
Fourier Series & PDEs: Lectures 7-8

Uniqueness

• In the last lecture we considered the initial boundary value problem for the temperature T (x, t)
given by the heat equation

∂T

∂t
= κ

∂2T

∂x2
for 0 < x < L, t > 0, (1)

with the so-called homogeneous Dirichlet boundary conditions

T (0, t) = 0, T (L, t) = 0 for t > 0, (2)

and the initial condition
T (x, 0) = f(x) for 0 < x < L, (3)

where the initial temperature profile f(x) is given.

• We used Fourier’s method to construct an infinite series solution, but is it the only solution?

• Uniqueness Theorem: The initial boundary value problem (1)–(3) has only one solution.

• Proof of the uniqueness theorem: Our strategy is to show that the difference between any
two solutions much vanish.

• Thus we suppose that T (x, t) and T̃ (x, t) are solutions to (1)–(3) and let

W (x, t) = T (x, t)− T̃ (x, t)

be their difference.

• By linearity, (1)-(3) imply that W (x, t) satisfies the heat equation

∂W

∂t
=
∂T

∂t
− ∂T̃

∂t
= κ

∂2T

∂x2
− κ∂

2T̃

∂x2
= κ

∂2W

∂x2
for 0 < x < L, t > 0, (1′)

with the boundary conditions

W (0, t) = T (0, t)− T̃ (0, t) = 0, W (L, t) = T (L, t)− T̃ (L, t) = 0 for t > 0, (2′)

and the initial condition

W (x, 0) = T (x, 0)− T̃ (x, 0) = f(x)− f(x) = 0 for 0 < x < L. (3′)

• Since W is the temperature in a metal rod whose initial temperature is everywhere zero and
whose ends are held at zero temperature thereafter, on physical grounds we expect the rod to
remain at zero temperature, i.e. W = 0 for 0 ≤ x ≤ L and t ≥ 0, which is what we need to
show to prove uniqueness.

• The trick is to analyse the integral I(t) defined by

I(t) :=
1

2

L∫
0

W (x, t)2 dx.

• Evidently I(t) ≥ 0 for t ≥ 0 and I(0) = 0 by (3′).
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• But, for t > 0,

dI

dt
=

L∫
0

W
∂W

∂t
dx (by Liebniz Integral Rule)

=

L∫
0

Wκ
∂2W

∂x2
dx (by (1′))

=

[
κW

∂W

∂x

]x=L

x=0

− κ
L∫

0

∂W

∂x

∂W

∂x
dx (by integration by parts)

= −κ
L∫

0

(
∂W

∂x

)2

dx (by (2′))

≤ 0

which means that I(t) cannot increase, so that I(t) ≤ I(0) = 0 for t ≥ 0.

• Since I(t) ≥ 0 and I(t) ≤ 0 for t ≥ 0, we deduce that I(t) = 0 for t ≥ 0, and hence that
W (x, t) = 0 for 0 ≤ x ≤ L, t ≥ 0 (assuming continuity of W there), which completes the proof.

• We note that this method of proof also works for the so-called homogeneous Neumann boundary
conditions (about which more shortly) given by

∂T

∂x
(0, t) = 0,

∂T

∂x
(L, t) = 0 for t > 0,

as well as for the so-called homogeneous Robin boundary conditions of the form

∂T

∂x
((0, t) = −αT (0, t), Tx(L, t) = αT (L, t) for t > 0,

where α is a positive parameter, since in both cases it may be shown that[
κW

∂W

∂x

]x=L

x=0

≤ 0.

Example: inhomogeneous Dirichlet boundary conditions

• Consider the initial boundary value problem for the temperature T (x, t) given by the heat
equation

∂T

∂t
= κ

∂2T

∂x2
for 0 < x < L, t > 0, (1)

with the inhomogeneous Dirichlet boundary conditions

T (0, t) = TL, T (L, t) = TR for t > 0, (2)

and the initial condition
T (x, 0) = 0 for 0 < x < L, (3)

where TL and TR are prescribed constant temperatures, not both zero.

• Lets apply Fourier’s method. In step I we need to find the nontrivial separable solutions
T (x, t) = F (x)G(t) of the heat equation (1) and boundary conditions (2). But the latter would
require

F (0)G(t) = TL, F (L)G(t) = TR for t > 0,
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forcing G to be constant. It follows that the only nontrivial separable solution of (1)–(2) is
the time-independent or steady-state solution (about which more shortly). Since this cannot
satisfy the initial condition (3), Fourier’s method fails because the boundary conditions (2) are
not homogeneous.

• However, we can transform the problem into one amenable to Fourier’s method, as follows.

• On physical grounds, we conjecture that T (x, t) → S(x) as t → ∞, where S(x) is the afore-
mentioned steady-state solution of (1)–(2), which satisfies

0 = κ
d2S

dx2
for 0 < x < L,

with S(0) = TL and S(L) = TR. Thus, S(x) has the linear temperature profile given by

S(x) = TL

(
1− x

L

)
+ TR

(x
L

)
;

we note that in steady state thermal energy is conducted steadily along the rod with constant
heat flux

q = −k∂T
∂x

=
k(TL − TR)

L
,

so that heat flows steadily in the positive x-direction for TL > TR.

• We now observe that if we let
T (x, t) = S(x) + U(x, t),

then by linearity (1)-(3) imply that U(x, t) satisfies the initial boundary value problem given
by the heat equation

∂U

∂t
= κ

∂2U

∂x2
for 0 < x < L, t > 0, (1′)

with the homogeneous Dirichlet boundary conditions

U(0, t) = 0, U(L, t) = 0 for t > 0, (2′)

and the initial condition

U(x, 0) = −S(x) = −TL
(

1− x

L

)
− TR

(x
L

)
for 0 < x < L. (3′)

• The initial boundary value problem (1′)–(3′) for U(x, t) is amenable to Fourier’s method: we
solved it last lecture to find the solution given by

U(x, t) =
∞∑
n=1

bn sin
(nπx
L

)
exp

(
−n

2π2κt

L2

)
,

where

bn = − 2

L

L∫
0

S(x) sin
(nπx
L

)
= − 2

nπ
(TL − (−1)nTR).

• Remarks:

(1) We note that the parameters TL and TR in the boundary conditions (2) ended up in
the initial condition (3′) — hence the method above is sometimes called “the method of
shifting the data”.

(2) Since U(x, t) → 0 as κt/L2 → ∞, we can verify our conjecture that T (x, t) → S(x) as
κt/L2 →∞.
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(3) We plot below snapshots of the partial sums of the truncated series solution with 100
terms for TL = T ∗, TR = 2T ∗ and 100κt/L2 = 0.01, 0.1, 0.5, 1, 2, 5, 10, 15, 20 and 100.
The profiles illustrate the manner in which heat conduction rapidly drives the temperature
toward the linear steady-state temperature profile.

Example: Neumann boundary conditions

• Consider the initial boundary value problem for the temperature T (x, t) given by the heat
equation

∂T

∂t
= κ

∂2T

∂x2
for 0 < x < L, t > 0, (1)

with the so-called homogeneous Neumann boundary conditions

∂T

∂x
(0, t) = 0,

∂T

∂x
(L, t) = 0 for t > 0, (2)

and the initial condition
T (x, 0) = f(x) for 0 < x < L. (3)

• We note that that the ends of the rod are thermally insulated because the heat flux

q = −k∂T
∂x

= 0 at x = 0 and x = L for t > 0

by Fourier’s law and the boundary conditions (2).

• Fourier’s method is applied on problem sheet 4 to show that the solution is given by

T (x, t) =
a0
2

+
∞∑
n=1

an cos
(nπx
L

)
exp

(
−n

2π2κt

L2

)
,

where the constants an are the Fourier coefficients of the Fourier cosine series for f given by

an =
2

L

L∫
0

f(x) cos
(nπx
L

)
dx.
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• Remarks:

(1) The constant (separable) solution T = a0/2 of (1)-(2) comes from the case in which the
separation constant is zero.

(2) The temperature T (x, t)→ a0/2 as κt/L2 →∞, i.e. the temperature tends to the mean of
the initial temperature. Thus, the rod retains all of its its initial thermal energy because
all of its surfaces are insulated and heat conduction causes the temperature to approach on
the timescale of heat conduction the steady state solution in which T is spatially uniform.

Example: inhomogeneous heat equation and boundary conditions

• Consider the IBVP for the temperature T (x, t) in a rod of length L given by the inhomogeneous
heat equation

ρc
∂T

∂t
= k

∂2T

∂x2
+Q(x, t) for 0 < x < L, t > 0, (1)

with the inhomogeneous Neumann boundary conditions

Tx(0, t) = φ(t), Tx(L, t) = ψ(t) for t > 0, (2)

and the initial condition
T (x, 0) = f(x) for 0 < x < L, (3)

where the functions Q(x, t), φ(t), ψ(t) and f(x) are given.

• We note that Q is the volumetric heat source (e.g. due to radiation or chemical reactions)
and the heat flux in the positive direction q = −kTx according to Fourier’s law, so that the
boundary conditions prescribe q at each end of the rod.

• In general Fourier’s method cannot be used to solve the IBVP for T because the heat equation
and boundary conditions are inhomogeneous (i.e. Q, φ and ψ are non-zero). We now describe
a generalization of Fourier’s method that works.

• We deal first with the boundary conditions: if we let T (x, t) = S(x, t) + U(x, t), where

S(x, t) = −φ(t)
(x− L)2

2L
+ ψ(t)

x2

2L
,

say, is chosen to satisfy the boundary conditions (2), then by linearity the initial boundary
value problem (1)-(3) for T (x, t) implies that the initial boundary value problem for U(x, t) is
given by

ρc
∂U

∂t
= k

∂2U

∂x2
+ Q̃(x, t) for 0 < x < L, t > 0, (1′)

with the inhomogeneous boundary conditions

Ux(0, t) = 0, Ux(L, t) = 0 for t > 0, (2′)

and the initial condition
T (x, 0) = f̃(x) for 0 < x < L, (3′)

where the functions

Q̃(x, t) = Q(x, t) + k
∂2S

∂x2
− ρc∂S

∂t
, f̃(x) = f(x)− S(x, 0)

are known in terms of Q(x, t), φ(t), ψ(t) and f(x).
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• Thus, the boundary conditions have been rendered homogeneous by ‘shifting the data’ in the
sense that both φ(t) and ψ(t) have moved from the boundary conditions (2) for T (x, t) into
the heat equation (1′) and initial conditions (2′) for U(x, t).

• If Q̃ ≡ 0, then we can solve the initial boundary value problem for U(x, t) using Fourier’s
method as outlined above to obtain

U(x, t) =
a0
2

+
∞∑
n=1

an cos
(nπx
L

)
exp

(
−n

2π2kt

ρcL2

)
,

where the Fourier coefficients an are chosen to satisfy the initial condition so that

an =
2

L

∫ L

0

f̃(x) cos
(nπx
L

)
dx.

• This series solution for U(x, t) suggests that if Q̃ is not identically zero, then we should seek a
solution for U in the form of the Fourier cosine series

U(x, t) =
U0(t)

2
+
∞∑
n=1

Un(t) cos
(nπx
L

)
,

where the Fourier coefficients Un(t) depend on time and are to be determined. From the
formulae for the Fourier coefficients of a Fourier cosine series, we deduce that Un(t) are given
in terms of U(x, t) by the integral expressions

Un(t) =
2

L

∫ L

0

U(x, t) cos
(nπx
L

)
dx.

• By Leibniz’s integral rule,

ρc
dUn

dt
=

2

L

L∫
0

ρc
∂U

∂t
cos
(nπx
L

)
dx

=
2

L

L∫
0

(
k
∂2U

∂x2
+ Q̃

)
cos
(nπx
L

)
dx

=
2k

L

L∫
0

∂2U

∂x2
(x, t) cos

(nπx
L

)
dx+ Q̃n(t),

where in the second equality we used the heat equation (1′) and in the last equality we intro-
duced the functions defined by

Q̃n(t) =
2

L

L∫
0

Q̃(x, t) cos
(nπx
L

)
dx,

which are the coefficients of the Fourier cosine series for Q̃(x, t).

• Question: How do we deal with the Uxx integral?
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• Answer: By two integration by parts using the boundary conditions (2′). This may be accom-
plished in one step by using the identity

(uv′ − u′v)′ = uv′′ − u′′v =⇒
[
uv′ − u′v

]L
0

=

∫ L

0

uv′′ − u′′v dx,

with u = U and v = cos(nπx/L), giving[
U
(
−nπ
L

)
sin
(nπx
L

)
− Ux cos

(nπx
L

)]L
0︸ ︷︷ ︸

=0 by (2′)

=

L∫
0

U

(
−n

2π2

L2
cos
(nπx
L

))
− Uxx cos

(nπx
L

)
dx,

so that

2

L

L∫
0

Uxx cos
(nπx
L

)
dx = −n

2π2

L2

2

L

L∫
0

U cos
(nπx
L

)
dx = −n

2π2

L2
Un .

• Combining the equations above, we find that Un(t) is governed by the ordinary differential
equation

ρc
dUn

dt
+
kn2π2

L2
Un = Q̃n(t) for t > 0,

with the initial condition (3′) for U(x, t) giving the initial condition

Un(0) =
2

L

∫ L

0

f̃(x) cos
(nπx
L

)
dx.

Remarks

(1) We have reduced the problem to a countably infinite set of initial value problems for Un(t), each
of which may be solved using an integrating factor (as in Prelims Introductory Calculus). We

note that if Q̃(x, t) ≡ 0, then Q̃n(t) ≡ 0 and we recover the solution above for Un(t) obtained
by Fourier’s method.

(2) We chose the function S(x, t) so that it satisfied the inhomogeneous boundary conditions (2).
The choice is not unique. The smoother the 2L-periodic even extension for S(x, t), the faster
the decay of the Fourier coefficients Un(t) as n→∞ for fixed t ≥ 0. There is therefore a trade
off between the rate of convergence of the series solution for U(x, t) and the ease of computation

of the Fourier coefficients Q̃n(t), the initial values Un(0) and hence the solution for Un(t).

The wave equation

Derivation in one dimension

• Consider the small transverse vibrations of a homogeneous extensible elastic string stretched
initially along the x-axis at time t = 0.

• A point at xi at time t = 0 is displaced to r(x, t) = xi + y(x, t)j at time t > 0, where the
transverse displacement y(x, t) is to be determined. We illustrate the geometrical setup in the
schematic below.
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• Consider the section of string in the fixed region a ≤ x ≤ a + h, where a and h are arbitrary
constants.

• The linear momentum of the section of the string in a ≤ x ≤ a+ h is

a+h∫
a

ρ
∂r

∂t
dx,

where ρ is the constant line density of the string (with [ρ] = kg m−1).

• The string offers no resistance to bending (cf. a ruler) in the sense that the string to the right
of the point r(x, t) exerts at that point a tangential force T (x, t)τ (x, t) on the string to the left,
where T (x, t) is the tension ([T ] = N = kg m s−2) and τ = rx/ |rx| is the unit tangent vector
pointing in the positive x-direction. Note that Newton’s third law implies that the string to
the left of the point r(x, t) exerts at that point a tangential force −T (x, t)τ (x, t) on the string
to the right.

• Assuming the tension is so large that the effects of gravity and air resistance may be neglected,
the forces acting on the ends of the section of string in a ≤ x ≤ a+ h are

(i) the force T (a + h, t)τ (a + h, t) exerted at the right-hand end at r(a + h, t) by the string
to the right of the section;

(ii) the force −T (a, t)τ (a, t) exerted at the left-hand end at r(a, t) by the string to the left of
the section.

We illustrate the forces and where they act on the section in the schematic below.

• We are now in a position to apply Newton’s Second Law, which states that the rate of change
of the linear momentum of the section of string in a ≤ x ≤ a+h is equal to the net force acting
on its ends, so that

d

dt

 a+h∫
a

ρ
∂r

∂t
dx

 = T (a+ h, t)τ (a+ h, t)− T (a, t)τ (a, t).

• Assuming rtt is continuous, Leibniz’s Integral Rule with a and a+ h constant gives

1

h

a+h∫
a

ρ
∂2r

∂t2
dx =

T (a+ h, t)τ (a+ h, t)− T (a, t)τ (a, t)

h
,

where we divided by h in anticipation of taking the limit h→ 0.
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• In particular, to take the limit h→ 0, we apply the Fundamental Theorem of Calculus to the
first term (assuming rtt is continuous in a neighbourhood of a) and use the definition of the
partial derivative of Tτ with respect to x (assuming it to exist and to be continuous at a) to
obtain

ρ
∂2r

∂t2
=
∂

∂x

(
Tτ
)
.

• Recalling the definitions of r and τ , it follows that

ρ
∂2y

∂t2
j =

∂

∂x

(
T i+ Tyxj

(1 + y2x)1/2

)
.

• But we are also assuming that the transverse displacement is small in the sense that the slope
of the string is small, i.e. |yx| � 1.

• Since a Taylor expansion gives(
1 + y2x

)1/2
= 1 +

1

2
(yx)2 + · · · for |yx| � 1,

to a first approximation, i.e. neglecting quadratic and higher order terms,

ρ
∂2y

∂t2
j =

∂

∂x

(
T i+ Tyxj

)
. (?)

• The x-component of (?) implies that the tension T is spatially uniform, but could vary with
time t, e.g. as when tuning a guitar string. We shall take the tension T to be constant, which
is the case in many practical applications.

• The y-component of (?) then implies that

ρ
∂2y

∂t2
= T

∂2y

∂x2
,

giving the wave equation

∂2y

∂t2
= c2

∂2y

∂x2
,

where c =
√
T/ρ is the wave speed (for reasons that will become apparent).
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