
Fourier Series & PDEs: Lectures 3-4

Convergence of Fourier series

• Definition: The right-hand limit of f at c is f(c+) = lim
h→0
h>0

f(c+ h) if it exists.

• Definition: The left-hand limit of f at c is f(c−) = lim
h→0
h<0

f(c+ h) if it exists.

• Remarks:

(1) f(c) need not be defined for f(c+) or f(c−) to exist.

(2) The existence part is important, e.g. if f(x) = sin(1/x) for x 6= 0, then f(0±) do not exist.

(3) f is continuous at c if and only if f(c−) = f(c) = f(c+).

(4) In Example 2, f is continuous for x/π ∈ R\Z with e.g. f(0±) = ±1 and f(π±) = ∓1.

• Definition: f is piecewise continuous on (a, b) ⊆ R if there exists a finite number of points
x1, . . . , xm ∈ R with a = x1 < x2 < . . . < xm = b such that

(i) f is defined and continuous on (xk, xk+1) for all k = 1, . . . ,m− 1;

(ii) f(xk+) exists for k = 1, . . . ,m− 1;

(iii) f(xk−) exists for k = 2, . . . ,m.

• Remarks:

(1) Note that f need not be defined at its exceptional points x1, . . . , xm!

(2) The functions in Examples 1 and 2 are piecewise continuous on any interval (a, b) ⊆ R.

• Fourier Convergence Theorem: Let f : R → R be 2π-periodic, with f and f ′ piecewise
continuous on (−π, π). Then, the Fourier coefficients

an =
1

π

π∫
−π

f(x) cos (nx) dx (n ∈ N),

bn =
1

π

π∫
−π

f(x) sin (nx) dx (n ∈ N \ {0})

exist, and

1

2

(
f(x+) + f(x−)

)
=
a0
2

+
∞∑
n=1

(
an cos (nx) + bn sin (nx)

)
for x ∈ R.

• Remarks on the hypotheses:

(1) If f and f ′ are piecewise continuous on (−π, π), then there exist x1, . . . , xm ∈ R with
−π = x1 < x2 < . . . < xm = π such that

(i) f and f ′ are continuous on (xk, xk+1) for k = 1, . . . ,m− 1.

(ii) f(xk+) and f ′(xk+) exist for k = 1, . . . ,m− 1.

(iii) f(xk−) and f ′(xk−) exist for k = 2, . . . ,m.
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(2) Thus, in any period f, f ′ are continuous except possibly at a finite number of points. At
each such point f ′ need not be defined, and one or both of f and f ′ may have a jump
discontinuity, as illustrated for the various different possibilities in the schematic below

(3) For example, if

f(x) =

{
x1/2 for 0 ≤ x ≤ π ,

0 for − π < x < 0,

then

f ′(x) =


1

2
x−1/2 for 0 < x < π ,

0 for − π < x < 0 ,

undefined for x = 0, π.

Hence, while f is piecewise continuous on (−π, π), f ′ is not because f ′(0+) does not exist.

• Remarks on the convergence result:

(1) The partial sums of the Fourier series are defined by

SN(x) =
a0
2

+
N∑
n=1

(
an cos (nx) + bn sin (nx)

)
for N ∈ N\{0}.

The theorem states that the partial sums converge pointwise in the sense that

lim
N→∞

SN(x) =
1

2

(
f(x+) + f(x−)

)
for each x ∈ R.

(2) If f has a jump discontinuity at x so that f(x+) 6= f(x−), then the Fourier series converges
to
(
f(x+) + f(x−)

)
/2, i.e. the average of the left- and right-hand limits of f at x.

(3) If f is continuous at x so that f(x−) = f(x) = f(x+), then the Fourier series converges
to f(x).

(4) If we redefined f to be equal to the average of its left- and right-hand limits at each of its
jump discontinuities, then the Fourier series would converge instead to f on R.

(5) If f is defined only on e.g. (−π, π], then the Fourier Convergence Theorem holds for its
2π-periodic extension.

(6) We note that the Fourier Convergence Theorem implies that

1

2

(
g(x+) + g(x−)

)
=

a0
2

+
∞∑
n=1

an cos (nx), for x ∈ R,

1

2

(
h(x+) + h(x−)

)
=

∞∑
n=1

bn sin (nx) for x ∈ R,
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where g : R→ R is the even part of f and h : R→ R is the odd part of f , defined by

g(x) =
1

2

(
f(x) + f(−x)

)
, h(x) =

1

2

(
f(x)− f(−x)

)
for x ∈ R.

• Remarks on the proof: While the proof is not examinable, it is amenable to methods from
Prelims Analysis as follows.

(1) Use the integral expressions for the Fourier coefficients and properties of periodic, even
and odd functions to manipulate the partial sums into the form

SN(x)− 1

2

(
f(x+) + f(x−)

)
=

π∫
0

F (x, t) sin

[(
N +

1

2

)
t

]
dt,

where

F (x, t) =
1

π

(
f(x+ t)− f(x+)

t
+
f(x− t)− f(x−)

t

)(
t

2 sin (t/2)

)
.

(2) Use the Mean Value Theorem (of Analysis II) to show that F (x, t) is a piecewise continuous
function of t on (0, π), and hence deduce from the Riemann-Lebesgue Lemma (of Analysis
III) that

π∫
0

F (x, t) sin

[(
N +

1

2

)
t

]
dt→ 0 as N →∞ .

• Remarks on differentiability and integrability:

(1) The Fourier series can be integrated termwise under weaker conditions, e.g. if f is only
2π-periodic and piecewise continuous on (−π, π), then the Fourier Convergence Theorem
implies

∫ x

0

f(s) ds =
1

2
a0x+

∞∑
n=1

an x∫
0

cos(ns) ds+ bn

x∫
0

sin(ns) ds

 for x ∈ R.

Note that the integral on the LHS is 2π-periodic if and only if a0 = 0.

(2) However, we need stronger conditions to differentiate termwise, e.g. if f is 2π-periodic and
continuous on R with both f ′ and f ′′ piecewise continuous on (−π, π), then the Fourier
Convergence Theorem implies

1

2
(f ′(x+) + f ′(x−)) =

∞∑
n=1

(
an

d

dx
(cos (nx)) + bn

d

dx
(sin (nx))

)
for x ∈ R.

Examples 1 and 2 revisited

• Recall the 2π-periodic function of Example 1 which we defined by setting

f(x) = |x| for − π < x ≤ π.

• We calculate

f ′(x) =


1 for 0 < x < π,
−1 for − π < x < 0,
undefined for x = 0, π.
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• Since both f and f ′ are piecewise continuous on (−π, π), with f continuous on R, the Fourier
Convergence Theorem gives

π

2
− 4

π

∞∑
m=0

cos ((2m+ 1)x)

(2m+ 1)2
= f(x) for x ∈ R. (1.1)

Note that LHS = RHS 6= |x| for |x| > π.

• Since f is piecewise continuous on (−π, π), we can integrate termwise to obtain

πx

2
+

4

π

∞∑
m=0

sin ((2m+ 1)x)

(2m+ 1)3
=

∫ x

0

f(s) ds for x ∈ R. (1.2)

Note that while LHS = RHS is not periodic, the function
∫ x
0
f(s)− π

2
ds is 2π-periodic.

• We calculate

f ′′(x) =


0 for 0 < x < π,
0 for − π < x < 0,
undefined for x = 0, π.

• Since f is continuous on R and both f ′ and f ′′ are piecewise continuous on (−π, π), we can
differentiate termwise to obtain

4

π

∞∑
m=0

sin ((2m+ 1)x)

2m+ 1
=

1

2

(
f(x−) + f(x+)

)
=


1 for 0 < x < π,
−1 for − π < x < 0,
0 for x = 0, π.

(1.3)

• Note that the function to which this Fourier series converges is equal to the function considered
in Example 2 for x/π ∈ R\Z, which deals thereby with the convergence and termwise inte-
gration of the Fourier series of the function in Example 2; it remains to note that, since that
function is not continuous on R, its Fourier series cannot be differentiated termwise — try it!

Rate of convergence

• The smoother f , i.e. the more continuous derivatives it has, the faster the convergence of the
Fourier series for f .

• If the first jump discontinuity is in the pth derivative of f , with the convention that p = 0 if
there is a jump discontinuity in f , then typically the slowest decaying an and bn decay like
1/np+1 as n→∞.

• For example, p = 1 in (1.1), p = 2 in (1.2) and p = 0 in (1.3).

• This is an extremely useful result in practice (e.g. for approximately 1% accuracy we need 100
terms for p = 0, but only 10 terms for p = 1) and for checking calculations (e.g. an erroneous
contribution to a Fourier coefficient can be rapidly identified if it does decay fast enough for
large n).

• We make the following two remarks with the caveat that they are beyond the scope of this
course:

(1) If the Fourier coefficients decay like 1/np+1 as n→∞ with p ≥ 1, then the Weierstrass M-
test (of Analysis II) may be used to show that the Fourier series for f converges uniformly
to f on any interval (a, b) ⊂ R.

(2) If the Fourier coefficients decay like 1/n as n→∞ (so that p = 0), then the partial sums
of the Fourier series for f do not converge uniformly on any interval containing a jump
discontinuity. Remarkably, the form of the non-uniformity is universal for such functions,
being characterized by Gibb’s phenomenon, as we shall now describe.
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Gibb’s phenomenon

• This is the persistent overshoot in Example 2 near a jump discontinuity. It happens whenever
a jump discontinuity exists.

• As the number of terms in the partial sum tends to∞, the width of the overshoot region tends
to 0 (by the Fourier Convergence Theorem), while the total height of the overshoot region
approaches γ|f(x+)− f(x−)|, where

γ =
1

π

π∫
−π

sinx

x
dx ≈ 1.18,

i.e. approximately a 9% overshoot top and bottom. This is awful for approximation purposes!

Functions of any period

• Suppose now f : R→ R is a periodic function of period 2L, where L is a positive number, not
necessarily equal to π.

• We want to develop the analogous results for the Fourier series for f(x). Since this will involve a
series in the trigonometric functions cos(nπx/L) and sin(nπx/L), where n is a positive integer,
we make the transformation

x =
LX

π
, f(x) = g(X)

which defines a new function g : R→ R.

• For X ∈ R, it follows that

g(X + 2π) = f

(
L

π
(X + 2π)

)
= f

(
LX

π
+ 2L

)
= f

(
LX

π

)
= g(X),

where we used the fact that g(X) = f(LX/π) in the first equality; the fact that f is 2L-periodic
in the third equality; and the fact that f(x) = g(LX/π) in the third equality. Thus, g is 2π-
periodic, and we can use the transformation to derive the Fourier theory for f from that for g
above.

• In particular, if we can write

g(X) =
a0
2

+
∞∑
n=1

(
an cos(nX) + bn sin(nX)

)
,

so that the Fourier coefficients an and bn exist, then

an =
1

π

∫ π

−π
g(X) cos(nX) dX,

=
1

π

∫ L

−L
g
(πx
L

)
cos
(nπx
L

) π
L

dx,

=
1

L

∫ L

−L
f(x) cos

(nπx
L

)
dx,
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and

bn =
1

π

∫ π

−π
g(X) sin(nX) dX,

=
1

π

∫ L

−L
g
(πx
L

)
sin
(nπx
L

) π
L

dx,

=
1

L

∫ L

−L
f(x) sin

(nπx
L

)
dx.

• So if we can write

f(x) =
a0
2

+
∞∑
n=1

(
an cos

(nπx
L

)
+ bn sin

(nπx
L

))
,

then

an =
1

L

∫ L

−L
f(x) cos

(nπx
L

)
dx, bn =

1

L

∫ L

−L
f(x) sin

(nπx
L

)
dx.

• We wrap these formal calculations into the definition of the Fourier series for f .

• Definition: Suppose f is 2L-periodic and such that the Fourier coefficients

an =
1

L

∫ L

−L
f(x) cos

(nπx
L

)
dx (n ∈ N),

bn =
1

L

∫ L

−L
f(x) sin

(nπx
L

)
dx (n ∈ N \ {0})

exist. Then we write

f(x) ∼ a0
2

+
∞∑
n=1

(
an cos

(nπx
L

)
+ bn sin

(nπx
L

))
,

where ∼ means the RHS is the Fourier series for f , regardless of whether or not it converges
to f .

• Remark: The formulae for the Fourier coefficients may also be derived from the Fourier series
for f by assuming that the orders of summation and integration may be interchanged and using
the orthogonality relations

L∫
−L

cos
(mπx

L

)
cos
(nπx
L

)
dx = Lδmn

L∫
−L

cos
(mπx

L

)
sin
(nπx
L

)
dx = 0,

L∫
−L

sin
(mπx

L

)
sin
(nπx
L

)
dx = Lδmn

where n,m ∈ N \ {0}.

• We are now in a position to write down the corresponding Fourier Convergence Theorem.
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• Fourier Convergence Theorem: Let f : R → R be 2L-periodic, with f and f ′ piecewise
continuous on (−L,L). Then, the Fourier coefficients

an =
1

L

∫ L

−L
f(x) cos

(nπx
L

)
dx (n ∈ N),

bn =
1

L

∫ L

−L
f(x) sin

(nπx
L

)
dx (n ∈ N \ {0})

exist, and

1

2

(
f(x+) + f(x−)

)
=
a0
2

+
∞∑
n=1

(
an cos

(nπx
L

)
+ bn sin

(nπx
L

))
for x ∈ R.

Example 3

• Consider the 2L-periodic function f defined by

f(x) =

{
x for 0 < x ≤ L ,
0 for −L < x ≤ 0 .

Find the Fourier series for f and the function to which the Fourier series converges.

• By the definition of f , the Fourier coefficients are given by

an =
1

L

L∫
0

x cos
(nπx
L

)
dx , bn =

1

L

L∫
0

x sin
(nπx
L

)
dx .

• A direct integration gives a0 = L/2, but for n ∈ N\{0} it is a bit quicker to evaluate

an + ibn =
1

L

L∫
0

x︸︷︷︸
u

exp

(
inπx

L

)
︸ ︷︷ ︸

v′

dx

=

 1

L
x︸︷︷︸
u

L

inπ
exp

(
inπx

L

)
︸ ︷︷ ︸

v


L

0

− 1

L

L∫
0

1︸︷︷︸
u′

L

inπ
exp

(
inπx

L

)
︸ ︷︷ ︸

v

dx

= −

[
1

L

(
L

inπ

)2

exp

(
inπx

L

)]L
0

+
L

inπ
exp (inπ)

=
L

n2π2
((−1)n − 1) +

iL(−1)n+1

nπ
.
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• Thus

f(x) ∼ L

4
+
∞∑
m=1

(
− 2L

(2m− 1)2π2
cos

(
(2m− 1)πx

L

)
+
L(−1)m+1

mπ
sin
(mπx

L

))
.

• Since f and f ′ are piecewise continuous on (−L,L), the Fourier Convergence Theorem implies
that the Fourier series for f converges to f(x) at points of continuity of f , i.e. for x 6= (2k+1)L,
k ∈ Z, while at the jump discontinuities the Fourier series converges to the average of the left-
and right-hand limits of f , i.e. to

(
f(L+) + f(L−)

)
/2 = (0 + L)/2 = L/2 for x = (2k + 1)L,

k ∈ Z.

• We note that the slowest decaying Fourier coefficients bn decay as expected like 1/n as n→∞
because f has jump discontinuities so that p = 0. The plots below for L = 1 illustrate the slow
convergence of the partial sums of the Fourier series, which is hindered by Gibb’s phenomenon
at the jump discontinuities.

Example 3
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Cosine and sine series

• In many practical applications we wish to express a given function f : [0, L] → R in terms of
either a Fourier cosine series or a Fourier sine series.

• This may be accomplished by extending f to be even (for only cosine terms) or odd (for only
sine terms) on (−L, 0) ∪ (0, L) and then extending to a periodic function of period 2L.

• We wrap these extensions and the corresponding Fourier series into the following definitions.

• Definition: The even 2L-periodic extension fe : R→ R of f : [0, L]→ R is defined by

fe(x) =

{
f(x) for 0 ≤ x ≤ L ,

f(−x) for −L < x < 0 ,
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with fe(x + 2L) = fe(x) for x ∈ R. The Fourier cosine series for f : [0, L] → R is the Fourier
series for fe, i.e.

fe(x) ∼ a0
2

+
∞∑
n=1

an cos
(nπx
L

)
,

where

an =
2

L

L∫
0

f(x) cos
(nπx
L

)
dx (n ∈ N).

• Definition: The odd 2L-periodic extension fo : R→ R of f : [0, L]→ R is defined by

fo(x) =

{
f(x) for 0 ≤ x ≤ L ,

−f(−x) for −L < x < 0 ,

with fo(x + 2L) = fo(x) for x ∈ R. The Fourier sine series for f : [0, L] → R is the Fourier
series for fo, i.e.

fo(x) ∼
∞∑
n=1

bn sin
(nπx
L

)
,

where

bn =
2

L

L∫
0

f(x) sin
(nπx
L

)
dx (n ∈ N\{0}).

• Remarks:

(1) Note that fo(x) is odd for x/L ∈ R\Z and odd (on R) if and only if f(0) = f(L) = 0.

(2) Note that if f is continuous on [0, L] and f ′ piecewise continuous on (0, L), then the
Fourier Convergence Theorem implies that

a0
2

+
∞∑
n=1

an cos
(nπx
L

)
= fe(x) for x ∈ R ,

∞∑
n=1

bn sin
(nπx
L

)
=

{
fo(x) for x/L ∈ R\Z,

0 for x/L ∈ R\Z.

Example 4

• Consider the function f : [0, L] → R defined by f(x) = x for 0 ≤ x ≤ L. Find the Fourier
cosine and sine series for f and the functions to which each of them converge on [0, L]. Which
truncated series gives the best approximation to f on [0, L]?

• The even 2L-periodic extension fe is defined by

fe(x) =

{
x for 0 ≤ x ≤ L ,

−x for −L < x < 0 ,

i.e. fe(x) = |x| for −L < x ≤ L.
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• Since

an =
2

L

L∫
0

x cos
(nπx
L

)
dx ,

an integration by parts yields the Fourier cosine series

fe(x) ∼ L

2
−
∞∑
m=0

4L

(2m+ 1)2π2
cos

(
(2m+ 1)πx

L

)
.

• Since fe is continuous on R and f ′e is piecewise continuous on (−L,L), the Fourier Convergence
Theorem implies that the Fourier series for fe converges to fe on R.

• Hence the Fourier cosine series for f converges to f on [0, L], as illustrated by the plots below
of the partial sums for L = 1.

Example 4: Fourier cosine series
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• Similarly, the odd 2L-periodic extension fe is defined by

fo(x) =

{
x for 0 ≤ x ≤ L ,

−(−x) for −L < x < 0 ,

i.e. fo(x) = x for −L < x ≤ L.
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• Since

bn =
2

L

L∫
0

x sin
(nπx
L

)
dx ,

an integration by parts yields the Fourier sine series

fo(x) ∼
∞∑
n=1

2L(−1)n+1

nπ
sin
(nπx
L

)
.

• Since fo and f ′o are piecewise continuous on (−L,L), the Fourier Convergence Theorem implies
that the Fourier series for fo converges to fo(x) at points of continuity of fo, i.e. for x 6=
(2k+ 1)L, k ∈ Z, while at the jump discontinuities the Fourier converges to the average of the
left- and right-hand limits of f0, i.e. to

(
f(L+) + f(L−)

)
/2 = (−L + L)/2 = 0 for x = L and

hence for x = (2k + 1)L, k ∈ Z.

• Hence, the Fourier sine series for f converges to f(x) for 0 ≤ x < L, but to 0 for x = L,
with Gibb’s phenomenon again slowing the rate of convergence near the jump discontinuities
as illustrated by the plots below of the partial sums for L = 1.

Example 4: Fourier sine series
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• The truncated cosine series gives a better approximation to f on [0, L] than the truncated sine
series because

(1) it converges everywhere on [0, L];

(2) it converges more rapidly;

(3) it does not exhibit Gibb’s phenomenon.

• Finally, we note that fe is equal to twice the even part of the function in Example 3, while fo
is equal to twice the odd part of the function in Example 3, which explains the rate of decay
of the Fourier coefficients in Example 3.
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