
Fourier Series & PDEs: Lectures 9-10

Units and nondimensionalisation

• Last lecture we showed that the small transverse displacement y(x, t) of an elastic string is
governed by wave equation

∂2y

∂t2
= c2

∂2y

∂x2
,

where c > 0 is the constant wave speed.

• Consider the units of the variables (x, t and y) and parameter (c) in the wave equation. Since

[ytt] = m s−2, [yxx] = m m−2,

it follows that [
c2
]

=
[ytt]

[yxx]
= m2 s−2,

so that [c] = m s−1, i.e. c has the units of speed.

• Question: On what timescale does a displacement travel a distance L?

• Answer: If we nondimensionalize by scaling x = Lx̂, t = t0t̂, y = Hŷ(x̂, t̂ ), then the wave
equation becomes

H

t20

∂2ŷ

∂t̂2
=
Hc2

L2

∂2ŷ

∂x̂2
;

the terms balance giving
∂2ŷ

∂t̂2
=
∂2ŷ

∂x̂2

provided t0 = L/c, which is therefore the timescale for a displacement to travel a distance L.

Normal modes of vibration for a finite string

• Suppose an elastic string is stretched between x = 0 and x = L and the ends held fixed, so
that the small transverse displacement y(x, t) of the string is governed by the wave equation

∂2y

∂t2
= c2

∂2y

∂x2
for 0 < x < L, (1)

with the boundary conditions
y(0, t) = 0 y(L, t) = 0. (2)

• An experiment with a slinky suggests there exist discrete modes of vibration, as illustrated in
the schematic below.

• To analyse mathematically the possible modes of vibration, we seek nontrivial separable solu-
tions of the form y = F (x)G(t).
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• Substituting this expression into the heat equation (1) gives F (x)G′′(t) = c2F ′′(x)G(t), so we
may separate the variables for FG 6= 0 to obtain

F ′′(x)

F (x)
=

G′′(t)

c2G(t)
.

• The left-hand side of this expression is independent of t, while the right-hand side independent
of x. Since the left-hand side is equal to the right-hand side, they must both be independent
of x and t, i.e. LHS = RHS = −λ for some constant λ ∈ R.

• The boundary condition at x = 0 in (2) implies that F (0)G(t) = 0 for t > 0. Since we’re
seeking solutions y that are nontrivial, there must exist a time t > 0 such that G(t) 6= 0, and
hence we must impose on F (x) the boundary condition F (0) = 0. Similarly, the boundary
condition at x = L in (2) implies that F (L) = 0.

• In summary, we have deduced that F (x) satisfies the boundary value problem given by the
ordinary differential equation

−F ′′(x) = λF (x) for 0 < x < L, (†)

with the boundary conditions
F (0) = 0, F (L) = 0, (‡)

where λ ∈ R

• We solved this problem in Lecture 6: the nontrivial solutions are given for positive integers n
by

F (x) = B sin
(nπx
L

)
for λ =

(nπ
L

)2
,

where B is an arbitrary constant; since G′′ + λc2G = 0, the corresponding solution for G(t) is
given by

G(t) = C cos

(
nπct

L

)
+D sin

(
nπct

L

)
,

where C and D are arbitrary constants.

• Since T (x, t) = F (x)G(t), we conclude that the nontrivial separable solutions or the normal models
of (1)–(2) are given for positive integers n by

yn(x, t) = sin
(nπx
L

)(
an cos

(
nπct

L

)
+ bn sin

(
nπct

L

))
where an and bn are arbitrary constants (with an = BC and bn = BD) and we have introduced
the subscript n to enumerate the countably infinite set of such solutions.

Remarks

(1) The normal mode yn(x, t) is periodic in t with prime period

p =
2π

nπc/L
=

2L

nc

and frequency (or pitch)
1

p
=
nc

2L
.

(2) The first normal mode y1 is called the fundamental mode, with associated fundamental frequency
c
2L

. All of the other modes have a frequency that is an integer multiple of the fundamental
frequency.
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(3) The predictions are consistent with the slinky experiment.

(4) The normal modes are an example of a standing wave because yn is equal to a function of x
multiplied by an oscillatory function of time.

Initial boundary value problem for a finite string

• Consider the initial boundary value problem for the small transverse displacement y(x, t) of an
elastic string given by the wave equation

∂2y

∂t2
= c2

∂2y

∂x2
for 0 < x < L, t > 0, (1)

with the Dirichlet boundary conditions

y(0, t) = 0, y(L, t) = 0 for t > 0, (2)

and the initial conditions

y(x, 0) = f(x),
∂y

∂t
(x, 0) = g(x) for 0 < x < L, (3)

where the initial transverse displacement f(x) and the initial transverse velocity g(x) are given.

• We note that we impose two boundary conditions because the wave equation is second order
in space (due to the yxx term ) and two initial conditions because the wave equation is second
order in time (due to the ytt term). In contract, for the heat equation Tt = κTxx, while we
impose two boundary conditions because the heat equation is second order in space (due to
the Txx term), we impose only one initial condition because the heat equation is first order in
time (due to the Tt term).

• We will use Fourier’s method to find a series solution.

Step I: Find all nontrivial separable solutions of (1)-(2)

• We found above that these are the normal modes given by

yn(x, t) = sin
(nπx
L

)(
an cos

(
nπct

L

)
+ bn sin

(
nπct

L

))
,

where an, bn ∈ R and n ∈ N \ {0}.

Step II: Apply the principle of superposition

• Since (1)–(2) are linear, we can superimpose the normal modes (assuming convergence) to
obtain the general series solution

y(x, t) =
∞∑
n=1

yn(x, t) =
∞∑
n=1

sin
(nπx
L

)(
an cos

(
nπct

L

)
+ bn sin

(
nπct

L

))
. (?)

Step III: Use the theory of Fourier series to satisfy the initial conditions

• The initial conditions (3) can only be satisfied by (?) if

f(x) =
∞∑
n=1

an sin
(nπx
L

)
for 0 < x < L ,

g(x) =
∞∑
n=1

nπc

L
bn sin

(nπx
L

)
for 0 < x < L .
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• Hence, an is the nth Fourier coefficient of the Fourier sine series for f , while nπcbn/L is the
nth Fourier coefficient of the Fourier sine series for g, i.e.

an =
2

L

L∫
0

f(x) sin
(nπx
L

)
dx,

nπc

L
bn =

2

L

L∫
0

g(x) sin
(nπx
L

)
dx. (??)

Example: guitar string

• Suppose

f(x) =

{
2hx/L for 0 ≤ x ≤ L/2,

2h(L− x)/L for L/2 ≤ x ≤ L,
g(x) = 0,

where h is a constant; we plot the graph of f below for h > 0.

• By (??),

an =
2

L

L/2∫
0

2hx

L
sin
(nπx
L

)
dx+

2

L

L∫
L/2

2h(L− x)

L
sin
(nπx
L

)
dx =

8h

n2π2
sin
(nπ

2

)
,

while bn = 0.

• Since

sin
(nπ

2

)
=

{
0 for n = 2m,m ∈ N \ {0},

(−1)m for n = 2m+ 1,m ∈ N,
it follows from (?) that a series solution is given by

y(x, t) =
8h

π2

∞∑
m=0

(−1)m

(2m+ 1)2
sin

(
(2m+ 1)πx

L

)
cos

(
(2m+ 1)πct

L

)
.

Example: piano string

• Suppose

f(x) = 0, g(x) =

{
v for L1 ≤ L ≤ L2,

0 otherwise.

where v, L1 and L2 are constants.

• By (??), an = 0 and

nπc

L
bn =

2

L

L2∫
L1

v sin
(nπx
L

)
dx =

2v

nπ

[
cos

(
nπL1

L

)
− cos

(
nπL2

L

)]
,

giving

y(x, t) =
2vL

cπ2

∞∑
n=1

1

n2

[
cos

(
nπL1

L

)
− cos

(
nπL2

L

)]
sin
(nπx
L

)
sin

(
nπct

L

)
.

• We plot below snapshots of the evolution of the guitar and piano string (the latter for L1/L =
0.3, L2/L = 0.5) over the first half-period of the oscillation (with p being the prime period of
the oscillation), which illustrates the persistence of corners moving with speed c.
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Example: guitar string

Example: piano string
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Conservation of energy

• Suppose an elastic string is stretched between x = 0 and x = L along the x-axis to a line
density ρ and a tension T , so that its small transverse displacement y(x, t) is governed by the
wave equation (1) and the boundary conditions (2), with wave speed c =

√
T/ρ.

• Recall that the point of the string that lies at xi in its so-called reference configuration is
displaced transversely to the point with position vector r(x, t) = xi+y(x, t)j. We note that when
we impose the initial conditions (3), we must deform the string from its reference configuration
along the x-axis to have transverse displacement y(x, 0) = f(x) and we must impart on the
string the transverse velocity given by yt(x, 0) = g(x).

• The kinetic energy of the string is therefore given by

L∫
0

1

2
ρ |rt|2 dx =

L∫
0

1

2
ρy2t dx.

• Moreover, the elastic potential energy of the string is the product of tension and extension,
and therefore given by

T

 L∫
0

|rx| dx− L

 = T

L∫
0

(
1 + y2x

) 1
2 − 1 dx.

Since the transverse displacement is small in the sense that |yx| � 1, a Taylor expansion gives(
1 + y2x

) 1
2 − 1 =

1

2
y2x + · · · ,

so to a first approximation (i.e. neglecting cubic and higher order terms), the elastic potential
energy is given by

L∫
0

1

2
Ty2x dx.

• The energy of a string is defined to be the sum of its kinetic and elastic potential energies, and
hence given by

E(t) =

L∫
0

1

2
ρy2t +

1

2
Ty2x dx.

• If y(x, t) satisfies the wave equation (1) and the boundary conditions (2), then E(t) is constant
for t > 0 because

dE

dt
=

L∫
0

ρytytt + Tyxyxt dx (by LIR)

=

L∫
0

Tytyxx + Tyxyxt dx (by (1) & c2 = T/ρ)

=

L∫
0

(Tytyx)x dx

= [Tytyx]
x=L
x=0

= 0 ,
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where in final equality we used the fact that each of the boundary conditions may be differen-
tiated with respect to t to deduce that yt(0, t) = yt(L, t) = 0 for t > 0.

Remarks

(1) We have shown that the energy of the elastic string is conserved during its motion, with
the kinetic and elastic potential energy being transferred back and forth as the string
oscillates.

(2) The energy of the string is set by the initial conditions in (3) to be given by

E(t) = E(0) =

L∫
0

1

2
ρ(g(x))2 +

1

2
T (f ′(x))2 dx.

(3) The energy of the nth normal mode yn(x, t) is given by

En(t) =

L∫
0

1

2
ρ

(
∂yn
∂t

)2

+
1

2
T

(
∂yn
∂x

)2

dx.

Since yn(x, t) satisfies (1) and (2) by construction, it follows that its energy is conserved
during its motion and given by

En(t) = En(0) =
n2π2ρc2b2n

4L
+
n2π2Ta2n

4L
,

where in the last equality we substituted for yn(x, 0) and integrated.

(4) Assuming convergence, Parseval’s Identity for g and f ′ imply that

L∫
0

1

2
ρg(x)2 +

1

2
Tf ′(x)2 dx =

∞∑
n=1

(
n2π2ρc2b2n

4L
+
n2π2Ta2n

4L

)
,

and hence that

E(t) = E(0) =
∞∑
n=1

En(0) =
∞∑
n=1

En(t),

i.e. the energy of the elastic string is made up of that in its normal modes.

Uniqueness

• Uniqueness Theorem: The initial boundary value problem (1)–(3) has only one solution.

• Proof of the uniqueness theorem: Our strategy is to show that the difference between any
two solutions much vanish.

• We suppose that y(x, t) and ỹ(x, t) are solutions to (1)–(3) and let

w(x, t) = y(x, t)− ỹ(x, t)

be their difference.
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• By linearity, (1)-(3) imply that w(x, t) satisfies the wave equation

∂2w

∂t2
= c2

∂2w

∂x2
for 0 < x < L, t > 0, (1′)

with the boundary conditions

w(0, t) = 0, w(L, t) = 0 for t > 0, (2′)

and the initial conditions

w(x, 0) = 0,
∂w

∂t
(x, 0) = 0 for 0 < x < L, (3′)

• Since w is the small transverse displacement of an elastic string whose initial transverse dis-
placement and velocity are everywhere zero and whose ends are fixed thereafter, on physical
grounds we expect the string to remain stationary along the x-axis, i.e. w = 0 for 0 ≤ x ≤ L
and t ≥ 0, which is what we need to show to prove uniqueness.

• The trick now is to analyse the energy E(t) associated with w(x, t), which is given by

E(t) =

L∫
0

1

2
ρw2

t +
1

2
Tw2

x dx.

• Since w satisfies (1′) and (2′), the energy E(t) is conserved. But E(0) = 0 by (3′), so

L∫
0

1

2
ρw2

t +
1

2
Tw2

x dx = 0 for t ≥ 0.

• We deduce that wt = wx = 0 for 0 < x < L, t > 0 assuming Wt and Wx are continuous on the
region R = {(x, y) : 0 ≤ x ≤ L, t ≥ 0}. Since (2′) and (3′) imply that w = 0 on the boundary
of R, we deduce that w = 0 or y = ỹ on R, which completes the proof.

Normal modes for a weighted string

• An elastic string of length 2L has its ends fixed at (x, y) = (±L, 0) and a point particle of mass
m is attached to the mid-point, as illustrated in the schematic below.

• Question: What are the normal modes of vibration?

• Since the tension T in the elastic string is assumed to be constant and the transverse displace-
ments small (in the sense that |yx| � 1), the horizontal forces exerted on the point particle
by the string will balance to a first approximation, so we need only consider the transverse
displacement of the point particle, Y (t) say.
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• We let y−(x, t) and y+(x, t) denote the small transverse displacements for −L ≤ x < 0 and
0 < x ≤ L, respectively.

• Then y− and y+ must satisfy the wave equations

∂2y−

∂t2
= c2

∂2y−

∂x2
for − L < x < 0, (1−)

∂2y+

∂t2
= c2

∂2y+

∂x2
for 0 < x < L, (1+)

and the boundary conditions

y−(−L, t) = 0, (2−)

y+(L, t) = 0. (2+)

• What conditions hold at x = 0? There are two. Firstly, since the point particle is attached to
the string, we require

y−(0−, t) = Y (t) = y+(0+, t). (3)

Secondly, the string exerts on the point particle the forces illustrated below (neglecting gravity
and air resistance as in the wave equations above).

Hence, applying Newton’s Second Law to the point particle in the y-direction gives

m
d2Y

dt2
=
(
Tτ (0+, t)− Tτ (0−, t)

)
· j,

where τ is the right-pointing unit tangent vector that we recall to be given by

τ =
i+ yxj

(1 + y2x)
1/2

;

we deduce that

m
d2Y

dt2
= Ty+x (0+, t)− Ty−x (0−, t), (4)

to a first approximation for small transverse displacements for which |yx| � 1.

• To find the normal modes we seek nontrivial separable solutions of (1)–(4) of the form

y± = F±(x)G(t),

since we must choose the same time dependence for both y− and y+ in order to satisfy (3).

• In the usual manner we may deduce from (1±) that there is a real constant λ such that

F ′′±(x)

F±(x)
=

G′′(t)

c2G(t)
= −λ. (I±)

• Since we’re seeking nontrivial solutions, it follows from (2±) that

F−(−L) = 0, F+(L) = 0. (II±)
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• Similarly (3) gives
F−(0−) = F+(0+), (III)

while (4) implies
mF±(0)G′′(t) = T (F ′+(0+)− F ′−(0−))G(t);

eliminating the time dependence in this expression using (I±) and eliminating T via T = ρc2

gives

−λm
ρ
F±(0) = F ′+(0+)− F ′−(0−). (IV )

• It may be shown that there are no nontrivial solutions of (I±)–(IV ) for λ ≤ 0, and so we seek
nontrivial solutions for λ = ω2, where ω > 0 without loss of generality.

• Since then G′′+ω2c2G = 0, (I±) gives G(t) = C cos(ωct+ε), where we may take C = 1 without
loss of generality and ε is an arbitrary constant, i.e. oscillatory solutions with frequency ωc.

• Moreover, (I±) give

F ′′− + ω2F− = 0 for − L < x < 0,

F ′′+ + ω2F+ = 0 for 0 < x < L,

so that (II±) imply

F−(x) = A sin
(
ω(L+ x)

)
,

F+(x) = B sin
(
ω(L− x)

)
,

where A and B are arbitrary real constants.

• Substituting these expressions for F±(x) into (III) and (IV ), we obtain two linear algebraic
equations for A and B that may be written in the form[

sinωL − sinωL

cosωL− mω
ρ

sinωL cosωL

]
︸ ︷︷ ︸

M

[
A
B

]
=

[
0
0

]
. (†)

• For nontrivial solutions for F±(x), we need[
A
B

]
6=
[
0
0

]
and hence for the matrix M to be singular: setting detM = 0, we deduce that ω must satisfy

sinωL

(
2 cosωL− mω

ρ
sinωL

)
= 0.

• Hence, there are two cases:

(i) sinωL = 0;

(ii) 2 cosωL− mω

ρ
sinωL = 0.
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• In case (i) we deduce that ω = nπ/L, where n is a positive integer, so that (†) implies B = −A
and hence the normal modes

y−(x, t) = A sin
(
ω(L+ x)

)
cos (ωct+ ε),

y+(x, t) = −A sin
(
ω(L− x)

)
cos (ωct+ ε).

This means that the normal modes are the same as for a string of length 2L with a node at
x = 0, i.e. the point particle is stationary and remains at the origin, as illustrated for the first
few such models in the schematic below.

• In case (ii), we let ω = θ/L, so that θ satisfies the equation

tan θ =
α

θ
, (‡)

where the dimensionless parameter α = 2Lρ/m is the ratio of the mass of the string to that of
the point particle. By plotting the graph of the left- and right-hand sides of (‡), as illustrated
below, we can convince ourselves that there are countably many roots

θ1 < θ2 < θ3 < · · ·

for θ, and hence countably many natural frequencies ωc = θnc/L, where n is a positive integer.

Now (†) implies that B = A and hence the normal modes

y−(x, t) = A sin
(
ω(L+ x)

)
cos (ωct+ ε),

y+(x, t) = A sin
(
ω(L− x)

)
cos (ωct+ ε),

which means that the normal modes are symmetric about x = 0, as illustrated for the first few
such modes in the schematic below.
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