
Fourier Series & PDEs: Lectures 13-14

Laplace’s equation

Derivation of the three-dimensional heat equation

• We begin by recalling from Multivariable Calculus the derivation of the three-dimensional heat
equation because it introduces all of the quantities that we shall need.

• Let T (x, t) be the absolute temperature in a rigid isotropic conducting material (e.g. metal),
with constant density ρ and specific heat cv.

• Let q(x, t) be the heat flux vector, so that q · n dS is the rate at which thermal energy is
transported through a surface element dS in the direction of a unit normal n to dS.

• Let V be a fixed region in the medium with boundary ∂V and let n be the outward unit normal
to ∂V . Assuming there are no sources or sinks of thermal energy, conservation of thermal energy
in V is given by

d

dt

∫∫∫
V

ρcvT dV =

∫∫
∂V

q · (−n) dS,

where the term on the left-hand side is the rate of change of thermal energy in V , while the
term on the right-hand side is the net rate at which thermal energy enters V through ∂V .

• Differentiating under the integral sign on the left-hand side and applying the Divergence The-
orem on the right-hand side gives∫∫∫

V

(
ρcv

∂T

∂t
+ ∇ · q

)
dV = 0.

• Since V is arbitrary, the integrand must be zero (if it is continuous), i.e.

ρcv
∂T

∂t
+ ∇ · q = 0.

• A closed model for heat conduction is obtained by prescribing a constitutive law relating the
heat flux vector q to the temperature T . Fourier’s Law states that thermal energy is transported
down the temperature gradient, with q = −k∇T , where k is the constant thermal conductivity.

• Hence, T satisfies the three-dimensional heat or diffusion equation given by

∂T

∂t
= κ∇2T,

where the thermal diffusivity κ = k/ρcv.

• The SI units of the dependent variables and dimensional parameters are summarized in the
following table.

Quantity Symbol SI units

Temperature T K

Heat flux vector q J m−2 s−1

Density ρ Kg m−3

Specific heat cv J Kg−1 K−1

Thermal conductivity k J m−1 s−1 K−1

Thermal diffusivity κ m2 s−1
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Steady two-dimensional heat conduction

• In this course we consider two-dimensional steady-state solutions of the heat equation.

• Setting T = T (x, y), the three-dimensional heat equation becomes

∂2T

∂x2
+
∂2T

∂y2
= 0.

i.e. T (x, y) is governed by Laplace’s equation in the plane.

• If r and θ are the usual plane polar coordinates, with (x, y) = (r cos θ, r sin θ), Laplace’s equa-
tion in the plane becomes

∂2T

∂r2
+

1

r

∂T

∂r
+

1

r2
∂2T

∂θ2
= 0 for r > 0.

• We will use Fourier’s method to construct solutions to several boundary value problems for
Laplace’s equation in the plane.

Boundary value problem in Cartesian coordinates

• An infinite straight metal rod has a rectangular cross-section whose sides are of length a and
b. The temperature T (x, y) in each cross-section satisfies the boundary value problem given by
Laplace’s equation

∂2T

∂x2
+
∂2T

∂y2
= 0 for 0 < x < L, 0 < y < L, (1)

with the boundary conditions

T (0, y) = 0 for 0 < y < b, (2)

T (a, y) = 0 for 0 < y < b, (3)

T (x, 0) = 0 for 0 < x < a, (4)

T (x, b) = f(x) for 0 < x < a, (5)

where f(x) is the prescribed temperature at which the top face of the rod is held.

• We summarize the boundary value problem in the following figure.

• We note that in accordance with physical intuition, the temperature is prescribed on the
boundary of the rectangle.

• We construct a solution to the boundary value problem using Fourier’s method.
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Step I

• We begin by finding all nontrivial separable solutions of Laplace’s equation (1) and the bound-
ary conditions (2)-(3) on the left- and right-hand sides of the rectangle.

• Substituting T (x, y) = F (x)G(y) into (1) and dividing through by F (x)G(y) 6= 0 gives

F ′′(x)

F (x)
= −G

′′(y)

G(y)
.

• The left-hand side of this expression is independent of y, while the right-hand side is inde-
pendent of x. Since the left-hand side is equal to the right-hand side, they must both be
independent of x and y, i.e. LHS = RHS = −λ for some constant λ ∈ R.

• Hence, −F ′′ = λF for 0 < x < a, with (2) and (3) giving the boundary conditions F (0) = 0
and F (a) = 0 for nontrivial G.

• We solved this problem for F in Lecture 6: the nontrivial solutions are given for positive
integers n by

F (x) = B sin
(nπx
L

)
with λ =

(nπ
L

)2
,

where B is an arbitrary constant; since G′′ − λG = 0, the corresponding solution for G(y) is
given by

G = C cosh
(nπy

a

)
+D sinh

(nπy
a

)
,

where C and D are arbitrary constants.

• Hence, the nontrivial separable solutions of (1) subject to (2)–(3) are given for positive integers
n by

Tn(x, y) = sin
(nπx

a

)(
an cosh

(nπy
a

)
+ bn sinh

(nπy
a

))
,

where an = BC and bn = BD are real constants.

• We note that in contrast to the wave equation for which the nontrivial separable solutions are
the product of trigonometric functions in x and trigonometric functions in t, the nontrivial
separable solutions of Laplace’s equation are products of trigonometric functions in x with
hyperbolic functions in y.

Step II

• Since (1)–(3) are linear, we can superimpose the separable solutions (assuming convergence) to
obtain the general series solution

T (x, y) =
∞∑
n=1

Tn(x, y) =
∞∑
n=1

sin
(nπx

a

)(
an cosh

(nπy
a

)
+ bn sinh

(nπy
a

))
.

Step III

• The boundary condition (4) on the bottom side of the rectangle can only be satisfied if an = 0
for all n, while the boundary condition (5) on the top side can only be satisfied if

f(x) =
∞∑
n=1

bn sinh

(
nπb

a

)
sin
(nπx

a

)
for 0 < x < a,

so that the theory of Fourier series gives

bn sinh

(
nπb

a

)
=

2

a

a∫
0

f(x) sin
(nπx

a

)
dx

for positive integers n.
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Remarks

(1) We could have applied the boundary condition (4) on y = 0 at end of Step I.

(2) The case in which a = b = L and f = T ? is a constant is considered on problem sheet 7.

Boundary value problem in plane polar coordinates

• Recall that in plane polar coordinates (r, θ), Laplace’s equation for T (r, θ) becomes

∂2T

∂r2
+

1

r

∂T

∂r
+

1

r2
∂2T

∂θ2
= 0 for r > 0 (?)

• We start by finding all nontrivial separable solutions of the form T (r, θ) = F (r)G(θ). Since T
is a single-valued function of position on r > 0, we require G(θ) to be 2π-periodic.

• Substituting T (r, θ) = F (r)G(θ) into (?) we obtain

F ′′G+
1

r
F ′G+

1

r2
FG′′ = 0;

dividing through by F (r)G(θ)/r2 6= 0 gives

r2F ′′(r) + rF ′(r)

F (r)
= −G

′′(θ)

G(θ)
.

• The left-hand side of this expression is independent of θ, while the right-hand side is independent
of r. Since the left-hand side is equal to the right-hand side, they must both be independent
of r and θ, i.e. LHS = RHS = λ for some constant λ ∈ R.

• Hence, we need to find all λ ∈ R for which G′′(θ) + λG(θ) = 0 has a nontrivial, 2π-periodic,
solution G(θ). We consider cases.

Case (i) λ = −ω2 (ω > 0 wlog)

• If G′′ − ω2G = 0, then G(θ) = A coshωθ +B sinhωθ, where A, B ∈ R.

• If G is 2π periodic, then G(0) = G(±2π), which implies A = A cosh 2πω ±B sinh 2πω, so that
A(cosh 2πω − 1) = 0 and B sinh 2πω = 0, giving A = B = 0 and G = 0.

λ = 0

• If G′′ = 0, then G(θ) = A+Bθ, where A, B ∈ R.

• If G is 2π periodic, then B = 0, but A arbitrary is admissible.

• For λ = 0, r2F ′′ + rF ′ = 0, so that (rF ′)′ = 0 for r > 0, giving r = c+ d log r, where c, d ∈ R.

• We conclude that for λ = 0 there is a nontrivial, 2π-periodic, separable solution in r > 0 of the
form

T0 = A0 +B0 log r,

where A0 = cA and B0 = dA are real constants. This solution is independent of θ and called
the cylindrically-symmetric solution of (?).

λ = ω2 (ω > 0 wlog)

• If G′′ + ω2G = 0, then G(θ) = R cos (ωθ + Φ), where R, Φ ∈ R.
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• If G is nontrivial, then R 6= 0 and G has prime period 2π/ω. Hence, G can only be nontrivial
and 2π-periodic if there exists a positive integer n such that n · 2π/ω = 2π, i.e. ω = n for some
positive integer n, which the graph of G would reveal to be a geometrically obvious result.

• In anticipation of the need to write the solution in the form of a Fourier series, it is better to
write the resulting solution for ω = n in the form G(θ) = A cosnθ+B sinnθ, where A = R cos Φ,
B = −R sin Φ are arbitrary real constants.

• If λ = ω2 = n2, then we obtain for F (r) Euler’s ODE in the form

r2F ′′ + rF ′ − n2F = 0 for r > 0.

• As in Introductory Calculus, we derive the general solution of this ODE by making the change
of variable r = et, F (r) = W (t). By the chain rule,

dW

dt
=

dF

dr

dr

dt
= r

dF

dr
,

so that
d2W

dt2
=

d

dr

(
r

dF

dr

)
dr

dt
= r

d

dr

(
r

dF

dr

)
= r2F ′′ + rF ′ = n2F = n2W.

Hence, W = Cent + De−nt, where C, D ∈ R, and we conclude that the general solution for
F (r) is given by

F (r) = Crn +Dr−n.

• We not that an alternative method is to seek a solution of the form F (r) = rµ for which
µ(µ− 1) + µ− µ2 = 0 so that µ2 = n2 giving µ = ±n. The general solution above then follows
by the theory of second-order linear ODEs.

• We conclude that for λ = ω2 there are a countably infinite set of nontrivial, 2π-periodic,
separable solution in r > 0 given for positive integers n by

Tn = (Anr
b +Bnr

−n) cosnθ + (Cnr
n +Dnr

−n) sinnθ,

where An = AC, Bn = AD, Cn = BC, Dn = BD are real constants.

• Superimposing the nontrivial, 2π-periodic, separable solutions in r > 0, we obtain the general
series solution

T (r, θ) = A0 +B0 log r +
∞∑
n=1

(
(Anr

n +Bnr
−n) cosnθ + (Cnr

n +Dnr
−n) sinnθ

)
. (??)

Remarks

(1) We note that the solutions log r, r−n cosnθ and r−n sinnθ are unbounded as r → 0+, and hence
not defined at r = 0. This means that these solutions are not admissible if the origin belongs
to the domain in which T is defined.

(2) Similarly, if the domain in which T is defined extends to infinity and T is bounded there, then
the solutions log r, rn cosnθ and rn sinnθ are not admissible. We illustrate these results below
with some concrete examples.
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Example 1

• Consider the boundary value problem for T given by

∇2T = 0 in a < r < b, (1)

with
T = T ?0 on r = a, T = T ?1 on r = b, (2)

where a and b are constant radii, while T ?0 and T ?1 are constant temperatures.

• It follows from (1) that the general series solution (??) pertains, so that the boundary conditions
(2) can only be satisfied if

T ?0 = A0 +B0 log a+
∞∑
n=1

(
(Ana

n +Bna
−n) cosnθ + (Cna

n +Dna
−n) sinnθ

)
,

T ?1 = A0 +B0 log b+
∞∑
n=1

(
(Anb

n +Bnb
−n) cosnθ + (Cnb

n +Dnb
−n) sinnθ

)
,

for −π < θ ≤ π, say.

• Since the Fourier coefficients of a Fourier series are unique, we can equate them on the left-
and right-hand sides of these equalities to obtain, for positive integers n,[

1 log a
1 log b

] [
A0

B0

]
=

[
T ?0
T ?1

]
,

[
an a−n

bn b−n

] [
An
Bn

]
=

[
0
0

]
,

[
an a−n

bn b−n

] [
Cn
Dn

]
=

[
0
0

]
,

giving, since a < b,[
A0

B0

]
=

1

log
(
b
a

) [log b − log a
−1 1

] [
T ?0
T ?1

]
,

[
An
Bn

]
=

[
0
0

]
,

[
Cn
Dn

]
=

[
0
0

]
and hence the cylindrically-symmetric solution

T =
T ?0 log b− T ?1 log a

log
(
b
a

) +
T ?1 − T ?0
log
(
b
a

) log r.

Remarks

(1) We note that the solution may be written in the form

T

T ?0
=

log
(
r
b

)
log
(
a
b

) +
T ?1
T ?1

log
(
r
b

)
log
(
b
a

) .
Since all of the fractions in this expression are dimensionless, we have verified that the solution
is dimensionally correct.

(2) We note that we could have sought a circularly-symmetric solution T = T (r) from the outset
because the boundary data is independent of θ. However, the method above generalises to T ?0
and T ?1 being functions of θ.
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Example 2

• Consider the boundary value problem for T given by

∇2T = 0 in r < a, (1)

with
T (a, θ) = T ? sin3 θ for − π < θ ≤ π, (2)

where a is a constant radius and T ? is a constant temperature.

• Since T satisfies Laplace’s equation in r < a, it must be twice differentiable with respect to x
and y in a neighbourhood of the origin, and hence continuous and bounded at the origin, so
that the general series solution (??) pertains, but with B0 = 0 and Bn = Dn = 0 for positive
integers n.

• The boundary condition (2) can then only be satisfied if

T ? sin3 θ = An +
∞∑
n=1

(Ana
n cosnθ +Bna

n sinnθ) for − π < θ ≤ π.

Since the Fourier seris for the left-hand side of this expression is given by the identity

T ? sin3 θ =
3T ?

4
sin θ − T ?

4
sin 3θ,

we can equate Fourier coefficients to deduce that

B1a =
3T ?

4
, B3a

3 = −T
?

4

while the remainder vanish, giving the solution

T =
3T ?

4

(r
a

)
sin θ − T ?

4

(r
a

)3
sin 3θ.

Remarks

(1) Question: What is the heat flux out of the disc through r = a? Answer: The heat flux vector
q = −k∇T according to Fourier’s Law and we need the component in the direction of the
outward pointing unit normal n = er to the boundary, namely

q · n|r=a = (−k∇T ) · er|r=a = −k∂T
∂r

(a, θ) = −k
(

3T ?

4a
sin θ − 3T ?

4a
sin 3θ

)
.

(2) Since ∇2T = 0 in r < a, we have ∇ · q = 0 in r < a, so that an application of the Divergence
theorem in the plane gives ∫

r=a

q · n ds =

∫∫
r<a

∇ · q dx dy = 0,

i.e. the net flux of thermal energy through r = a is equal to zero because there is no volumetric
source or sink of thermal energy.
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