
Fourier Series & PDEs: Lectures 5-6

The PDEs we shall study

• We shall study the following partial differential equations.

PDE Name Unknown Parameters
Tt = κTxx Heat equation T (x, t) κ > 0

ytt = c2yxx Wave equation y(x, t) c > 0

Txx + Tyy = 0 Laplace’s equation T (x, y) None

• We shall derive each of them using physical principles and develop methods to solve several
physically important problems formed by imposing appropriate boundary conditions and/or
initial conditions — different for each of them!

Some preliminaries

• Fundamental Theorem of Calculus: If f(x) is continuous in a neighbourhood of a, then

1

h

a+h∫
a

f(x) dx→ f(a) as h→ 0.

• Leibniz’s Integral Rule: Let F (x, t) and ∂F/∂t be continuous in both x and t in some region
R of the (x, t) plane containing the region S = {(x, t) : a(t) ≤ x ≤ b(t), t0 ≤ t ≤ t1}, where
the functions a(t) and b(t) and their derivatives are continuous for t ∈ [t0, t1]. Then

d

dt

∫ b(t)

a(t)

F (x, t) dx =

∫ b(t)

a(t)

∂F

∂t
(x, t) dx+ ḃ(t)F (b(t), t)− ȧ(t)F (a(t), t).

As a result, if a(t) and b(t) are constants, then

d

dt

∫ b

a

F (x, t) dx =

∫ b

a

∂F

∂t
(x, t) dx.
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The heat equation

Derivation in one dimension

• Consider a rigid isotropic conducting rod (e.g. metal) of constant cross-sectional area A lying
along the x-axis. We shall consider conservation of thermal or heat energy in the arbitrary
section of the rod in a ≤ x ≤ a + h, where a and h are constants. The geometric setup is as
illustrated in the schematic below.

• In the simplest one-dimensional model we assume that the lateral surfaces of the rod are insu-
lated, so that no thermal energy can be transported through them and the absolute temperature
T may be taken to be a function of distance x along an axis of the rod and time t. This model
is applicable if the rod is long and thin, like a wire.

• We denote by ρ the density of the rod and by c the specific heat of the rod, and we assume
that these material parameters are constant. The specific heat c of a material is the energy
required to heat up a kilogram by one degree kelvin (in SI units, about which more shortly),
so the thermal energy in the section of the rod in a ≤ x ≤ a+ h is given by

A

∫ a+h

a

ρcT (x, t) dx.

• We now introduce the heat flux q(x, t) in the positive x-direction, which is the rate at which
thermal energy is transported through a cross-section of the rod at station x at time t in the
positive x-direction per unit cross-sectional area per unit time, i.e. the rate of flow of thermal
energy along the rod. By definition, the rate at which thermal energy enters the section
through its left-hand cross-section in the plane x = a is Aq(a, t). Similarly, the rate at which
thermal energy leaves the section through the right-hand cross-section in the plane x = a + h
is Aq(a+h, t). Hence, with our sign convention on the heat flux, the net rate at which thermal
energy enters the section is

Aq(a, t)− Aq(a+ h, t).

• Assuming insulated lateral surfaces and no external heating (e.g. due to microwave heating),
conservation of energy states that the rate of change of the thermal energy in the section is
equal to the net rate at which thermal energy enters the section, so that

d

dt

A a+h∫
a

ρcT (x, t) dx


︸ ︷︷ ︸

(I)

= Aq(a, t)

︸ ︷︷ ︸
(II)

−Aq(a+ h, t)

︸ ︷︷ ︸
(III)

,

where we have labeled the three terms in order to summarize their physical significane as
follows:
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(I) is the time rate of change of thermal energy in the section in a ≤ x ≤ a+ h;

(II) is the rate at which thermal energy enters the section through x = a;

(III) is the rate at which thermal energy leaves the section through x = a+ h.

• We note this integral conservation law is also true for h < 0 with appropriate reinterpretation
of the terms.

• Assuming Tt is continuous, Leibniz’s Integral Rule with a and a+ h constant gives

ρc

h

a+h∫
a

Tt(x, t) dx+
q(a+ h, t)− q(a, t)

h
= 0,

where we have also rearranged into a form that will enable us to take the limit h→ 0.

• In particular, to take the limit h→ 0, we apply the Fundamental Theorem of Calculus to the
first term (assuming Tt is continuous in a neighbourhood of a) and use the definition of the
partial derivative of q with respect to x (assuming it to exist and to be continuous at a), to
obtain the partial differential equation

ρcTt + qx = 0, (†)

which relates the time rate of change of the temperature and the spatial rate of change of the
heat flux.

• To make further progress we must decide how the heat flux q(x, t) depends on the temperature
T (x, t). This is called a constitutive relation and cannot be deduced, relying instead on some
assumptions about the physical properties of the material under consideration. An example of
a simple constitutive relation is Hooke’s law of Prelims Dynamics for the extension of a spring
— we note that

(i) a “thought-experiment” suggests this law is reasonable;

(ii) it could be confirmed experimentally;

(iii) it will almost certainly fail under “extreme” conditions.

• To close our model for heat conduction we will adopt Fourier’s Law, which is is the consti-
tutive law given by

q = −kTx, (‡)

where k is the thermal conductivity of the rod, which is another material parameter that we
take to be constant.

• The minus sign in Fourier’s law means that thermal energy flows down the temperature gradi-
ent, i.e. from high to low temperatures. Physical experiments confirm that this is an excellent
approximation in many practical applications. We note that a good conductor of heat (such as
silver) will have a higher thermal conductivity than a poor conductor of heat (such as glass).

• Substituting (‡) into (†), we arrive at the heat or diffusion equation

∂T

∂t
= κ

∂2T

∂x2
,

where the thermal diffusivity κ is defined by

κ =
k

ρc
.
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Units and nondimensionalisation

• Notation: We denote by [p] the dimension of the quantity p in fundamental dimensions
(M,L, T,Θ etc) or e.g. SI units (kg, m, s, K etc). We will work with the latter and recall
that kelvin K is the SI unit of temperature, the newton N is the SI derived unit of force
(1 N = 1 kg m s−1), while the joule J is the SI derived unit of energy (1 J = 1 N m).

• Both sides of an equation modelling a physical process must have the same dimensions, e.g. in
the integral conservation law above,

[(1)] = [(2)] = [(3)] = J s−1,

while in the heat equation above,

[Tt] = [κTxx] = K s−1.

• We can exploit this fact to determine the dimensions of parameters and to check that solutions
are dimensionally correct.

• For example, using Fourier’s Law we find that the dimensions of the thermal conductivity are
given by

[k] =
[q]

[Tx]
=

J m−2 s−1

K m−1
= J K−1 m−1 s−1,

and using the heat equation we find that the dimensions of the thermal diffusivity are given by

[κ] =
[Tt]

[Txx]
=

K s−1

K m−2
= m2 s−1.

• We summarize in the table below the SI units of all of the variables and parameters involved
in the derivation of the one-dimensional heat equation.

Symbol Quantity SI units
x Axial distance m
t Time s
T Absolute temperature K
q Heat flux in positive x-direction J m−2 s−1

A Cross-sectional area m2

ρ Rod density kg m−3

c Rod specific heat J kg−1 K−1

k Rod thermal conductivity J K−1 m−1 s−1

κ Rod thermal diffusivity m2 s−1

• Nondimensionalisation: Method of scaling variables with typical values to derive dimension-
less equations. These usually contain dimensionless parameters that characterise the relative
importance of the physical mechanisms in the model. We illustrate the method with an exam-
ple.

Example: heat conduction in a finite rod

• Consider the initial boundary value problem (IBVP) for the temperature T (x, t) in a rod of
length L given by the heat equation

∂T

∂t
= κ

∂2T

∂x2
for 0 < x < L, t > 0, (1)
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with the boundary conditions

T (0, t) = T0, T (L, t) = T1 for t > 0, (2)

and the initial condition

T (x, 0) = T2
x

L

(
1− x

L

)
for 0 < x < L, (3)

where T0, T1 snd T2 are prescribed constant temperatures.

• There are five dimensional parameters, namely κ, L, T0, T1 and T2.

• We nondimensionalise by scaling

x = Lx̂, t = τ t̂, T (x, t) = T2T̂ (x̂, t̂ ),

where L, τ and T2 are a typical lengthscale, timescale and temperature, respectively, so that
the quantities x̂, t̂ and T̂ are dimensionless.

• By the chain rule,

∂T

∂t
= T2

∂T̂

∂t̂

dt̂

dt
=
T2
τ

∂T̂

∂t̂
,

∂T

∂x
= T2

∂T̂

∂x̂

dx̂

dx
=
T2
L

∂T̂

∂x̂
, etc.

• Hence, the dimensional problem (1)-(3) for the dimensional temperature T (x, t) implies that

the corresponding dimensionless problem for the dimensionless temperature T̂ (x̂, t̂ ) is given by

∂T̂

∂t̂
= D

∂2T̂

∂x̂2
for 0 < x̂ < 1, t̂ > 0, (1′)

with the boundary conditions

T̂ (0, t̂ ) = α0, T̂ (1, t) = α1 for t̂ > 0, (2′)

and the initial condition

T̂ (x̂, 0) = x̂(1− x̂ ) for 0 < x̂ < 1, (3′)

where the dimensionless parameters D, α0 and α1 are defined by

D =
κτ

L2
, α0 =

T0
T2
, α1 =

T1
T2
.

• We can further reduce the number of dimensionless parameters by choosing the timescale τ so
that D = 1, i.e. by choosing τ = L2/κ, which is the timescale for conductive transport of heat
over a distance L because it balances both terms in (1′). With this choice of timescale, we note

that if T̂ = T̂ (x̂, t̂;α0, α1) is a solution of (1′)-(3′), then a solution T of (1)-(3) is given by

T

T2
= T̂

(
x

L
,
κt

L2
;
T0
T2
,
T1
T2

)
.

i.e. T/T2 must be a function of x/L and κt/L2. This means that we can compare heat problems
on different scales: for example, two systems with different L and κ will exhibit comparable
behaviour on the same time scales if L2/κ is the same in each problem.
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Heat conduction in a finite rod

• Consider the initial boundary value problem (IBVP) for the temperature T (x, t) in a rod of
length L given by the heat equation

∂T

∂t
= κ

∂2T

∂x2
for 0 < x < L, t > 0, (1)

with the boundary conditions

T (0, t) = 0, T (L, t) = 0 for t > 0, (2)

and the initial condition
T (x, 0) = f(x) for 0 < x < L, (3)

where the initial temperature profile f(x) is given.

• We will construct a solution using Fourier’s method, which consists of the following three
steps:

(I) Use the method of separation of variables to find the countably infinite set of nontrivial
separable solutions satisfying the partial differential equation (1) and boundary conditions
(2), each containing an arbitrary constant.

(II) Use the principle of superposition — that the sum of any number of solutions of a linear
problem is also a solution (assuming convergence) — to form the general series solution
that is the infinite sum of the separable solutions of the partial differential equation and
boundary conditions.

(III) Use the theory of Fourier series to determine the constants in the general series solution
for which it satisfies the initial condition (3).

Remarks

• (1) and (2) are linear since, if T1 and T2 satisfy them, then so does αT1 + βT2 for all α, β ∈ R.

• To verify that the resulting series is actually a solution of the partial differential equations,
we need it to converge sufficiently rapidly that Tt and Txx can be computed by termwise
differentiation — we largely gloss over such issues.

Step I

• We begin by seeking a nontrivial separable solution of the form T = F (x)G(t) for which the
partial differential equation (1) gives F (x)G′(t) = κF ′′(x)G(t), with a prime ′ denoting the
derivative with respect to the argument.

• Separating the variables by assuming F (x)G(t) 6= 0 therefore gives

F ′′(x)

F (x)
=

G′(t)

κG(t)
.

The left-hand side of this expression is independent of t, while the right-hand side independent
of x. Since the left-hand side is equal to the right-hand side, they must both be independent
of x and t, i.e. LHS = RHS = −λ for some constant λ ∈ R.

• The boundary condition at x = 0 in (2) implies that F (0)G(t) = 0 for t > 0. Since we’re
seeking solutions T that are nontrivial (i.e. not identically equal to zero), there must exist a
time t > 0 such that G(t) 6= 0, and hence we must impose on F (x) the boundary condition
F (0) = 0. Similarly, the boundary condition at x = L in (2) implies that F (L) = 0.
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• In summary, we have deduced that F (x) satisfies the boundary value problem given by the
ordinary differential equation

−F ′′(x) = λF (x) for 0 < x < L, (†)

with the boundary conditions
F (0) = 0, F (L) = 0, (‡)

where λ ∈ R

• Now need to find all λ ∈ R such that the boundary value problem (†)-(‡) for F (x) has a
nontrivial solution.

• There are three cases to consider, as follows:

(i) λ = −ω2 (ω > 0 wlog)

(†) =⇒ F ′′ − ω2F = 0 =⇒ F (x) = A cosh(ωx) +B sinh(ωx), where A,B ∈ R.

(‡) =⇒ A = 0, B sinh(ωL) = 0 =⇒ F = 0.

(ii) λ = 0

(†) =⇒ F ′′ = 0 =⇒ F (x) = A+Bx, where A,B ∈ R.

(‡) =⇒ A = 0, BL = 0 =⇒ F = 0.

(iii) λ = ω2 (ω > 0 wlog)

(†) =⇒ F ′′ + ω2F = 0 =⇒ F (x) = A cos(ωx) +B sin(ωx), where A,B ∈ R.

(‡) =⇒ A = 0, B sin(ωL) = 0.

B 6= 0 =⇒ sinωL = 0 =⇒ ωL = nπ, n ∈ N \ {0}.

• Hence, the nontrivial solutions of the partial differential equation (†)-(‡) are given by

F (x) = B sin
(nπx
L

)
for λ =

n2π2

L2
, n ∈ N \ {0}.

• Since G(t) satisfies the ordinary differential equation G′ = −λκG, we deduce that

G(t) = C exp (−λκt) ,

where C ∈ R.

• Since T (x, t) = F (x)G(t), we conclude that the nontrivial separable solutions of the heat
equation (1) that satisfy the boundary conditions (2) are given by

Tn(x, t) = bn sin
(nπx
L

)
exp

(
−n

2π2κt

L2

)
,

where n is a positive integer, bn is a constant (equal to BC in the analysis above) and we
have introduced the subscript n on Tn and bn to enumerate the countably infinite set of such
solutions.
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Step II

• Since (1)-(2) are linear, a formal application of the principle of superposition implies that the
general series solution is given by

T (x, t) =
∞∑
n=1

Tn(x, t) =
∞∑
n=1

bn sin
(nπx
L

)
exp

(
−n

2π2κt

L2

)
.

Step III

• The initial condition (3) can only be satisfied by the general series solution if

f(x) = T (x, 0) =
∞∑
n=1

bn sin
(nπx
L

)
for 0 < x < L,

so that we need to find the Fourier sine series for f .

• The theory of Fourier series implies that the Fourier coefficients bn are given by

bn =
2

L

L∫
0

f(x) sin
(nπx
L

)
dx for n ∈ N \ {0}, (‡‡)

• Hence, we have derived a solution in the form of an infinite trigonometric series.

Remarks

• The integral expressions for the Fourier coefficients in (‡‡) may be derived via the orthogonality
relations

L∫
0

sin
(mπx

L

)
sin
(nπx
L

)
dx =

L

2
δmn (m, n ∈ N \ {0})

by assuming that the orders of summation and integration may be interchanged, as follows:

2

L

L∫
0

f(x) sin
(nπx
L

)
dx =

2

L

L∫
0

∞∑
m=1

bm sin
(mπx

L

)
sin
(nπx
L

)
dx

=
∞∑

m=1

bm
2

L

L∫
0

sin
(mπx

L

)
sin
(nπx
L

)
dx

=
∞∑

m=1

bmδmn

= bn for n ∈ N \ {0}.

• If f and f ′ are piecewise continuous on (0, L), then the Fourier Convergence Theorem implies
that the Fourier sine series for f converges to (f(x+) + f(x−))/2 for x ∈ (0, L) and to 0
for x = 0, L. Thus, Fourier’s method can even handle jump discontinuities in the initial
temperature profile, with the caveat that the truncated series solution would exhibit Gibb’s
phenomenon at time t = 0.
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• It can be rigorously proven (using methods from Prelims Analysis) that for such initial con-
ditions, the series solution converges and is a solution of the initial boundary value problem
(1)–(3). Since Tn(x, t) decays exponentially as n → ∞ for fixed x ∈ (0, L) and fixed t > 0, it
may also be shown that all partial derivatives with respect to x and t exist and may be derived
by termwise partial differentiation of the series!

• There are several important implications of the last two remarks:

– the heat equation smoothes out instantaneously even irregular initial temperature profiles;

– as soon as t > 0, most of the high frequency terms Tn(x, t) for n � 1 will be extremely
small, so that the solution may be well approximated by only a handful of terms;

– the temperature tends to zero exponentially quickly as κt/L2 →∞, i.e. on the timescale
of heat conduction, with the thermal energy initially stored in the rod being conducted
out of the ends of the rod on this timescale.

• Consider the initial profile given by

f(x) =

{
T ∗ for L1 < x < L2 ,
0 otherwise,

where T ∗, L1 and L2 are constants, for which the Fourier coefficients are given by

bn =
2

L

L2∫
L1

T ∗ sin
(nπx
L

)
dx =

2T ∗

nπ

(
cos

(
nπL1

L

)
− cos

(
nπL2

L

))
for positive integers n. We plot below snapshots of the partial sums of the truncated series
solution with 100 terms for L1/L = 0.2, L2/L = 0.4 and 100κt/L2 = 0, 0.25, 0.5, 1, 2, 4, 8, 16
and 32, which illustrates all of the main features of the solution discussed above.
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