
Fourier Series & PDEs: Lectures 11-12

General solution to the wave equation

• It is a remarkable fact that it is possible to write down all solutions of the wave equation

∂2y

∂t2
= c2

∂2y

∂x2
,

where we recall that the parameter c > 0 is the wave speed.

• To verify this fact we introduce new independent variables

ξ = x− ct, η = x+ ct,

and seek a solution in which
y(x, t) = Y (ξ, η).

• The chain rule implies

yx = Yξξx + Yηηx = Yξ + Yη,

yt = Yξξt + Yηηt = −cYξ + cYη,

and

yxx = (Yξ + Yη)ξξx + (Yξ + Yη)ηηx = Yξξ + 2Yξη + Yηη,

ytt = (−cYξ + cYη)ξξt + (−cYξ + cYη)ηηt = c2(Yξξ − 2Yξη + Yηη),

where we assumed Yξη = Yηξ. Hence,

∂2y

∂t2
− c2 ∂

2y

∂x2
= −4c2

∂2Y

∂ξ∂η
.

• Hence in the new variables the wave equation transforms to the equation

∂2Y

∂ξ∂η
= 0,

i.e.
∂

∂ξ

(
∂Y

∂η

)
= 0.

Thus ∂Y/∂η is independent of ξ and is a function of η only, say G′(η), i.e.

∂Y

∂η
= G′(η),

and so
∂

∂η
[Y −G(η)] = 0.

Thus, Y −G(η) is a function of ξ only, say F (ξ), and therefore

Y −G(η) = F (ξ),

giving
y(x, t) = F (x− ct) +G(x+ ct), (?)

where F and G are arbitrary twice continuously differentiable functions.
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Remarks

(1) It is easy to verify that (?) is a solution. We have shown that all solutions must be of this form.

(2) We note that F (x−ct) is a travelling wave of constant shape moving in the positive x-direction
with speed c, as illustrated in the sketch below in which the initial profile y = F (x) at t = 0 is
translated a distance ct to the right at time t.

(3) We note that G(x+ct) is a travelling wave of constant shape moving in the negative x-direction
with speed c, as illustrated in the sketch below in which the initial profile y = G(x) at t = 0 is
translated a distance ct to the left at time t.

(4) The general solution is therefore the superposition of left- and right-travelling waves each
moving with speed c, which is the reason the parameter c is called the wave speed. It follows
that the wave equation propagates information at constant speed c in contrast to solutions of
the heat equation in which information propagates at infinite speed. Examples of the latter are
the fundamental solution of the heat equation in question 2 of sheet 3 (which is positive and
has constant thermal energy for t > 0, but with the property that T (x, t) → 0 as t → 0+ for
x 6= 0, so that the influence of the “point source of heat” concentrated at the origin at t = 0 is
felt everywhere for t > 0) and the inhomogeneous Dirichlet problem in lecture 7 (in which the
temperature is positive everywhere for t > 0, while being equal to zero at t = 0 for 0 < x < L).

Waves on an infinite string: D’Alembert’s formula

• Consider the initial boundary value problem for the small transverse displacement y(x, t) of an
elastic string given by the wave equation

∂2y

∂t2
= c2

∂2y

∂x2
for −∞ < x <∞, t > 0, (1)

with the initial conditions

y(x, 0) = f(x),
∂y

∂t
(x, 0) = g(x) for −∞ < x <∞, (2)

where the initial transverse displacement f(x) and the initial transverse velocity g(x) are given.

• The general solution of the heat equation (1) is given by (?), so it remains to determine the
functions F and G for which it satisfies the initial conditions (2).

• Substituting (?) into (2) gives
F (x) +G(x) = f(x), (a)

−cF ′(x) + cG′(x) = g(x). (b)
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The expressions (b) integrates to give

−F (x) +G(x) =
1

c

∫ x

0

g(s) ds+ A, (c)

where A is an arbitrary constant. Subtracting and adding (a) and (c), we deduce that F and
G are given by

F (x) =
1

2

[
f(x)− 1

c

∫ x

0

g(s) ds− a
]
,

G(x) =
1

2

[
f(x) +

1

c

∫ x

0

g(s) ds+ a

]
.

Thus,

y(x, t) =
1

2

(
f(x− ct)− 1

c

∫ x−ct

0

g(s) ds− a
)

+
1

2

(
f(x+ ct) +

1

c

∫ x+ct

0

g(s) ds+ a

)

=
1

2

(
f(x− ct) + f(x+ ct)

)
+

1

2c

(∫ 0

x−ct
g(s) ds+

∫ x+ct

0

g(s) ds

)
and we arrive at D’Alembert’s Formula

y(x, t) =
1

2

(
f(x− ct) + f(x+ ct)

)
+

1

2c

∫ x+ct

x−ct
g(s) ds. (DF)

Remarks

(1) The argument shows that, for given f and g, the initial value problem has one and only one
solution, i.e. existence and uniqueness.

(2) We note that uniqueness may also be proved by energy conservation under the additional
assumption that yt, yx → 0 sufficiently rapidly as x → ±∞ that we can ensure the existence
of the energy

E(t) =

∫ ∞
−∞

ρ

2
y2t +

T

2
y2x dx.

Example 1

• Suppose that f and g are given by

f(x) =

{
ε cos4

(πx
2L

)
for |x| ≤ L,

0 otherwise,
g(x) = 0,

where ε and L are positive constants.

• We note that f is said to be compactly supported because it is only non-zero on a closed
bounded interval, namely [−L,L], and that f and its first three derivatives f ′, f ′′ and f ′′′ are
continuous on R, as illustrated in the sketch below of the graph of f .
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• By D’Alembert’s formula (DF) the solution of the initial boundary value problem is given by

y(x, t) =
1

2

(
f(x− ct) + f(x+ ct)

)
,

• We note that this is a so-called classical solution because it is twice continuously differentiable
with respect to x and t and satisfies the wave equation.

• We can sketch the solution y(x, t) at a fixed time t > 0 using the geometrical properties of its
travelling wave components.

– For ct > L, the supports of f(x− ct) and f(x+ ct) do not overlap, as illustrated below.

– For 0 < ct < L, the supports of f(x− ct) and f(x+ ct) overlap, as illustrated below.

• The derivation of explicit formulae for the solution therefore requires some careful book keeping
for which it is much easier to think geometrically rather than algebraically.

Characteristic diagram

• Let us ask how the solution at a point P : (x0, t0) in the upper half of the (x, t)-plane depends
upon the data f and g.

• By D’Alembert’s Formula (DF), we have

y(x0, t0) =
1

2
[f(x0 − ct0) + f(x0 + ct0)] +

1

2c

∫ x0+ct0

x0−ct0
g(x) dx,

which may be written in the form

y(P ) =
1

2

(
f(Q) + f(R)

)
+

1

2c

∫ R

Q

g(s) ds, (DFB)

where Q and R are the points (x0 − ct0, 0) and (x0 + ct0, 0), respectively, on the x-axis, as
illustrated in the sketch below.
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R : (x0 + ct0,0) x

t

0

P : (x0, t0)

Q : (x0 − ct0,0)

x − ct = x0 − ct0 x + ct = x0 + ct0

• We note the deliberate abuse of notation in (DFB) to aid the geometric interpretation of (DF).

• Definition: The lines x± ct = x0 ± ct0 are the characteristic lines through P : (x0, t0).

• It follows from (DFB) that y(P ) depends only on

(i) f though the values f takes at Q and R;

(ii) g though the values g takes on the x-axis between Q and R.

This motivates the following definition.

• Definition: The interval [x0 − ct0, x0 + ct0] of the x-axis between Q and R is called the
domain of dependence of P : (x0, t0)

• If f or g are modified outside the domain of dependence of P , then y(P ) is unchanged.

• We can exploit the geometric interpretation of (DF’) to construct explicit formulae for the
solution: the contribution to y(P ) from f and g changes at points on the x-axis where f and
g change their analytic behaviour.

• Hence, given a particular f and g, the first task is to identify these points on the x-axis
and sketch the characteristic lines x ± ct = constant through each of them — this is the
characterisrtic diagram.

• The characteristic diagram divides the (x, t)-plane into regions in which the contributions from
f and g may be different: the second task is to evaluate y(P ) for P in each of these regions.

Example 1 revisited

• In this case f(x) changes its analytic behaviour at the points (−L, 0) and (L, 0). We construct
the characteristics through these points and thus divide up the upper-half of the (x, t)-plane
into six regions R1, . . . , R6, forming the characteristic diagram illustrated below.
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• In particular, in t > 0, the region R1 is below x+ ct = −L; the region R2 is above x+ ct = −L
and above x− ct = −L; the region R3 is below x− ct = −L and below x+ ct = L; the region
R4 is above x + ct = L and above x − ct = −L; the region R5 is above x + ct = L and above
x− ct = L; and the region R6 is below x− ct = L).

• By (DFB) we have

y(P ) =
1

2

(
f(Q) + f(R)

)
.

• Since PQ is parallel to the characteristics x−ct = ±L, while PR is parallel to the characteristics
x+ ct = ±L, the solution is as follows:

– P ∈ R1 =⇒ =⇒ y(x, t) = 1
2
[0 + 0];

– P ∈ R2 =⇒ y(x, t) = 1
2

[
0 + ε cos4

(
π
2c

(x+ ct)
)]

;

– P ∈ R3 =⇒ y(x, t) = 1
2

[
ε cos4

(
π
2c

(x− ct)
)

+ ε cos4
(
π
2c

(x+ ct)
)]

;

– P ∈ R4 =⇒ y(x, t) = 1
2
[0 + 0];

– P ∈ R5 =⇒ y(x, t) = 1
2

[
ε cos4

(
π
2c

(x− ct)
)

+ 0
]
;

– P ∈ R6 =⇒ y(x, t) = 1
2
[0 + 0].

For example,

– when P ∈ R1, both Q and R lie to the left of (−L, 0), so f(Q) = f(R) = 0;

– when P ∈ R2, Q is to the left of (−L, 0), while R lies between (−L, 0) and (L, 0), so
f(Q) = 0 and f(R) = f(x+ ct) = ε cos4

(
π
2c

(x+ ct)
)
;

– when P ∈ R3, both Q and R are between (−L, 0) and (L, 0), so f(Q) = f(x − ct) =
ε cos4

(
π
2c

(x− ct)
)

and f(R) = f(x+ ct) = ε cos4
(
π
2c

(x+ ct)
)
; etc.

• We note that since y is continuous on characteristics bounding the regions, it does not matter to
which region each belongs when it comes to writing out the solution everywhere in t > 0, e.g. we
could pick R1 : x+ ct < −L, t > 0; R2 : −L ≤ x+ ct ≤ L, x− ct ≤ L; R3 : −L < x+ ct < L,
−L < x− ct < L, t > 0; etc.

Example 2

• Suppose that f and g are given by

f(x) = 0, g(x) =

{
vx/L for |x| ≤ L ,

0 otherwise,

where L and v are positive constants.

• By (DFB) we have

y(P ) =
1

2c

∫ R

Q

g(s) ds.
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• Since PQ is parallel to the characteristics x−ct = ±L, while PR is parallel to the characteristics
x+ ct = ±L, the solution is as follows:

R1 : y =
1

2c

x+ct∫
x−ct

0 ds = 0

R2 : y =
1

2c

−L∫
x−ct

0 ds+
1

2c

x+ct∫
−L

vs

L
ds =

v

4Lc

(
(x+ ct)2 − L2

)

R3 : y =
1

2c

x+ct∫
x−ct

vs

L
ds =

v

4Lc

(
(x+ ct)2 − (x− ct)2

)
=
vxt

L

R4 : y =
1

2c

−L∫
x−ct

0 ds+
1

2c

L∫
−L

vs

L
ds+

1

2c

x+ct∫
L

0 ds = 0

R5 : y =
1

2c

L∫
x−ct

vs

L
ds+

1

2c

x+ct∫
L

0 ds =
v

4Lc

(
L2 − (x− ct)2

)

R6 : y =
1

2c

x+ct∫
x−ct

0 ds = 0

• We can use the solution to plot y as a function of x at different times. For example, for
0 < t < L/c, the profile is as follows.

• However, for t > L/c, the profile is as follows:
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• As t increases we see two packets of displacement, one moving to the left with speed c and the
other to the right with speed c. Away from them the displacement is zero.

• We note that the solution we have constructed is not a classical one because the profile has
corners on the characteristics through (±L, 0). The solution is however infinitely differentiable
away from these corners (the profile being made up of segments of straight lines and parabolae).
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