
Complex Numbers Problems Sheet, MT2019

I would really appreciate feedback on ways in which these solutions could be improved and made
more helpful, so please let me know about typos (however trivial), mistakes, alternative solutions, or
additional comments that might be useful.

Vicky Neale (vicky.neale@maths)

1. Which of the following quadratic equations have real roots, which do not?

3x2 + 2x− 1 = 0; 2x2 − 6x+ 9 = 0; −4x2 + 7x− 9 = 0; 4x2 − 9x+ 5 = 0.

(i) The discriminant is 22 − 4 · 3 · (−1) = 4 + 12 > 0, so the equation has two distinct real roots.

(ii) The discriminant is (−6)2 − 4 · 2 · 9 = 36− 72 < 0, so the equation has no real roots.

(iii) The discriminant is 72 − 4 · (−4) · (−9) = 49− 144 < 0, so the equation has no real roots.

(iv) The discriminant is (−9)2 − 4 · 4 · 5 = 81− 80 > 0, so the equation has two distinct real roots.

2. Write a careful proof of the theorem that if z, w ∈ C then z + w = z+w and zw = z w.

Claim Take z, w ∈ C. Then z + w = z + w.
Proof We may write z = a+ bi and w = c+ di, where a, b, c, d ∈ R. Then

z + w = (a+ bi) + (c+ di)

= (a+ c) + (b+ d)i

= (a+ c)− (b+ d)i

= (a− bi) + (c− di)
= z + w.

�
Claim Take z, w ∈ C. Then zw = z w.
Proof Write z = a+ bi and w = c+ di as above. Then

zw = (a+ bi)(c+ di)

= (ac− bd) + (ad+ bc)i

= (ac− bd)− (ad+ bc)i

= (a− bi)(c− di)
= z w.

�
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3. Put each of the following complex numbers into standard form a+ bi:

(1 + 2i)(3− i); (2 + i)(1− 2i); (1 + i)4; (1−
√

3i)3;
7− 2i

5 + 12i
;

i

1− i
.

(i) We have

(1 + 2i)(3− i) = 3 + 6i− i− 2i2

= 3 + 5i+ 2

= 5 + 5i.

[That is not what I would actually write for my own solution. I have had enough practice that
I don’t write i2, I just replace it by −1 straight away. And in fact I have had so much practice
that I would do the calculations in my head and just write

(1 + 2i)(3− i) = 5 + 5i.

I wrote out the detailed steps above to show what I’m doing in my head, but I’m not going to
write it all out again in these solutions. And far from encouraging you to write out all the
steps, I’d encourage you to develop your fluency to the point where you can just write down the
answer to things like this. Sometimes it’s actively helpful to write down intermediate steps, but
this seems to me like one of those occasions when it just gets in the way.]

(ii) (2 + i)(1− 2i) = 4− 3i

(iii) (1 + i)4 = (2i)2 = −4

That’s intriguing! You might like to think about how to interpret this geometrically, if you
haven’t already done so.

(iv) (1−
√

3i)3 = (−2− 2
√

3i)(1−
√

3i) = −8

Again, how could we see this geometrically?

(v)
7− 2i

5 + 12i
=

(7− 2i)(5− 12i)

(5 + 12i)(5− 12i)
=

11

169
− 94

169
i

(vi)
i

1− i
=

i(1 + i)

(1− i)(1 + i)
= −1

2
+

1

2
i
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4. Find the modulus and argument of each of the following complex numbers:

1 +
√

3i; (2 + i)(3− i); (1 + i)5.

(i) We have

|1 +
√

3i| =
√

12 + (
√

3)2 =
√

4 = 2

and
arg(1 +

√
3i) = arctan(

√
3) =

π

3
Here, and elsewhere in the question, we give one value for the argument, but adding 2kπ for
any integer k would also give another possible value.

(ii) We have (2 + i)(3− i) = 7 + i, so

|(2 + i)(3− i)| =
√

72 + 12 =
√

50 = 5
√

2

and

arg((2 + i)(3− i)) = arctan

(
1

7

)
(iii) We have

|(1 + i)5| = |1 + i|5 = 4
√

2

and

arg((1 + i)5) = 5 arg(1 + i) =
5π

4
.

Of course we could have expanded out (1 + i)5 in the form a + bi and then found the modulus
and argument, but I think that using properties of modulus and argument saved us some work.

5. On separate Argand diagrams sketch each of the following subsets of C:

A := {z : |z| < 1}; B := {z : Re z = 3}; C := {z : −π
4
< arg z < π

4
};

D := {z : arg(z − i) = π
2
}; E := {z : |z − 3− 4i| = 5}; F := {z : |z − 1| = |z − i|}.

A := {z : |z| < 1} This is the interior of a circle of radius 1 centred on the origin (the boundary
circle is not included).
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B := {z : Re z = 3} This is a vertical line through the point 3 on the real axis.

C := {z : −π
4
< arg z < π

4
} This is a quarter sector, not including the boundary half-lines or the

origin. The boundary half lines are rays from the origin with gradient 1 and −1 respectively,
and to the right of the vertical axis.
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D := {z : arg(z − i) = π
2
} This is a vertical half-line from i upwards, not including i.

E := {z : |z − 3− 4i| = 5} This is a circle of radius 5 with centre 3 + 4i.
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F := {z : |z− 1| = |z− i|} This is the set of points at equal distance from 1 and i, which gives
a straight line through the origin with gradient 1 (putting that another way, with equation
y = x).

6. For each of the following complex numbers w, what transformation of the Argand
diagram does multiplication by w represent?

i; (1 + i); (1− i); (3 + 4i).

(i) Multiplication by i corresponds to a rotation by π
2

anticlockwise about the origin.

(ii) Multiplication by 1 + i corresponds to an enlargement by factor
√

2 from the origin and a
rotation by π

4
anticlockwise about the origin.

(iii) Multiplication by 1 − i corresponds to an enlargement by factor
√

2 from the origin and a
rotation by π

4
clockwise about the origin.

(iv) Multiplication by 3 + 4i corresponds to an enlargement by factor 5 from the origin and a
rotation by arctan 4

3
anticlockwise about the origin.

6



7. Use De Moivre’s Theorem to show that if θ ∈ R then

cos 5θ = 16 cos5 θ − 20 cos3 θ + 5 cos θ; sin 5θ = (16 cos4 θ − 12 cos2 θ + 1) sin θ.

Claim Take θ ∈ R. Then

cos 5θ = 16 cos5 θ − 20 cos3 θ + 5 cos θ; sin 5θ = (16 cos4 θ − 12 cos2 θ + 1) sin θ.

Proof By de Moivre’s theorem we have

(cos θ + i sin θ)5 = cos(5θ) + i sin(5θ).

Expanding out the left-hand side, we obtain

(cos θ + i sin θ)5 = (cos5 θ − 10 cos3 θ sin2 θ + 5 cos θ sin4 θ) + i(5 cos4 θ − 10 cos2 θ sin3 θ + sin5 θ),

and comparing real and imaginary parts with cos(5θ) + i sin(5θ) we obtain

cos(5θ) = cos5 θ − 10 cos3 θ sin2 θ + 5 cos θ sin4 θ

= cos5 θ − 10 cos3 θ(1− cos2 θ) + 5 cos θ(1− cos2 θ)2

= cos5 θ − 10 cos2 θ + 10 cos5 θ + 5 cos θ − 10 cos3 θ + 5 cos5 θ

= 16 cos5 θ − 20 cos3 θ + 5 cos θ

and

sin(5θ) = 5 cos5 θ sin θ − 10 cos2 θ sin2 θ + sin5 θ

= sin θ(5 cos4 θ − 10 cos2 θ(1− cos2 θ) + (1− cos2 θ)2)

= sin θ(5 cos4 θ − 10 cos2 θ + 10 cos4 θ + 1− 2 cos2 θ + cos4 θ)

= sin θ(16 cos4 θ − 12 cos2 θ + 1).

�

8. Write down the primitive 6th roots of unity and the primitive 8th roots of unity in
standard form a+ bi.

The primitive 6th roots of unity are

e2πi/6 and e10πi/6

—that is,
1

2
+

√
3

2
i and

1

2
−
√

3

2
i.

The primitive 8th roots of unity are

e2πi/8 and e6πi/8 and e10πi/8 and e14πi/8

—that is,
1√
2

(1 + i) and
1√
2

(−1 + i) and
1√
2

(−1− i) and
1√
2

(1− i)

—that is,

± 1√
2
± 1√

2
i.
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9. Let φ := cos(2π/5) + i sin(2π/5), a primitive 5th root of 1. Define α := φ + φ4,
β := φ2 + φ3.

(i) Show that α and β are real numbers.

(ii) Show that α + β = −1 and αβ = −1 (so that α, β are the roots of x2 + x− 1 = 0).

(iii) Deduce that cos(2π/5) = 1
4
(
√

5− 1).

(i) Claim α is real.

Proof Note that φ = e
2πi
5 , and φ4 = e

8πi
5 = e−

2πi
5 = φ,

so α = φ+ φ4 = φ+ φ = 2 Re(φ) is real. �

Claim β is real.

Proof Note that φ3 = φ2, so much the same argument works again. �

(ii) Claim α + β = −1

Proof Since φ is a primitive 5th root of 1, we see that φ4 +φ3 +φ2 +φ+ 1 = 0 (this comes from
factorising φ5 − 1 = 0 and noting that φ 6= 1 because it is primitive).

That is, α + β + 1 = 0. �

Claim αβ = −1

Proof Remembering that φ5 = 1, we have

(φ+ φ4)(φ2 + φ3) = φ3 + φ6 + φ4 + φ7

= φ3 + φ+ φ4 + φ2

= −1

using the observation in the previous claim. �

(iii) Claim cos(2π/5) = 1
4
(
√

5− 1)

Proof By (ii), we know that α and β are the two roots of the quadratic (z − α)(z − β) =
z2 − (α + β)z + αβ = z2 + z − 1.

But the roots of this quadratic are −1±
√
5

2
. Note that one of these roots is positive and one is

negative. We want to determine which of the two is α.

Now φ+φ4 and φ2 +φ3 are both real, and we have φ+φ4 = 2 cos
(
2π
5

)
and φ2 +φ3 = 2 cos

(
4π
5

)
.

Since π
2
< 4π

5
< π, we see that cos

(
4π
5

)
< 0, so

cos

(
2π

5

)
=

1

2
(φ+ φ4) =

−1 +
√

5

4
.

�
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10. Find the square roots of −7+24i. Now solve the equation z2−(2+2i)z+(7−22i) = 0.

(i) To find the square roots of −7 + 24i, let’s write it in modulus-argument form.

We have | − 7 + 24i| =
√

72 + 242 = 25

and if arg(−7 + 24i) = θ then tan θ = −24
7

.

So −7 + 24i = 25eiθ where tan θ = −24
7

.

Let w = Reiφ be a square root of −7 + 24i. Then w2 = R2e2iφ = −7 + 24i = 25eiθ.

So R = 5, and

−24

7
= tan θ = tan(2φ) =

2 tanφ

1− tan2 φ
.

For convenience, let t = tanφ. Then we can rearrange to a get a quadratic in t: we have
12t2 − 7t− 12 = 0, and so

t = tanφ =
7±
√

72 + 4 · 144

24
=

7± 25

24
.

So tanφ = 4
3

or tanφ = −3
4
.

Combining this with R = 5, we see that the possibilities for w are

3 + 4i and− 3− 4i and 4− 3i and − 4 + 3i.

This is a disconcertingly large number of solutions (secretly we’re expecting two, right?). What
we’ve shown is that if w is a square root of −7+24i, then w must be on that list of four values.
We have not shown that all four of these values are indeed square roots of w. And in fact a
quick check will show that (4− 3i)2 = (−4 + 3i)2 = 7− 24i, so these are no good, but ±(3 + 4i)
are indeed the square roots of −7 + 24i.

(ii) Now we wish to solve the quadratic equation z2− (2+2i)z+(7−22i) = 0. Using the quadratic
formula, we see that the solutions are

z =
(2 + 2i)±

√
(2 + 2i)2 − 4(7− 22i)

2

=
(2 + 2i)±

√
8i− 28 + 88i

2

=
(2 + 2i)±

√
−28 + 96i

2

= (1 + i)±
√
−7 + 24i

= (1 + i)± (3 + 4i)

so the two solutions are 4 + 5i and −2− 3i.
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11. By considering the seventh roots of −1, show that

cos
π

7
+ cos

3π

7
+ cos

5π

7
=

1

2
.

What is the value of

cos
2π

7
+ cos

4π

7
+ cos

6π

7
?

Claim

cos
π

7
+ cos

3π

7
+ cos

5π

7
=

1

2
.

Proof Let ζ = cos
(
π
7

)
+ i sin

(
π
7

)
. Then ζ7 = −1 but ζ 6= −1.

By de Moivre’s theorem, ζk = cos
(
πk
7

)
+ i sin

(
πk
7

)
.

Now ζ7 + 1 = 0,
so (ζ + 1)(ζ6 − ζ5 + ζ4 − ζ3 + ζ2 − ζ + 1) = 0,
but ζ 6= −1 so ζ6 − ζ5 + ζ4 − ζ3 + ζ2 − ζ + 1 = 0.
Looking just at the real part of this, we have

cos

(
6π

7

)
− cos

(
5π

7

)
+ cos

(
4π

7

)
− cos

(
3π

7

)
+ cos

(
2π

7

)
− cos

(π
7

)
+ 1 = 0.

But

cos

(
6π

7

)
= − cos

(π
7

)
and cos

(
5π

7

)
= − cos

(
2π

7

)
and cos

(
4π

7

)
= − cos

(
3π

7

)
,

so this becomes

1 = 2

(
cos
(π

7

)
+ cos

(
3π

7

)
+ cos

(
5π

7

))
,

so

cos
(π

7

)
+ cos

(
3π

7

)
+ cos

(
5π

7

)
=

1

2
.

�
Now

cos

(
2π

7

)
+ cos

(
4π

7

)
+ cos

(
6π

7

)
= −

(
cos

(
5π

7

)
+ cos

(
3π

7

)
+ cos

(π
7

))
= −1

2
.
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12. Show that σ8 = −1 if and only if σ is a primitive 16th root of 1. Find the roots of the
equation x8 = −1, and use them to write x8 + 1 as the product of four quadratic factors
with real coefficients.

(i) Claim σ8 = −1 if and only if σ is a primitive 16th root of 1.

Proof (⇒) Suppose that σ8 = −1. Then σ16 = (σ8)2 = 1, so certainly σ is a 16th root of 1.

Let d be the smallest positive integer such that σd = 1 (so d 6 16). Then 16 = qd+ r for some
integers q and r with 0 6 r < d. Now

σr = σ16−qd = σ16(σd)−q = 1.

But r is less than d, and d is the smallest such positive integer, so we must have r = 0. That
is, d divides 16.

If d 6= 16, then we must have that d divides 8, say 8 = kd where k is an integer. Now
−1 = σ8 = (σd)k = 1 which is impossible! So d = 16. So σ is a primitive 16th root of 1.

(⇐) Suppose that σ is a primitive 16th root of 1. Then σ16 = 1, so σ8 = ±1.

But σ is a primitive 16th root of 1, so σ8 6= 1.

So we must have σ8 = −1.

�

There are more direct ways to prove this statement. For example, you could compute the roots
of σ8 = −1 and the primitive 16th roots of 1, and show that the two lists of numbers are the
same. I’ve given a different argument here because this same strategy crops up in other places
too—there are useful ideas here. Watch out for similar arguments in the Groups and Group
Actions course, for example.

(ii) Let’s find the roots of x8 = −1 using the previous part: we know that they’re the primitive
16th roots of 1.

But the primitive 16th roots of 1 are e
2πki
16 where 1 6 k 6 16 and the highest common factor of

k and 16 is 1. (Can you prove this? Go on, do it!)

So the primitive 16th roots of 1 (the roots of x8 = −1) are e
2πki
16 for k ∈ {1, 3, 5, 7, 9, 11, 13, 15},

that is,

e
2πi
16 and e

6πi
16 and e

10πi
16 and e

14πi
16 and e

18πi
16 and e

22πi
16 and e

26πi
16 and e

30πi
16 .

(iii) Claim

x8+1 = (x2−2 cos
(π

8

)
x+1)(x2−2 cos

(
3π

8

)
x+1)(x2−2 cos

(
5π

8

)
x+1)(x2−2 cos

(
7π

8

)
x+1)

—a product of four quadratic factors with real coefficients.

Proof We’ve just found the roots of this polynomial: we know that

x8 + 1 = (x− e
πi
8 )(x− e−

πi
8 )(x− e

3πi
8 )(x− e−

3πi
8 )(x− e

5πi
8 )(x− e−

5πi
8 )(x− e

7πi
8 )(x− e−

7πi
8 )

and combining these pairs of linear factors gives the quadratics as claimed. �
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