .

Note that V is 3-dimensional (for example, 1, x, x2 is a basis). So it is enough to find a set of
three orthonormal vectors — these must be linearly independent and hence a basis.

Sadly 1, x, x2 are not orthonormal. But we can try to adapt them.
We see that 〈1, 1〉 = 3. So let’s scale, and replace 1 by 1
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, then we can fix things. Specifically, instead of x, let’s consider x−
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To reassure ourselves, we can check: we have 〈 1
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, x − 1〉 = − 1
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indeed orthogonal.
Now 〈x− 1, x− 1〉 = 1+1 = 2, so we can rescale — we should consider 1

√

2
(x− 1) instead, as this

has length 1. Note that rescaling doesn’t affect it being orthogonal to 1
√

3
.

So far we have included 1
√

3
and 1
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(x− 1) in our efforts towards an orthonormal basis. Let’s try

a similar strategy to adapt x2.
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, then we’ll have a vector orthogonal to 1
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Now 〈x2−2x+ 1
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, so let’s rescale to consider instead
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which has length 1 and is still orthogonal to the other two vectors.
So we see that

{
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is an orthonormal basis.
There are lots of possible approaches that we might use to find an orthonormal basis. The approach

I’ve chosen here is a strategy that works in general, called the Gram-Schmidt procedure. You will

learn about this in Linear Algebra II next term.
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P3. Let V be a real vector space with inner product 〈−,−〉 and associated length function
‖ · ‖. Show that ‖v1+ v2‖2+‖v1− v2‖2 = 2‖v1‖2+2‖v2‖2 for all v1, v2 ∈ V — this is called
the parallelogram law.

Take v1, v2 ∈ V .
Then, using bilinearity and symmetry of the inner product,

‖v1 + v2‖2 + ‖v1 − v2‖2 = 〈v1 + v2, v1 + v2〉+ 〈v1 − v2, v1 − v2〉
= 〈v1, v1〉+ 2〈v1, v2〉+ 〈v2, v2〉+ 〈v1, v1〉 − 2〈v1, v2〉+ 〈v2, v2〉
= 2〈v1, v1〉+ 2〈v2, v2〉
= 2‖v1‖2 + 2‖v2‖2.

2


