Fourier Series & PDEs: Lectures 13-14

Laplace’s equation

Derivation of the three-dimensional heat equation

We begin by recalling from Multivariable Calculus the derivation of the three-dimensional heat
equation because it introduces all of the quantities that we shall need.

Let T'(x,t) be the absolute temperature in a rigid isotropic conducting material (e.g. metal),
with constant density p and specific heat c,.

Let q(x,t) be the heat flux vector, so that q - ndS is the rate at which thermal energy is
transported through a surface element dS in the direction of a unit normal n to dS.

Let V be a fixed region in the medium with boundary 0V and let n be the outward unit normal
to V. Assuming there are no sources or sinks of thermal energy, conservation of thermal energy

in V' is given by
d
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where the term on the left-hand side is the rate of change of thermal energy in V', while the
term on the right-hand side is the net rate at which thermal energy enters V' through 0V'.

Differentiating under the integral sign on the left-hand side and applying the Divergence The-
orem on the right-hand side gives

JI (55 90 v =

Since V' is arbitrary, the integrand must be zero (if it is continuous), i.e.
orT
o +V-q=0.
p v at q

A closed model for heat conduction is obtained by prescribing a constitutive law relating the
heat flux vector q to the temperature T'. Fourier’s Law states that thermal energy is transported
down the temperature gradient, with q = —kV'T, where k is the constant thermal conductivity.

Hence, T satisfies the three-dimensional heat or diffusion equation given by

oT
— =rV*T
ot Vo

where the thermal diffusivity x = k/pc,.

The SI units of the dependent variables and dimensional parameters are summarized in the
following table.

Quantity Symbol | SI units
Temperature T K

Heat flux vector a Jm2s1
Density p Kgm™
Specific heat Co JKg 'Kt
Thermal conductivity k Jm s Kt
Thermal diffusivity K m?s~!




Steady two-dimensional heat conduction

e In this course we consider two-dimensional steady-state solutions of the heat equation.
e Setting T'= T(x,y), the three-dimensional heat equation becomes

T T
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i.e. T'(z,y) is governed by Laplace’s equation in the plane.

e If r and € are the usual plane polar coordinates, with (z,y) = (r cos @, rsin ), Laplace’s equa-
tion in the plane becomes
o*r 10T 10°T

aT2+;E+ﬁW:0 for > 0.

e We will use Fourier’s method to construct solutions to several boundary value problems for
Laplace’s equation in the plane.

Boundary value problem in Cartesian coordinates

e An infinite straight metal rod has a rectangular cross-section whose sides are of length a and
b. The temperature T'(x,y) in each cross-section satisfies the boundary value problem given by
Laplace’s equation

o’T  O*T
%+a_y2:0 for 0<z<L,0<y<L, (1)

with the boundary conditions

T0,y) = 0 for 0<y<b, (2)
T(a,y) = 0 for 0<y<b, (3)
T(x,0) = 0 for 0<zx<a, (4)
T(x,b) = f(z) for 0<z<a, (5)

where f(x) is the prescribed temperature at which the top face of the rod is held.

e We summarize the boundary value problem in the following figure.
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e We note that in accordance with physical intuition, the temperature is prescribed on the
boundary of the rectangle.

e We construct a solution to the boundary value problem using Fourier’s method.



Step 1

e We begin by finding all nontrivial separable solutions of Laplace’s equation (1) and the bound-
ary conditions (2)-(3) on the left- and right-hand sides of the rectangle.

e Substituting T'(z,y) = F'(z)G(y) into (1) and dividing through by F(z)G(y) # 0 gives
F”(x) _ _G”(y)
F(z) G(y)

The left-hand side of this expression is independent of y, while the right-hand side is inde-
pendent of x. Since the left-hand side is equal to the right-hand side, they must both be
independent of x and y, i.e. LHS = RHS = —\ for some constant A € R.

e Hence, —F" = \F for 0 < z < a, with (2) and (3) giving the boundary conditions F'(0) = 0
and F'(a) = 0 for nontrivial G.

We solved this problem for F' in Lecture 6: the nontrivial solutions are given for positive
integers n by

2
F(z) = Bsin <?> with A= <n%> :
where B is an arbitrary constant; since G” — A\G = 0, the corresponding solution for G(y) is

given by
G = C cosh (@) + Dsinh (@)7
a a

where C' and D are arbitrary constants.

e Hence, the nontrivial separable solutions of (1) subject to (2)—(3) are given for positive integers

n by . nmx nmy . nny
T, (x,y) = sin <T> (an cosh <T) + b, sinh <T>> ,

where a,, = BC and b,, = BD are real constants.

e We note that in contrast to the wave equation for which the nontrivial separable solutions are
the product of trigonometric functions in x and trigonometric functions in ¢, the nontrivial
separable solutions of Laplace’s equation are products of trigonometric functions in x with
hyperbolic functions in .

Step 11

e Since (1)—(3) are linear, we can superimpose the separable solutions (assuming convergence) to
obtain the general series solution

T(x,y) = iTn(x,y) = i sin (n%::v) (an cosh (%) + b, sinh (%)) :

n=1
Step III

e The boundary condition (4) on the bottom side of the rectangle can only be satisfied if a,, = 0
for all n, while the boundary condition (5) on the top side can only be satisfied if

- . nwb\ . /nmx
f(x) = ;bn sinh (T) sin <—> for 0<x<a,

a

so that the theory of Fourier series gives

_ nmb 2 f . /nmx
by, sinh <7> == /f(:c) sin (T) dz
0

for positive integers n.



Remarks

(1) We could have applied the boundary condition (4) on y = 0 at end of Step I.

(2) The case in which @ = b= L and f = T* is a constant is considered on problem sheet 7.

Boundary value problem in plane polar coordinates

e Recall that in plane polar coordinates (r,6), Laplace’s equation for T(r, ) becomes
82T+ 18T+ 1 0°T
or?2  ror 1?2062

e We start by finding all nontrivial separable solutions of the form T'(r,0) = F(r)G(#). Since T
is a single-valued function of position on r > 0, we require G(6) to be 2m-periodic.

=0forr >0 (%)

e Substituting T'(r,0) = F(r)G(0) into (x) we obtain
1/ 1 / 1 "
F'G+-FG+ PG =0
r r
dividing through by F(r)G()/r* # 0 gives

r2F"(r) + rF'(r) __G"9)
F(r) G(0)

e The left-hand side of this expression is independent of #, while the right-hand side is independent
of r. Since the left-hand side is equal to the right-hand side, they must both be independent
of r and 0, i.e. LHS = RHS = X for some constant \ € R.

e Hence, we need to find all A € R for which G”(6) + AG(#) = 0 has a nontrivial, 27-periodic,
solution G(6). We consider cases.

Case (i) A = —w? (w > 0 wlog)

o If G — w?’G =0, then G(#) = Acoshwd + Bsinhwf, where A, B € R.

e If G is 27 periodic, then G(0) = G(£27), which implies A = A cosh 27w £+ B sinh 27w, so that
A(cosh2rw — 1) = 0 and Bsinh 27w = 0, giving A = B =0 and G = 0.

A=0

o If G" =0, then G(0) = A+ Bf, where A, B € R.
e If (G is 27 periodic, then B = 0, but A arbitrary is admissible.
e For A\=0, r*F" +rF’ =0, so that (rF’)’ =0 for r > 0, giving r = ¢ + dlogr, where ¢, d € R.

e We conclude that for A = 0 there is a nontrivial, 27w-periodic, separable solution in r > 0 of the
form
T() = A() + BQ IOg r,

where Ay = cA and By = dA are real constants. This solution is independent of # and called
the cylindrically-symmetric solution of ().

A =w? (w>0 wlog)

o If G +w?G =0, then G(0) = Rcos (wl + ®), where R, ® € R.
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e If (G is nontrivial, then R # 0 and G has prime period 27/w. Hence, G can only be nontrivial
and 2m-periodic if there exists a positive integer n such that n-27/w = 27, i.e. w = n for some
positive integer n, which the graph of G would reveal to be a geometrically obvious result.

e In anticipation of the need to write the solution in the form of a Fourier series, it is better to
write the resulting solution for w = n in the form G(0) = A cosnf+ B sinnf, where A = R cos P,
B = —Rsin @ are arbitrary real constants.

o If A = w? = n?, then we obtain for F(r) Euler’s ODE in the form

P?F" +rF —n* F =0 for r>0.
e As in Introductory Calculus, we derive the general solution of this ODE by making the change
of variable r = €', F(r) = W(t). By the chain rule,

dw _dFdr _ dF
a  drdt | dar’
so that

2w d dF\ dr d dF

=—|\lr—|—=r—|(r—
dt? dr \' dr /) dt dr ' dr
Hence, W = Ce™ + De ™, where C, D € R, and we conclude that the general solution for
F(r) is given by

) =r?2F" +rF' =n’F = n’W.

F(ry=Cr"+ Dr .

e We not that an alternative method is to seek a solution of the form F(r) = r* for which
p(p—1) + p— p? = 0 so that u? = n? giving u = +n. The general solution above then follows
by the theory of second-order linear ODEs.

e We conclude that for A = w? there are a countably infinite set of nontrivial, 27-periodic,
separable solution in r > 0 given for positive integers n by

T, = (Apr® + Byr™) cosnf + (Cpr™ + Dyr™™) sin nb),
where A, = AC, B, = AD, C,, = BC, D,, = BD are real constants.

e Superimposing the nontrivial, 27-periodic, separable solutions in r > 0, we obtain the general
series solution

T(r,0) = Ao+ Bologr + Z ((Anrn + B,r~")cosnbd + (Cp,r™ + D,r ") sin n@). (%)

n=1

Remarks

(1) We note that the solutions logr, r~™ cos nf and r~" sinnf are unbounded as r — 0+, and hence
not defined at » = 0. This means that these solutions are not admissible if the origin belongs
to the domain in which 7' is defined.

(2) Similarly, if the domain in which 7" is defined extends to infinity and 7" is bounded there, then
the solutions log r, " cosnf and r™ sin nf are not admissible. We illustrate these results below
with some concrete examples.



Example 1

e Consider the boundary value problem for 7" given by
VT=0 in a<r<b, (1)

with
T=T;y on r=a, T=1T; on r=hb, (2)

where a and b are constant radii, while 7} and 77} are constant temperatures.
It follows from (1) that the general series solution (xx) pertains, so that the boundary conditions

(2) can only be satisfied if

T5 = Ao+ Byloga + Z ((Ana™ + Bya™™) cosnb + (Cpa™ + Dpa™") sinnd)

n=1

T = Ag + Bylogh + Z ((Apb™ + Byb™™) cosnf + (Cpb" + D,b™") sinnb) ,
n=1

for —m < 0 <, say.

Since the Fourier coefficients of a Fourier series are unique, we can equate them on the left-
and right-hand sides of these equalities to obtain, for positive integers n,

1 loga| |Ao| [T a a | |A,| |0 a" a " |Cy| |0
1 logb| |Bo| |17’ v b ™| |B,| |0]’ b b ™| |D,| |0]’
giving, since a < b,
Aol 1 logb —loga| |1} A, |0
By _log(g) -1 1 T’ B,| (0]’
and hence the cylindrically-symmetric solution
~ Tgloghb—Tfloga Ty —Tg
o () log (3)

T

Remarks

(1) We note that the solution may be written in the form

T _log(j) | Ttlog ()

Ty log (%)  Tylog (%)
Since all of the fractions in this expression are dimensionless, we have verified that the solution
is dimensionally correct.

(2) We note that we could have sought a circularly-symmetric solution 7" = T'(r) from the outset

because the boundary data is independent of §. However, the method above generalises to 7§
and 77 being functions of 6.



Example 2
e Consider the boundary value problem for 7" given by
VT =0 in r<a, (1)
with
T(a,0) =T*sin*0 for —7<0<m, (2)
where a is a constant radius and 7™ is a constant temperature.

e Since T satisfies Laplace’s equation in r < a, it must be twice differentiable with respect to x
and y in a neighbourhood of the origin, and hence continuous and bounded at the origin, so
that the general series solution (%) pertains, but with By = 0 and B,, = D,, = 0 for positive
integers n.

e The boundary condition (2) can then only be satisfied if

T*sin*0 = A, + Z (Ana" cosnf + Bpa"sinnf) for —mw <0 <m.

n=1
Since the Fourier seris for the left-hand side of this expression is given by the identity

3T T
1 sin @ — T sin 360,

T*sin® 0 =

we can equate Fourier coefficients to deduce that

3T~ T
) B36L3 - -

Bia=— 4

while the remainder vanish, giving the solution
*

3T* /ry . T rr\3 .
T = 1 <a> Slne—z<a> Sln39.

Remarks

(1) Question: What is the heat flux out of the disc through r = a? Answer: The heat flux vector
q = —kVT according to Fourier’s Law and we need the component in the direction of the
outward pointing unit normal n = e, to the boundary, namely

oT 37" . 31~
q-nl—y = (—kVT) - e.|=a = —kW(a,Q) = —k ( o sin 6 — o sm3«9> )

(2) Since V2T =0 in r < a, we have V- g = 0 in r < a, so that an application of the Divergence

theorem in the plane gives
/q-nd,S://V-qudy:O,

r=a r<a

i.e. the net flux of thermal energy through r» = a is equal to zero because there is no volumetric
source or sink of thermal energy.



