
M5 Fourier Series and PDEs

Course synopsis

Overview

While developing the theory of heat conduction in the early 19th century, Jean-Baptiste Joseph Fourier kick-
started a mathematical revolution by claiming that “every” real-valued function defined on a finite interval
could be expanded as an infinite series of elementary trigonometric functions — cosines and sines. The need
for rigorous mathematical analysis to assess this astonishing claim led to a surprisingly large proportion of
the material covered in prelims, part A and beyond (e.g. the definition of a function, the ε-δ definition of
limit, the theory of convergence of sequences and series of functions, Lebesgue integration and Cantor’s set
theory). The implications of Fourier’s claim for practical applications were no less powerful or far-ranging:
the decomposition led to deep and fundamental insights into numerous physical phenomena (e.g. mass and
heat transport, vibrations of elastic media, acoustics and quantum mechanics) and continue to be exploited
today in numerous fields (e.g. signal processing, approximation theory and control theory).

In this course we introduce fundamental results for the pointwise convergence of Fourier’s infinite trigono-
metric series — Fourier series. We then follow in Fourier’s footsteps by using them to construct solutions to
fundamental problems involving the heat equation, the wave equation and Laplace’s equation — the three
most ubiquitous partial differential equations in mathematics, science and engineering.
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Synopsis (14 lectures)

Fourier series: Periodic, odd and even functions. Calculation of sine and cosine series. Simple applications
concentrating on imparting familiarity with the calculation of Fourier coefficients and the use of Fourier
series. The issue of convergence is discussed informally with examples. The link between convergence and
smoothness is mentioned, together with its consequences for approximation purposes.

Partial differential equations: Introduction in descriptive mode on partial differential equations and how
they arise. Derivation of (i) the wave equation of a string, (ii) the heat equation in one dimension (box
argument only). Examples of solutions and their interpretation. D’Alembert’s solution of the wave equation
and applications. Characteristic diagrams (excluding reflection and transmission). Uniqueness of solutions
of wave and heat equations.

PDEs with Boundary conditions. Solution by separation of variables. Use of Fourier series to solve the wave
equation, Laplace’s equation and the heat equation (all with two independent variables). Laplace’s equation
in Cartesian and in plane polar coordinates. Applications.
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Fourier Series & PDEs: Lectures 1-2

Motivation

Example: existence of a convergent Fourier series

• Recall

ez =

∞∑
n=0

zn

n!

for z ∈ C.

• If we let z = eiθ = cos θ + i sin θ, where θ ∈ R, then

Im (ez) = Im
(
ecos θei sin θ

)
= ecos θ sin(sin θ) ,

Im (zn) = Im
(
einθ

)
= sinnθ .

• Hence, ecos θ sin(sin θ) =
∞∑
n=1

sinnθ

n!︸ ︷︷ ︸
Fourier (sine) series

for θ ∈ R.

Example: heat conduction

• Suppose T (x, t) is such that

1. Tt = Txx for 0 < x < π , t > 0,

2. T (0, t) = 0, T (π, t) = 0 for t > 0,

3. T (x, 0) = ecosx sin (sinx) for 0 < x < π.

• Observe T (x, t) =
N∑
n=1

bN sin(nx)e−n
2t satisfies (1) and (2) for all b1, b2, . . . , bn ∈ R, N ∈ N \ {0}.

• Question: how should we pick N and the constants bn?

• Answer: N =∞ and bN = 1
N ! to satisfy (3), i.e. a solution of the IBVP (1)–(3) is

T (x, t) =
∞∑
n=1

1

n!
sin (nx)e−n

2t .

• But what about the other initial conditions?

Periodic, even and odd functions

Definitions

• Definition: f : R→ R is a periodic function if ∃p > 0 s.t. f(x+ p) = f(x)∀x ∈ R. In this case p is
a period for f and f is called p–periodic. A period is not unique, but if there exists a smallest such
p it is called the prime period.

• Some examples:

– f = const. is p–periodic ∀p > 0, so has no prime period.
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– sinx has prime period 2π.

– x and x2 are not periodic.

• Note if f is periodic with prime period p then the graph of f repeats every p, e.g.

f : (α, α+ p]→ R can be extended uniquely to be p–periodic.

• Definition: The periodic extension F : R→ R of f : (α, α+ p]→ R is defined by F (x) = f(x−mp),
where for each x ∈ R, m is the unique integer such that x−mp ∈ (α, α+ p].

• f, g p–periodic implies:

1. f, g are np–periodic ∀n ∈ N \ {0} ,

2. αf + βg are p–periodic ∀α, β ∈ R ,

3. fg is p–periodic ,

4. f(λx) is p/λ–periodic ∀λ > 0 ,

5.
p∫
0

f(x) dx =
α+p∫
α
f(x) dx ∀α ∈ R.

• Definition: f : R → R is odd if f(x) = −f(−x) ∀x ∈ R. Similarly, f : R → R is even if
f(x) = f(−x) ∀x ∈ R.

– E.g. xn is odd for n odd, and is even for n even (hence the naming convention).

– Note symmetries of graphs of odd/even functions:

Properties of odd/even functions

If f, f1 are odd and g, g1 are even, then

1. f(0) = 0 ,

2.
α∫
−α

f(x) dx = 0 ∀α ∈ R ,
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3.
α∫
−α

g(x) dx = 2
α∫
0

g(x) dx ∀x ∈ R ,

4. fg odd, ff1 even, and gg1 even.

Fourier series for functions of period 2π

• Let f : R→ R be a periodic function of period 2π. We want an expansion for f of the form

f(x) =
a0

2
+

∞∑
n=1

(an cos (nx) + bn sin (nx)) (?)

• Q1: If (?) is true, can we find the constants an, bn in terms of f?

• Q2: With these an and bn, when is (?) true?

Question 1

• Suppose (?) is true and we can integrate it term by term, then

π∫
−π

f(x) dx =
1

2
a0

π∫
−π

dx+

∞∑
n=1

(
an

π∫
−π

cos (nx) dx

︸ ︷︷ ︸
0

+bn

π∫
−π

sin (nx) dx

︸ ︷︷ ︸
0

)
.

• Hence we have

a0 =
1

π

π∫
−π

f(x) dx ,

• I.e. a0
2 is the mean of f over a period.

• Lemma: Let m,n ∈ N \ {0}. Then we have the orthogonality relations:

π∫
−π

cos (mx) cos (nx) dx = πδmn

π∫
−π

cos (mx) sin (nx) dx = 0

π∫
−π

sin (mx) sin (nx) dx = πδmn ,

where δmn is Kronecker’s delta, i.e.

δmn =

{
1 for m = n ,
0 for m 6= n .

For proof see online lecture notes by Prof. Ruth Baker, in addition to the first problem sheet.

• Now, fix m ∈ N \ {0}, multiply (?) by cos (mx) and assume that the integral of the infinite sum is the
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infinite sum of the integral. So

π∫
−π

f(x) cos (mx) dx =
1

2
a0

π∫
−π

cos (mx) dx

+
∞∑
n=1

an π∫
−π

cos (mx) cos (nx) dx+ bn

π∫
−π

cos (mx) sin (nx) dx


=

1

2
a0 · 0 +

∞∑
n=1

(anπδmn + bn · 0)

= πam .

• So

am =
1

π

π∫
−π

f(x) cos (mx) dx

for m ∈ N \ {0}.

• Similarly, we can fix m ∈ N\{0}, multiply (?) by sin (mx) and assume that the integral of the infinite
sum is the infinite sum of the integral to get

bm =
1

π

π∫
−π

f(x) sin (mx) dx

for m ∈ N \ {0}.

• Definition: Suppose f is such that the Fourier coefficients an and bn as defined above exist for
n ∈ N \ {0}. Then we write

f(x) ∼ 1

2
a0 +

∞∑
n=1

(an cos (nx) + bn sin (nx)) ,

where ∼ means the RHS is the Fourier series for f , regardless of whether or not it converges to f .

• Note the factor of 1
2 in the first term is for algebraic convenience.

Example 2.1. Find the Fourier series (FS) for the 2π-periodic function f defined by f(x) = |x| for −π <
x ≤ π.

•
f(x) even, so f(x) cos (nx) is even and f(x) sin (nx) is odd. Thus

an =
2

π

π∫
0

f(x) cos (nx) dx , bn = 0 .

• Calculate

a0 =
2

π

π∫
0

x dx =

[
2

π

x2

2

]π
0

= π .
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• For n > 0 we use integration by parts:

(uv)′ = u′v + uv′ =⇒ [uv]ba =

b∫
a

u′v + uv′ dx .

• Pick u = x, v = 1
n sin (nx), a = 0, b = π to give

[x
n

sin (nx)
]π

0
=

π∫
0

1 · 1

n
sin (nx) + x cos (nx) dx .

• So
π∫

0

x cos (nx) dx = −
π∫

0

1

n
sin (nx) dx =

[
cos (nx)

n2

]π
0

=
(−1)n − 1

n2
,

giving

an = − 2

π

[1− (−1)n]

n2
=

{
0 for n = 2m, m ∈ N \ {0} ,
− 4
π(2m+1)2

for n = 2m+ 1, m ∈ N .

• Hence,

f(x) ∼ π

2
− 4

π

∞∑
m=0

cos ((2m+ 1)x)

(2m+ 1)2
.

Remarks

1. Partial sums are defined by

SN (x) =
π

2
− 4

π

N∑
m=0

cos ((2m+ 1)x)

(2m+ 1)2

for N ∈ N. Plots in the handout for Lecture 2 suggest that FS converges on R, i.e.

lim
N→∞

SN (x) = f(x) for x ∈ R . (†)

2. If this is true, we can pick x to evaluate the sum of a series, e.g. x = 0 gives

0 =
π

2
− 4

π

∞∑
m=0

1

(2m+ 1)2
=⇒

∞∑
m=0

1

(2m+ 1)2
=
π2

8
.

Sine and cosine series

• Let f be 2π-periodic and such that the Fourier coefficients exist.

• If f(x) is odd then

f(x) cos (nx) is odd and f(x) sin (nx) is even

=⇒ an = 0, bn =
2

π

π∫
0

f(x) sin (nx) dx

=⇒ f(x) ∼
∞∑
n=1

bn sin (nx) , called a Fourier sine series.
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• Note that this is also true if f is odd only for x 6= kπ, k ∈ Z. Similarly, if f(x) is even then

f(x) ∼ a0

2
+ ∼

∞∑
n=1

an cos (nx) , called a Fourier cosine series,

where

an =
2

π

π∫
0

f(x) cos (nx) dx .

Question 2

• When does the FS for f converge?

Example 2.2. Find the FS for the 2π-periodic function f defined by

f(x) =

{
1 for 0 < x ≤ π ,
−1 for − π < x ≤ 0 .

• f is odd for x 6= kπ k ∈ Z, so

an = 0 , bn =
2

π

π∫
0

f(x) sin (nx) dx .

• f(x) = 1 for 0 < x < π, so

bn =

[
− 2

π

cos (nx)

n

]π
0

=
2[1− (−1)n]

πn

• Hence

f(x) ∼ 4

π

∞∑
m=0

sin ((2m+ 1)x)

2m+ 1
.

Remarks

1. Partial sums are defined by

SN (x) =
4

π

∞∑
m=0

sin ((2m+ 1)x)

2m+ 1
for N ∈ N .

Plots in the handout for Lecture 2 suggest that

lim
N→∞

SN (x) =

{
f(x) for x 6= kπ, k ∈ Z ,
0 for x = kπ, k ∈ Z . (‡)

2. Note slower convergence than in example 2.1 and persistent overshoot near discontinuities of f - this
is called Gibb’s phenomenon (more to follow on this).
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Convergence of Fourier series

Definition:

f(c+) = lim
h→0
h>0

f(c+ h) if it exists (RH limit at c)

f(c−) = lim
h→0
h<0

f(c+ h) if it exists (LH limit at c)

Remarks

1. f(x) need not be defined for f(c+) or f(c−) to exist.

2. Existence part is important, e.g. f(x) = sin 1
x for x 6= 0 implies that f(0±) do not exist.

3. f(c+) = f(c−) = f(x) ⇐⇒ f is continuous at c.

4. In example 2.2, f is continuous for x 6= kπ, k ∈ Z with e.g. f(0+) = 1, f(0−) = −1, f(π+) =
−1, f(π−) = 1.

Definition:

• f is piecewise continuous on (a, b) ⊆ R if there exists a finite number of points x1, . . . , xm with
a = x1 < x2 < . . . < xm = b such that

i) f is defined and continuous on (xk, xk+1) ∀k = 1, . . . ,m− 1.

ii) f(xk+) exists for k = 1, . . . ,m− 1.

iii) f(xk−) exists for k = 2, . . . ,m.

• Note that f need not be defined at its exceptional points x1, . . . , xm!

• For example, the functions in examples 2.1 and 2.2 are piecewise continuous on any interval (a, b) ⊆ R.

Theorem 2.1 (Fourier Convergence Theorem (FCT)). Let f be 2π-periodic, with f and f ′ piecewise
continuous on (−π, π). Then, the Fourier coefficients an and bn exist, and

1

2
(f(x+) + f(x−)) =

a0

2
+

∞∑
n=1

(an cos (nx) + bn sin (nx))

for x ∈ R.

Note that FCT implies that (†) and (‡) are true.
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Fourier Series & PDEs: Lectures 3-4

Remarks

1. f, f ′ piecewise continuous (p.c. ) on (−π, π) =⇒ ∃x1, . . . , xm ∈ R with −π = x1 < x2 < . . . < xm = π
such that

i) f and f ′ are continuous on (xk, xk+1) for k = 1, . . . ,m− 1.

ii) f(xk+) and f ′(xk+) exist for k = 1, . . . ,m− 1.

iii) f(xk−) and f ′(xk−) exist for k = 2, . . . ,m.

Thus, in any period f, f ′ are continuous except possibly at a finite number of points. At each such
point f ′ need not be defined, and one or both of f and f ′ may have a jump discontinuity. E.g.

E.g.

f(x) =

{
x1/2 for 0 < x ≤ π ,
0 for − π < x ≤ 0

=⇒ f ′(x) =


1
2x
−1/2 for 0 < x < π ,

0 for − π < x < 0 ,
undefined for x = 0, π .

Thus f p.c. on (−π, π), but f ′ is not.

2. Proof not examinable, but one method is as follows:
Firstly, show that

a0

2
+
∞∑
n=1

(an cos (nx) + bn sin (nx))− 1

2
(f(x+) + f(x−))

=

π∫
0

F (x, t) sin

[(
N +

1

2

)
t

]
dt , (2.1)

where

F (x, t) =
1

π

(
f(x+ t)− f(x+)

t
+
f(x− t)− f(x−)

t

)(
t

2 sin (t/2)

)
.

Secondly, show F (x, t) is a p.c. function of t on (0, π), so that the Riemann-Lebesgue Lemma (Analysis
III) implies

π∫
0

F (x, t) sin

[(
N +

1

2

)
t

]
dt→ 0 as N →∞ .

3. f continuous at x =⇒ 1
2 (f(x+) + f(x−)) = f(x).

4. If f defined only on e.g. (−π, π], FCT holds for its 2π-periodic extension.
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5. Can integrate termwise under weaker conditions, e.g. if f is only 2π-periodic and p.c. on (−π, π),
then FCT implies

x∫
0

f(x) dx =
1

2
a0x+

∞∑
n=1

an x∫
0

cos (nx) dx+ bn

x∫
0

sin (nx) dx


for x ∈ R. Note that LHS is 2π-periodic iff a0 = 0.

6. But we need stronger conditions to differentiate termwise, e.g. if f is 2π-periodic and continuous on
R with f ′ and f ′′ p.c. on (−π, π), then FTC implies

1

2

(
f ′(x+) + f ′(x−)

)
=
∞∑
n=1

(
an

d

dx
(cos (nx)) + bn

d

dx
(sin (nx))

)
for x ∈ R.

Rate of convergence

• The smoother f , i.e. the more continuous derivatives it has, the faster the convergence of the FS for
f .

• If the first jump discontinuity is in the pth derivative of f , with the convension that p = 0 if there is
a jump discontinuity in f , then typically the non-zero an and bn decay like 1/np+1 as n → ∞. For
example, p = 1 in example 2.1, while p = 0 in example 2.2.

• This is an extremely useful result in practice (e.g. how many terms to keep for an accurate approx-
imation) and for checking calculations. For example, for approximately 1% accuracy we need 100
terms for p = 0, and only 10 terms for p = 1.

Gibb’s phenomenon

• This is the persistent overshoot in example 2.2 near a jump discontinuity. It happens whenever a
jump discontinuity exists.

• As the number of terms in the partial sum tends to ∞, the width of the overshoot region tends to 0
(by FCT), whilst the height of the overshoot region approaches γ|f(x+) − f(x−)|, where in the case
of example 2.2 we have

γ =
1

π

π∫
−π

sinx

x
dx ≈ 1.18 ≈ 9% .

• This is awful for approximation purposes!

Functions of any period

• Suppose now that f(x) is a periodic function of period 2L > 0.

• Make the transformation x = LX
π , f(x) = g(X), then for X ∈ R

g(X + 2π) = f

(
L

π
(X + 2π)

)
= f

(
LX

π
+ 2L

)
= f

(
LX

π

)
= f(X) .

• Thus, g is 2π-periodic and we can use transformation to derive theory for f from that for g above.

• Here we summarise the key results.
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Fourier Series

g(X) ∼ a0

2
+
∞∑
n=1

(an cos (nx) + bn sin (nx))

=⇒ f(x) ∼ a0

2
+
∞∑
n=1

(
an cos

(nπx
L

)
+ bn sin

(nπx
L

))

Fourier coefficients

an :=
1

π

π∫
−π

g(X) cos (nX) dX =
1

π

L∫
−L

g
(πx
L

)
cos
(nπx
L

)π
L

dx

=
1

L

L∫
−L

f(x) cos
(nπx
L

)
dx .

Similarly,

bn :=
1

L

L∫
−L

f(x) sin
(nπx
L

)
dx .

Important remark

These formulae may be derived directly from the FS for f by assuming that
∫ ∑

=
∑∫

, and using the
orthogonality relations

L∫
−L

cos
(mπx

L

)
cos
(nπx
L

)
dx = Lδmn ,

L∫
−L

cos
(mπx

L

)
sin
(nπx
L

)
dx = 0 ,

L∫
−L

sin
(mπx

L

)
sin
(nπx
L

)
dx = Lδmn ,

where n,m ∈ N \ {0}.

Theorem 2.2 (Fourier Convergence Theorem (FCT)). Let f be 2L-periodic with f and f ′ p.c. on (−L,L).
Then an and bn exist, and

1

2
(f(x+) + f(x−)) =

a0

2
+
∞∑
n=1

(
an cos

(nπx
L

)
+ bn sin

(nπx
L

))
for x ∈ R.

Example 2.3. Find the FS of the 2L-periodic function f defined by

f(x) =

{
x for 0 < x ≤ L ,
0 for −L < x ≤ 0 .
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• We have

an =
1

L

L∫
0

x cos
(nπx
L

)
dx , bn =

1

L

L∫
0

x sin
(nπx
L

)
dx .

• We find a0 = 1
L
L2

2 = L
2 , but for n > 0 it is a bit quicker to evaluate

an + ibn =
1

L

L∫
0

x︸︷︷︸
u

exp

(
inπx

L

)
︸ ︷︷ ︸

v′

dx

=

 1

L
x︸︷︷︸
u

L

inπ
exp

(
inπx

L

)
︸ ︷︷ ︸

v


L

0

− 1

L

L∫
0

1︸︷︷︸
u′

L

inπ
exp

(
inπx

L

)
︸ ︷︷ ︸

v

dx

=
L

inπ
exp (inπ)−

[
1

L

(
L

inπ

)2

exp

(
inπx

L

)]L
0

=
iL(−1)n+1

nπ
+

L

n2π2
((−1)n − 2) .

• Thus

f(x) ∼ L

4
+
∞∑
n=1

(
− 2L

(2n− 1)2π2
cos

(
(2n− 1)πx

L

)
+
L(−1)n+1

nπ
sin
(nπx
L

))
• FCT implies that the FS converges to f(x) for x 6= (2k + 1)L, k ∈ Z, and to 1

2 (f(L+) + f(L−)) =
1
2(0 + L) = L

2 otherwise.

• For example

x = 0 =⇒ 0 = f(0) =
L

4
− 2L

π2

∞∑
n=1

1

(2n− 1)2
=⇒

∞∑
k=0

1

(2k + 1)2
=
π2

8
,

x = L =⇒ L

2
=
L

4
− 2L

π2

∞∑
n=1

−1

(2n− 1)2
=⇒ the same sum!

Cosine and sine series

• Suppose now f : [0, L]→ R is given. Periodic extension of period 2L is not unique, but there are two
especially useful ones for PDE applications.

• Definition: The even/odd 2L-periodic extensions, fe and fo respectively, of f : [0, L]→ R are defined
by

fe(x) =

{
f(x) for 0 ≤ x ≤ L ,
f(−x) for −L < x < 0 ,

with fe(x+ 2L) = fe(x) for x ∈ R

and

fo(x) =

{
f(x) for 0 ≤ x ≤ L ,
−f(−x) for −L < x < 0 ,

with fo(x+ 2L) = fo(x) for x ∈ R
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– Note that fo(x) is odd for x 6= kL, k ∈ Z, and odd (on R) iff f(0) = f(L) = 0.

• Definition: The Fourier cosine and sine series for f : [0, L]→ R are the Fourier series for fe and fo
respectively, i.e.

fe(x) ∼ a0

2
+
∞∑
n=1

an cos
(nπx
L

)
, where an =

2

L

L∫
0

f(x) cos
(nπx
L

)
dx ,

fo(x) ∼ a0

2
+
∞∑
n=1

an sin
(nπx
L

)
, where an =

2

L

L∫
0

f(x) sin
(nπx
L

)
dx ,

– Note that if f is continuous on [0, L] and f ′ p.c. on (0, L), then FCT gives

a0

2
+

∞∑
n=1

an cos
(nπx
L

)
= fe(x) for x ∈ R ,

∞∑
n=1

bn sin
(nπx
L

)
=

{
fo(x) for x 6= kL, k ∈ Z ,

0 otherwise.

Example 2.4. Find the cosine and sine series of f : [0, L]→ R defined by f(x) = x for 0 ≤ x ≤ L.

fe(x) =

{
x for 0 ≤ x ≤ L ,
−x for −L < x < 0 ,

, i.e. fe(x) = |x| for −L < x ≤ L .

• We have

an =
2

L

L∫
0

x cos
(nπx
L

)
dx ,

so that

fe(x) ∼ L

2
−
∞∑
n=0

4L

(2n+ 1)2π2
cos

(
(2n+ 1)πx

L

)
︸ ︷︷ ︸

Cosine series

= fe(x)

by the FCT.

• Similarly,

fo(x) =

{
x for 0 ≤ x ≤ L ,

−(−x) for −L < x < 0 ,
, i.e. fo(x) = x for −L < x ≤ L .
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• We have

bn =
2

L

L∫
0

x sin
(nπx
L

)
dx ,

so that

fo(x) ∼
∞∑
n=0

2L(−1)n+1

nπ
sin
(nπx
L

)
︸ ︷︷ ︸

Sine series

=

{
fo(x) for x 6= kL, kL ∈ Z ,
0 otherwise.

.

Remarks

1. fe + fo = 2fEx. 2.3 =⇒ FS(fe) + FS(fo) = FS(2fEx. 2.3.

2. Rates of convergence? p = 1 for fe, and p = 0 for fo, as predicted.

3. Question: Which truncated series gives the best approximation to f on [0, L]?
Answer: Cosine series since

i) it converges everywhere on [0, L];

ii) it converges more rapidly;

iii) it does not exhibit Gibb’s phenomena.
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Fourier Series & PDEs: Lectures 5-6

The PDEs we shall study

PDE Name Unknown Parameters

Tt = κTxx Heat equation T (x, t) κ > 0
ytt = c2yxx Wave equation y(x, t) c > 0
Txx + Tyy = 0 Laplace’s equation T (x, y) None

• We shall derive them using physical principles and develop methods to solve several physically impor-
tant problems formed by imposing appropriate BCs and/or ICs - different for each of them!

Some preliminaries

• Leibniz’s Integral Rule (LIR)

If F, Ft are continuous on R ⊇ S and a, ȧ, b, ḃ are continuous for t ∈ [t0, t1], then

d

dt

b(t)∫
a(t)

F (x, t) dt =

b(t)∫
a(t)

Ft(x, t) dx+ F (b(t), t)ḃ(t)− F (a(t), t)ȧ(t) .

Note: a, b constant =⇒ d
dt

b∫
a
F (x, t) dx =

b∫
a
Ft(x, t) dx.

• Lemma: f(x) continuous =⇒ 1
h

a+h∫
a
f(x) dx→ f(a) as h→ 0.

The heat equation

Derivation in 1D

• Consider a straight rigid isotropic conducting rod (e.g. metal) with insulated lateral surfaces lying
along the x-axis.
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• We’ll need the following quantities:

Symbol Quantity SI units

x Axial distance m
t Time s

T (x, t) Temperature K
q(x, t) Heat flux in +ve x-direction J m−2 s−1 (1J=1N m)
A Cross-sectional area m2

ρ Rod density kg m−3

c Rod specific heat J kg−1 K−1

k Rod thermal conductivity J K−1 m−1 s−1

κ Rod thermal diffusivity m2 s−1

• Conservation of energy in fixed section a ≤ x ≤ a+ h:

d

dt

A a+h∫
a

ρCT dx


︸ ︷︷ ︸

(1)

= Aq(a, t)

︸ ︷︷ ︸
(2)

−Aq(a+ h, t)

︸ ︷︷ ︸
(3)

.

(1) is the time rate of change of internal energy in a ≤ x ≤ a+ h.

(2) is the rate at which heat enters through x = a.

(3) is the rate at which heat leaves through x = a+ h.

• Note this is also true for h < 0 with appropriate reinterpretation.

• Assuming Tt is continuous, LIR with a, a+ h constant gives

ρc

h

a+h∫
a

Tt dx+
q(a+ h, t)− q(a, t)

h
= 0 .

• Assuming qx is continuous and taking the limit as h→ 0, the above lemma gives

ρcTt + qx = 0 . (†)

Fourier’s Law

• This is the constitutive law
q = −kTx . (‡)

• Models flow of heat from high to low temperatures.

• (†) and (‡) =⇒ ρcTt − (kTx)x = 0, or

Tt = κTxx

where κ = k
ρc .

• Note we assumed Tt and qx = −kTxx to be continuous.
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Units and nondimensionalisation

• Notation

[p] is the dimension of p in fundamental dimensions (M,L, T,Θ etc) or e.g. SI units (kg,m, s,K).

• Both sides of an equation modelling a physical process must have same dimensions, e.g. [(1)] = [(2)] =
[(3)] = J s−1.

• Exploit to check solutions are dimensionally correct and to determine dimensions of parameters, e.g.

[k] =
[q]

[Tx]
=

J m−2 s−1

K m−1 = J K−1 m−1 s−1 , [κ] =
[Tt]

[Txx]
=

[
x2
]

[t]
= m2 s−1 .

• Nondimensionalisation

Method of scaling variables with typical values to derive dimensionless equations. These usually
contain dimensionless parameters that characterise the relative importance of the physical mechanisms
in the model.

Example (IBVP). • Suppose T (x, t) such that

(1) Tt = κTxx for 0 < x < L, t > 0;

(2) T (0, t) = T0, T (L, t) = T1 for t > 0;

(3) T (x, 0) = T2
x
L

(
1− x

L

)
for 0 < x < L.

• Five dimensional parameters: κ, L, T0, T1, T2.

• Nondimensionalise by scaling x = Lx̂, t = L2t̂/κ, and T (x, t) = T2T̂ (x̂, t̂), where L2/κ is the timescale
for diffusive transport of heat.

• Chain rule =⇒

∂T

∂t
= T2

∂T̂

∂t̂

dt̂

dt
=
κT2

L2

∂T̂

∂t̂
,

∂T

∂x
= T2

∂T̂

∂x̂

dx̂

dx
=
T2

L

∂T̂

∂x̂
etc.

• Hence (1)-(3) =⇒ dimensionless problem for T̂ (x̂, t̂) given by

(1′) T̂t̂ = T̂x̂x̂ for 0 < x̂ < 1, t̂ > 0;

(2′) T̂ (0, t̂) = α0, T̂ (1, t̂) = α2 for t̂ > 0;

(3′) T̂ (x̂, 0) = x̂(1− x̂) for 0 < x̂ < 1.

• Two dimensionless parameters α0 = T0
T2

, α1 = T1
T2

.

• If T̂ = T̂ (x̂, t̂;α0, α1) is a solution of (1′)-(3′), then a solution of (1)-(3) is given by

T

T2
= T̂

(
x

L
,
κt

L2
;
T0

T2
,
T1

T2

)
,

i.e. T/T2 must be a function of x/L and κt/L2!
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Heat conduction in a finite rod

• Consider IBVP for T (x, t) given by

(1) Tt = κTxx for 0 < x < L, t > 0;

(2) T (0, t) = 0, T (L, t) = 0 for t > 0;

(3) T (x, 0) = f(x) for 0 < x < L.

where the initial temperature profile f(x) is given.

• Solve using Fourier’s method:

(I) Use method of separation of variables to find the countably infinite set of nontrivial separable
solutions satisfying the PDE (1) and BCs (2), each containing an arbitrary constant.

(II) Use the principle of superposition - that the sum of any number of solutions of a linear problem
is also a solution (assuming convergence) - to form the general series solution that is the infinite
sum of the separable solutions of the PDE and BCs.

(III) Use the theory of Fourier series to determine the constants in the general series solution for
which it satisfies the IC (3).

Remarks

1. (1) and (2) are linear since, if T1 and T2 satisfy them, then so does αT1 + βT2 ∀α, β ∈ R.

2. To verify resulting series is actually a solution of the PDE, need it to converge sufficiently rapidly that
Tt and Txx can be computed by termwise differentiation - we largely gloss over such issues.

Step I

• T = F (x)G(t) =⇒
(1)

FG′ = κF ′′G =⇒ F ′′

F = G′

κG , (FG 6= 0).

• LHS independent of t and RHS independent of x =⇒ LHS = RHS independent of x and t. Thus
LHS = RHS = −λ, say, λ ∈ R.

• Hence
−F ′′(x) = λF (x) for 0 < x < L (†)

• (2) =⇒ F (0)G(t) = 0 and F (L)G(t) = 0 for t > 0.
T nontrivial =⇒ G nontrivial =⇒

F (0) = 0, F (L) = 0 (‡)

• Now need to find all λ ∈ R such that ODE BVP (†)-(‡) for F (x) has a nontrivial solution. Consider
cases

(i) λ = −ω2, (ω > 0 wlog)

(†) =⇒ F ′′ − ω2F = 0 =⇒ F = A coshωx+B sinhωx, (A,B ∈ R).

(‡) =⇒ A = 0, B sinhωL = 0 =⇒ F = 0.

(ii) λ = 0

(†) =⇒ F ′′ = 0 =⇒ F = A+Bx, (A,B ∈ R).

(‡) =⇒ A = 0, BL = 0 =⇒ F = 0.

(iii) λ = ω2, (ω > 0 wlog)

(†) =⇒ F ′′ + ω2F = 0 =⇒ F = A cosωx+B sinωx, (A,B ∈ R).

(‡) =⇒ A = 0, B sinωL = 0. But B 6= 0 for F nontrivial, so sinωL = 0, so ωL = nπ,
n ∈ N \ {0}.
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• For λ = ω2 =
(
nπ
L

)2
, F = B sin

(
nπx
L

)
and F ∝ exp

(
−κ
(
nπ
L

)
2t
)
.

• Hence, nontrivial separable solutions given by

Tn(x, t) = bn sin
(nπx
L

)
exp

(
−n

2π2κt

L2

)
,

where n is a positive integer and bn a constant.

Step II

• Since (1)-(2) are linear, formally the principle of superposition implies that the general series solution
is given by

T (x, t) =
∞∑
n=1

Tn(x, t) =
∞∑
n=1

bn sin
(nπx
L

)
exp

(
−n

2π2κt

L2

)
.

Step III

• IC (3) can only be satisfied if

f(x) = T (x, 0) =
∞∑
n=1

bn sin
(nπx
L

)
for 0 < x < L .

• The theory of FS =⇒ the Fourier coefficients are given by

bn =
2

L

L∫
0

f(x) sin
(nπx
L

)
dx for n ∈ N \ {0} , (‡‡)

which determine the bn and hence a solution.

Remarks

(1) f, f ′ piecewise continuous on (0, L) =⇒ sine series converges to 1
2(f(x+) + f(x−)) for x ∈ (0, L) and

to 0 for x = 0, L, so can deal with jump discontinuities in ICs.

(2) In questions often asked to derive (‡‡) via orthogonality relations rather than quoting it. The relevant
ones here are

L∫
0

sin
(mπx

L

)
sin
(nπx
L

)
dx =

L

2
δmn ,

where m,n ∈ N \ {0}. Assuming
∫ ∑

=
∑∫

, then gives, for n ∈ N \ {0},

2

L

L∫
0

f(x) sin
(nπx
L

)
dx =

2

L

L∫
0

∞∑
m=1

bm sin
(mπx

L

)
sin
(nπx
L

)
dx

=
∞∑
m=1

bm
2

L

L∫
0

sin
(mπx

L

)
sin
(nπx
L

)
dx

=

∞∑
m=1

bmδmn

= bm .

Example 3.1.

f(x) = sin
(nπx
L

)
+

1

2
sin

(
2πx

L

)
.

Then b1 = 1, b2 = 1
2 , bn = 0 otherwise.
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Example 3.2.

f(x) =

{
T ? for L1 < x < L2 ,
0 otherwise.

• Then

bn =
2

L

L2∫
L1

T ? sin
(nπx
L

)
dx =

2T ?

nπ

(
cos

(
nπL1

L

)
− cos

(
nπL2

L

))

• We’ve found a solution (assuming sufficiently rapid convergence), but is it the only solution?
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Fourier Series & PDEs: Lectures 7-8

Uniqueness

Theorem 3.1. The IBVP has only one solution.

Proof: Suppose T, T̃ are solutions and let W = T − T̃ . By linearity, (1)-(3) =⇒

(1′) Wt = Tt − T̃t = κTxx − κT̃xx = κ(T − T̃ )xx = κWxx for 0 < x < L, t > 0;

(2′) W = T − T̃ = 0 at x = 0, L for t > 0;

(3′) W (x, 0) = T (x, 0)− T̃ (x, 0) = f(x)− f(x) = 0 for 0 < x < L.

Strategy: deduce that W (x, t) ≡ 0.

Trick: analyse I(t) := 1
2

L∫
0

W (x, t)2 dx.

• Evidently I(t) ≥ 0 for t ≥ 0 and I(0) = 0 by (3′).

• But

dI

dt
=

L∫
0

WWt dx (by LIR)

=

L∫
0

WκWxx dx (by (1′))

= [κWWx]L0 − κ
L∫

0

WxWx dx (by IBP)

= −κ
L∫

0

W 2
x dx (by (2′))

≤ 0 ,

• So I(t) cannot increase!

• Hence, 0 ≤ I(t) ≤ I(0) = 0, giving I(t) = 0 for t ≥ 0, so that W = 0 and T = T̃ for 0 ≤ x ≤ L, t ≥ 0
(assuming continuity of W there).

• Note that this method of proof works for any linear BCs for which [WWx]L0 ≤ 0, e.g. the radiative
BCs Wx(0, t) = −αW (0, t), Wx(L, t) = αW (L, t) for t > 0, where α is a positive parameter.

Non-zero steady state

Example 3.3. Solve the IBVP

(1) Tt = κTxx for 0 < x < L, t > 0;

(2) T (0, t) = T0, T (L, t) = T for t > 0;

(3) T (x, 0) = 0 for 0 < x < L ,

where T0, T1 are prescribed constants.

• We cannot use separation of variables straight away because the BCs are not homogeneous (unless
T0 = T1 = 0).
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• Conjecture that T (x, t)→ S(x) as t→∞, where S(x) is the steady-state solution of (1)-(2), so that

0 = κSxx for 0 < x < L, with S(0) = T0, S(L) = T )1 .

• Thus, S(x) = T0

(
1− x

L

)
+ T1

(
x
L

)
, a linear temperature profile.

• Now let T (x, t) = S(x) + U(x, t), then (1)-(3) =⇒ U(x, t) satisfies the IBVP

(1′) (S + U)t = κ(S + U)xx =⇒ Ut = κUxx for 0 < x < L, t > 0;

(2′) S(0) + U(0, t) = T0, S(L) + U(L, t) = T1 =⇒ U(0, t) = 0, U(L, t) = 0 for t > 0;

(3′) S(x) + U(x, 0) = 0 =⇒ U(x, 0) = −S(x) for 0 < x < L.

• We solved this problem last lecture using Fourier’s method:

U(x, t) =

∞∑
n=1

bn sin
(nπx
L

)
exp

(
−n

2π2κt

L2

)
,

where

bn = − 2

L

L∫
0

S(x) sin
(nπx
L

)
= − 2

nπ
(T0 − (−1)nT1) .

• Note that T0, T1 in BCs (2) end up in IC (3′) - sometimes called “method of shifting the data”.

Other BCs

Example 3.4. Solve the IBVP

(1) Tt = κTxx for 0 < x < L, t > 0;

(2) Tx(0, t) = 0, Tx(L, t) = 0 for t > 0;

(3) T (x, 0) = f(x) for 0 < x < L ,

• Note both ends thermally insulated since q = −kTx = 0 at x = 0, L.

• Apply Fourier’s method on problem sheet 4 to give

T (x, t) =
a0

2
+
∞∑
n=1

an cos
(nπx
L

)
exp

(
−n

2π2κt

L2

)
,

where

an =
2

L

L∫
0

f(x) cos
(nπx
L

)
dx

Remarks

1. The constant separable solution T = a0
2 of (1)-(2) comes from the case in which the separation constant

is zero.

2. As t→∞, T (x, t)→ a0
2 = 1

L

L∫
0

f(x) dx, i.e. mean of the initial temperature.

3. Uniqueness by a similar argument to before.
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Inhomogeneous PDE and BCs

Example 3.5. Solve the IBVP

(1) ρCTt = kTxx +Q(x, t) for 0 < x < L, t > 0;

(2) Tx(0, t) = φ(t), Tx(L, t) = ψ(t) for t > 0;

(3) T (x, 0) = f(x) for 0 < x < L ,

where Q(x, t), φ(t), ψ(t) and f(x) are given.

• Note Q is volumetric heat source (e.g. due to radiation of chemical reaction) and heat flux in positive
x-direction q = −kTx.

• Now both PDE and BCs are inhomogeneous!

• Deal first with BCs by shifting the data.

• Find S(x, t) such that Sx(0, t) = φ(t), Sx(L, t) = ψ(t) for t > 0, e.g.

S(x, t) = −φ(t)
(x− L)2

2L
+ ψ(t)

x2

2L
.

• Let T (x, t) = S(x, t) + U(x, t), then (1)-(3) =⇒ U(x, t) satisfies the IBVP

(1′) ρCUt = kUxx + Q̃(x, t) for 0 < x < L, t > 0;

(2′) Ux(0, t) = 0, Ux(L, t) = 0 for t > 0;

(3′) U(x, 0) = f̃(x) for 0 < x < L ,

where
Q̃(x, t) = Q(x, t) + kSxx − ρcSt
f̃(x) = f(x)− S(x, 0)

}
Known in terms of Q,φ, ψ and f .

• If Q̃ = 0, then can solve (1′)-(3′) via Fourier’s method as in example 3.4.

• This suggests we seek a solution of the form

U(x, t) =
U0(t)

2
+
∞∑
n=1

Un(t) cos
(nπx
L

)
, (†)

where the functions U0(t), U1(t), . . . are TBD.

• Since (†) is a Fourier cosine series, its Fourier coefficients are given by

Un(t) =
2

L

L∫
0

U(x, t) cos
(nπx
L

)
dx for n ∈ N .

• We can then use (1′)-(3′) to derive ODEs for the Un as follows.

• By Leibniz’s integral rule

ρc
dUn
dt

=
2

L

L∫
0

ρcUt cos
(nπx
L

)
dx

=
2

L

L∫
0

(kUxx + Q̃) cos
(nπx
L

)
dx (by (1′))

=
2k

L

L∫
0

Uxx cos
(nπx
L

)
dx+ Q̃n(t) ,
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where

Q̃n(t) =
2

L

L∫
0

Q̃(x, t) cos
(nπx
L

)
dx

are the know coefficients of the Fourier cosine series for Q̃.

• How do we deal with the Uxx integral? IBP twice via

(uv′ − u′v)′ = uv′′ − u′′v =⇒ [uv′ − u′v]ba =

b∫
a

uv′′ − u′′v dx .

• Let u = U , v = cos
(
nπx
L

)
, a = 0, b = L, then

[
U
(
−nπ
L

)
sin
(nπx
L

)
− Ux cos

(nπx
L

)]L
0︸ ︷︷ ︸

=0 by (2′)

=

L∫
0

U

(
−n

2π2

L2
cos
(nπx
L

))
− Uxx cos

(nπx
L

)
dx

=⇒ 2

L

L∫
0

Uxx cos
(nπx
L

)
dx = −n

2π2

L2

2

L

L∫
0

U cos
(nπx
L

)
dx = −n

2π2

L2
Un .

• Hence ρcdUn
dt + kn2π2

L2 Un = Q̃(t) for t > 0.

• IC? (3′) =⇒ Un(0) = 2
L

L∫
0

f̃(x) cos
(
nπx
L

)
dx.

Remarks

(1) Reduced problem to a countably infinite set of ODEs - recover solution of example 3.4 when Q =
0, φ = 0, ψ = 0.

(2) Can solve explicitly for the Un using an integrating factor.

(3) Uniqueness proof the same as for example 3.4.

The wave equation

Derivation in 1D

• Consider the small transverse vibrations of a homogeneous extensible elastic string stretched initially
along the x-axis at time t = 0.

• A point at xi at time t = 0 is displaced to r(x, t) = xi + y(x, t)j at time t > 0, where the transverse
displacement y(x, t) is TBD.

• Consider piece of string in a fixed region a ≤ x ≤ a+ h.
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• Linear momentum is
a+h∫
a
ρrt dx, where ρ is constant line density of the string ([ρ] = kg m−1).

• Assuming no resistance to bending (cf a ruler), the string to the right of r(x, t) exerts at this point
a force T (x, t)τ(x, t) on the string to the left, where T (x, t) is the tension ([T ] = N = kg m s−2) and
τ = rx/ |rx| is the unit tangent vector in the +ve x-direction.

• Assuming tension so large that gravity and air resistance are negligible, the forces on the string in
a ≤ x ≤ a+ h are

• NII says d
dt (linear momentum) = net force, so

d

dt

 a+h∫
a

ρrt dx

 = T (a+ h, t)τ(a+ h, t)− T (a, t)τ(a, t) .

• Assuming rtt is continuous, LIR then gives

1

h

a+h∫
a

ρrtt dx =
T (a+ h, t)τ(a+ h, t)− T (a, t)τ(a, t)

g
.

• Assuming (Tτ)x is continuous, let h→ 0 (from above and below)

=⇒ ρrtt =
∂

∂x
(Tτ)

=⇒ ρyttj =
∂

∂x

(
T i + Tyxj

(1 + y2
x)

1
2

)
.

• Now small displacement =⇒ small slope =⇒ |yx| � 1

=⇒
(
1 + y2

x

) 1
2 = 1 +

1

2
(yx)2 + · · ·

=⇒ to a first approximation (i.e. neglecting quadratic and higher order terms)

ρyttj = Txi + (Tyx)xj .

• x-direction =⇒ Tx = 0 =⇒ T = T (t), i.e. tension is spatially uniform, but could vary with t, e.g.
tuning a guitar string. We shall assume T =constant, which is the case in many practical applications.

• y-direction =⇒ ρytt = (Tyx)x = Tyxx

• We have derived the wave equation

ytt = c2yxx

where c =
√

T
ρ is the wave speed (for reasons that will become apparent).

25



Units and nondimensionalisation

•
[
c2
]

= [ytt]
[yxx] = m s−2

m m−2 = m2 s−2 =⇒ [c] = m s−1.

• Check:
[
c2
]

= [T ]
[ρ] = N

kg m−1 = kg m s−2

kg m−1 = m2 s−2 X.

• On what timescale does a displacement travel a distance L? Scale x = Lx̂, t = t0t̂, y = Hŷ

=⇒ H

t20
ŷt̂t̂ =

Hc2

L2
ŷx̂x̂ =⇒ ŷt̂t̂ = ŷx̂x̂

provided t0 = L
c .

Normal modes of vibration for a finite string

• Suppose string stretched between x = 0 and x = L and the ends held fixed.

• Slinky experiment suggests there exists discrete modes of vibration:

• To analyse mathematically, we seek separable solutions to

(1) ytt = c2yxx for 0 < x < L, t ∈ R;

(2) y(0, t) = 0, y(L, t) = 0, t ∈ R.

• y = F (x)G(t) in (1) =⇒ FG′′ = c2F ′′G =⇒ F ′′(x)
F (x) = G′′(t)

c2G(t)
, assuming FG 6= 0.

• LHS independent of t and RHS independent of x =⇒ LHS = RHS independent of x and t. Thus
LHS = RHS = −λ ∈ R, say.

• Hence −F ′′ = λF for 0 < x < L (I)

• (2) and G nontrivial =⇒ F (0) = 0, F (L) = 0 (II)

• λ ≤ 0 =⇒ (I)-(II) have only the trivial solution F = 0.

• Let λ = ω2, with ω > 0 wlog.

• (I) =⇒ F = A cosωx+B sinωx, (A,B ∈ R).

• (II) =⇒ A = 0, B sinωL = 0.

• F nontrivial =⇒ B 6= 0 =⇒ sinωL = 0 =⇒ ωL = nπ, n ∈ N \ {0}.

• ω = nπ
L =⇒ F (x) = B sin

(
nπx
L

)
, G(t) = C cos

(
nπct
L

)
+D sin

(
nπct
L

)
.

• Combo =⇒ normal modes (nontrivial separable solutions of (1)-(2)) are

yn(x, t) = sin
(nπx
L

)(
an cos

(
nπct

L

)
+ bn sin

(
nπct

L

))
or

yn(x, t) = cn sin
(nπx
L

)
sin
(nπc
L

(t+ εn)
)
,

where an, bn ∈ R, cn, εn ∈ R for each n ∈ N \ {0}.

26



Remarks

(1) yn periodic in t with prime period p = 2π
nπc/L = 2L

nc and frequency (or pitch) 1
p = nc

2L .

(2) y1 is the fundamental mode; c
2L the fundamental frequency; all other modes have a frequency that is

an integer multiple of c
2L .

(3) Consistent with slinky experiment.

(4) Normal modes are an example of a standing wave since y = f(x)× oscillatory function.

[Next time: use Fourier’s method to solve IBVP obtained by imposing two ICs.]
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Fourier Series & PDEs: Lectures 9-10

IBVP for a finite string

• Find y(x, t) such that

(1) ytt = c2yxx for 0 < x < L, t > 0;

(2) y(0, t) = 0, y(L, t) = 0 for t > 0;

(3) y(x, 0) = f(x), yt(x, 0) = g(x) for 0 < x < L.

• Use Fourier’s method [f, g are initial transverse displacement and velocity]

Step I: Find all nontrivial separable solutions of (1)-(2)

• Last time we found that these (normal modes) are

yn(x, t) = sin
(nπx
L

)(
an cos

(
nπct

L

)
+ bn sin

(
nπct

L

))
,

where an, bn ∈ R and n ∈ N \ {0}.

Step II: Formally apply the principle of superposition

• (1)-(2) are linear, so superimpose the normal modes (assuming convergence) to obtain the general
series solution

y(x, t) =
∞∑
n=1

yn(x, t) .

Step III: Use theory of FS to satisfy the ICs

• (3) can only be satisfied if

f(x) =
∞∑
n=1

an sin
(nπx
L

)
for 0 < x < L ,

g(x) =

∞∑
n=1

bn
nπc

L
sin
(nπx
L

)
for 0 < x < L .

• Assuming
∫ ∑

=
∑∫

, we deduce that

L∫
0

sin
(mπx

L

)
dx =

∞∑
n=1

an

L∫
0

sin
(mπx

L

)
sin
(nπx
L

)
dx

︸ ︷︷ ︸
=L

2
δnm

=
L

2
am

=⇒ an =
2

L

L∫
0

f(x) sin
(nπx
L

)
dx , and similarly

bn
nπc

L
=

2

L
g(x) sin

(nπx
L

)
dx .

Example 4.1.

f(x) = A sin
(πx
L

)
+B sin

(
2πx

L

)
=⇒ a1 = A, a2 = B, and the rest zero.
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Example 4.2.

f(x) = 0, g(x) = V0 sin3
(πx
L

)
=⇒ an = 0∀n .

Trick: sin3
(
πx
L

)
= 3

4 sin
(
πx
L

)
− 1

4 sin
(

3πx
L

)
=⇒ πc

L
=

3V0

4
, b2 = 0,

3πc

L
b3 = −V0

4
and rest zero.

Example 4.3. (Guitar string)

f(x) =

{
2hx/L for 0 ≤ x ≤ L/2 ,

2h(L− x)/L for L/2 ≤ x ≤ L , g(x) = 0 .

an =
2

L

L/2∫
0

2hx

L
sin
(nπx
L

)
dx+

2

L

L∫
L/2

2h(L− x)

L
sin
(nπx
L

)
dx =

8h

n2π2
sin
(nπ

2

)
bn = 0 .

Since

sin
(nπ

2

)
=

{
0 for n = 2m,m ∈ N \ {0} ,

(−1)m for n = 2m+ 1,m ∈ N ,

we find

y(x, t) =
8h

π2

∞∑
m=0

(−1)m

(2m+ 1)2
sin

(
(2m+ 1)πx

L

)
cos

(
(2m+ 1)πct

L

)
.

Example 4.4. (Piano string)

f(x) = 0, g(x) =

{
v for L1 ≤ L ≤ L2 ,
0 otherwise.

an = 0 and bn =
L

nπc

2

L

L2∫
L1

v sin
(nπx
L

)

=⇒ y(x, t) =
2vL

cπ2

∞∑
n=1

1

n2

[
cos

(
nπL2

L

)
− cos

(
nπL1

L

)]
sin
(nπx
L

)
sin

(
nπct

L

)

Energy and uniqueness

• Consider IBVP (1)-(3).

• KE of string is
L∫
0

1
2ρ |rt|

2 dx =
L∫
0

1
2ρy

2
t dx.

• Elastic PE of string is product of tension and extension, i.e.

T

 L∫
0

|rx| dx− L

 = T

L∫
0

(
1 + y2

x

) 1
2 − 1 dx
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• But |yx| � 1, so
(
1 + y2

x

) 1
2 − 1 = 1

2y
2
x + · · · , so to a first approximation (neglecting cubic and higher

order terms), the elastic PE is
L∫
0

1
2Ty

2
x dx.

• Hence the energy of a string is

E(t) =

L∫
0

1

2
ρy2
t +

1

2
Ty2

x dx .

Lemma: : If y satisfies (1)-(2), then E(t) is constant for t > 0. Proof:

dE

dt
=

L∫
0

ρytytt + Tyxyxt dx (by LIR)

=

L∫
0

Tytyxx + Tyxyxt dx (by (1))

=

L∫
0

(Tytyx)x dx

= [Tytyx]x=L
x=0

= 0 ,

since (2) =⇒ yt(0, t) = yt(L, t) = 0 for t > 0.

Remarks

(1) Lemma and (3) =⇒ E(t) = E(0) =
L∫
0

1
2ρ(g(x))2 + 1

2T (f ′(x))2 dx.

(2) Lemma =⇒ Energy in nth normal mode is given by

En(t) = En(0) =

L∫
0

1

2
ρ (ynt(x, 0))2 +

1

2
T (ynx(x, ))2 dx =

n2π2T

4L
(a2
n + b2n) .

(3) Can then use Parseval’s Identity for g and f ′ to show that E(0) =
∞∑
n=1

En(0), i.e. total energy is sum

of energy in each normal mode (which are constant throughout motion and set by ICs by remark (2)).

Theorem 4.1 (Uniqueness). The IBVP has at most one solution.

Proof: Let W (x, t) = y − ỹ, where y, ỹ are two solutions. Then, by linearity,

(1′) Wtt = c2Wxx for 0 < x < L, t > 0;

(2′) W (0, t) = 0, W (L, t) = 0 for t > 0;

(3′) W (x, 0) = 0, Wt(x, 0) = 0 for 0 < x < L.

The above lemma applied to W gives

L∫
0

ρ

2
(Wt)

2 +
T

2
(Wx)2 dx = E(t) =

(1′)-(2′)
E(0) =

(3′)
0 for t ≥ 0

=⇒Wt = Wx = 0 for 0 < x < L, t > 0 (assuming Wt,Wx continuous there)

=⇒W = constant for 0 < x < L, t > 0

=⇒W = 0 for 0 ≤ x ≤ L, t ≥ 0 by (2′) or (3′), (assuming W continuous for 0 ≤ x ≤ L, t ≥ 0)
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Normal modes for a weighted string

• Setup:

• What are the normal modes?

• PDEs:

(1−) y−tt = c2y−xx for − L < x < 0

(1+) y+
tt = c2y+

xx for 0 < x < L

• BCs:

(2−) y−(−L, t) = 0

(2+) y+(L, t) = 0

(3) y−(0, t) = y+(0, t) = Y (t), say.

• Y (t) TBD so need a second BC at x = 0 via NII for the mass.

• Forces on mass (neglecting gravity and air resistance):

• Small transverse displacement =⇒ |y±x | � 1 =⇒ (1+(y±x )2)
1
2 = 1+h.o.t, so to a first approximation

mass remains on y-axis (because x-force components balance), while in y-direction

(4) mŸ = T
(
y+
x |x=0+ − y−x |x=0−

)
• Separate variables: y± = F±(x)G(t)

(1±) =⇒
F ′′±(x)

F±(x)
=

G′′(t)

c2G(t)
= −λ ∈ R, say, assuming F±G 6= 0

(2±) G 6= 0 =⇒ F−(−L) = 0, F+(L) = 0 (a±)

(3) G 6= 0 =⇒ F−(0) = F+(0) (b)

(4) G 6= 0 =⇒ mF±(0)G′′(t) = T (F ′+(0+)− F−(0−))G(t)

=⇒
c2=T

ρ

− λm

ρ
F±(0) = F ′+(0+)− F ′−(0−) (c)

• Can show λ ≤ 0 =⇒ F± = 0. Let λ = ω2, ω > 0 wlog.
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• Then

F ′′− + ω2F− = 0 for − L < x < 0 ,

F ′′+ + ω2F+ = 0 for 0 < x < L .

(a±) =⇒ F− = A sinω(L+ x), F+B sinω(L− x) (A,B ∈ R) (4.1)

(b)− (c) =⇒
[

sinωL − sinωL
cosωL− mω

ρ sinωL cosωL

]
︸ ︷︷ ︸

M

[
A
B

]
=

[
0
0

]
(†)

•
[
A
B

]
6=
[
0
0

]
=⇒ detM = 0 =⇒ sinωL

(
2 cosωL− mω

ρ sinωL
)

= 0.

• Hence, either

(i) sinωL = 0 =⇒ ω = nπ
L , n ∈ N \ {0}

(ii) cotωL = mω
2ρ =⇒ cot θ = mθ

2ρL , where θ = ωL.

(iii) In each case, G′′ + ω2c2G = 0 =⇒ G(t) = C cos (ωct+ ε), (cε ∈ R), where wlog C = 1.

(iv) In case (i), (†) =⇒ A = −B =⇒
{
y− = A sinω(L+ x) cos (ωct+ ε)
y+ = −A sinω(L− x) cos (ωct+ ε)

• This means that the normal modes are the same as for a string of length 2L with a node at x = 0,
i.e. mass stationary.

• In case (ii) there are infinitely many roots θ1 < θ2 < · · ·

• To see, plot LHS and RHS of e.g. tan θ = 2ρL
mθ

• Hence, infinitely many normal modes ωn = θn
L , n ∈ N \ {0}.

• Now (†) =⇒ A = B =⇒
{
y− = A sinω(L+ x) cos (ωct+ ε)
y+ = A sinω(L− x) cos (ωct+ ε)

• This means that the normal modes are symmetric about x = 0:
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• Try with slinky!

General solution to the wave equation

• Remarkable fact: can write down all solutions of ytt = c2yxx!

• Let y(x, t) = Y (ξ, η), ξ = x− ct, η = x+ ct (as in Introductory Calculus).
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Fourier Series & PDEs: Lectures 11-12

=⇒ yx = Yξξx + Yηηx = Yξ + Yη

yxx = (Yξ + Yη)ξξx + (Yξ + Yη)ηηx = Yξξ + 2Yξη + Yηη

yt = Yξξt + Yηηt = −cYξ + cYη

ytt = (−cYξ + cYη)ξξt + (−cYξ + cYη)ηηt = c2(Yξξ − 2Yξη + Yηη)

where we assumed Yξη = Yηξ.

• Hence, ytt − c2yxx = −4c2Yξη

• Wave equation, c > 0 gives

=⇒ Yξη = 0

=⇒ Yξ = F ′(ξ) , say

=⇒ (Y − F (ξ))ξ = 0

=⇒ Y − F (ξ) = G(η) , say

=⇒ y = F (x− ct) +G(x+ ct)

where F,G are arbitrary twice-continuously-differentiable functions.

Remarks

(1) c.f. # of arbitrary constants in general solution to a second order ODE.

(2) Easy to verify this is a solution (see supplementary notes): we’ve shown that all solutions must be of
this form.

(3) F (x− ct) is a travelling wave of constant shape moving to the right with speed c:

G(x+ ct) is a travelling wave of constant shape moving to the left with speed c:

Waves on an infinite string: D’Alembert’s formula

• Consider the IVP

(1) ytt = c2yxx for −∞ < x <∞, t > 0;

(2) y(x, 0) = f(x), yt(x, 0) = g(x) for −∞ < x <∞,

where initial transverse displacement f and velocity g are given.
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• The general solution of (1) is y(x, t) = F (x− ct) +G(x+ ct).

• ICs (2) =⇒ F (x) +G(x) =
(a)
f(x), −cF ′(x) + cG′(x) = g(x) for x ∈ R.

• The latter implies −F (x) +G(x) =
(b)

1
c

x∫
0

g(s) ds+ a (a ∈ R).

(a)− (b) =⇒ F (x) =
1

2
f(x)− 1

2c

x∫
0

g(s) ds− 1

2
a

(a) + (b) =⇒ F (x) =
1

2
f(x) +

1

2c

x∫
0

g(s) ds+
1

2
a

• Hence,

y(x, t) =
1

2
f(x− ct) +

1

2c

0∫
x−ct

g(s) ds− 1

2
a+

1

2
f(x+ ct) +

1

2c

x+ct∫
0

g(s) ds+
1

2
a

=⇒ y(x, t) =
1

2
(f(x− ct) + f(x+ ct)) +

1

2c

x+ct∫
x−ct

g(s) ds

This is D’Alembert’s formula.

Remarks

(1) Don’t forget the constant a!

(2) Argument shows ∃! solution of IVP (1)-(2).

(3) Can also prove uniqueness via energy conservation under the additional assumption that yt, yx → 0

sufficiently rapidly as x→ ±∞ that the energy E(t) =
∞∫
−∞

ρ
2y

2
t + T

2 y
2
x dx exists.

Example 4.5.

f(x) =

{
ε cos4

(
πx
2L

)
for |x| ≤ L ,

0 otherwise,
g(x) = 0 ,

where ε, L ∈ R+.

DF =⇒ y(x, t) = 1
2f(x− ct) + 1

2f(x+ ct).

ct > L
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0 < ct < L

Explicit formulae for these graphs requires some careful book keeping - much easier to use a...

Characteristic diagram

• Let P = (x0, t0) ∈ R× R+. How does y(P ) depend on f e.g.?

•

DF =⇒ y(x0, t0) =
1

2
(f(x0 − ct0) + f(x0 + ct0)) +

1

2c

x0+ct0∫
x0−ct0

g(s) ds (†)

=⇒ y(P ) =
1

2
(f(Q) + f(R)) +

1

2c

R∫
Q

g(s) ds , (‡)

where Q and R are points on the x-axis as shown.

• Note deliberate abuse of notation in (‡) to aid geometric interpretation of (†).

• Definition: x± ct = x0 ± ct0 called characteristic lines through P.

• (‡) =⇒ y(P ) depends only on

(i) f through the values f takes at Q and R;

(ii) g through the values g takes on x-axis between Q and R.

• Definition: The interval [x0 − ct0, x0 + ct0] of the x-axis between Q and R is called the domain of
dependence of P = (x0, t0).

• If f or g modified outside the domain of dependence of P , then y(P ) is unchanged.

• Exploit geometric interpretation (‡) of DF (†) to construct explicit formulae for the solution: contri-
bution to y(P ) from f to g change at points on x-axis where f and g change their analytic behaviour.
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• Hence, given a particular f and g, first task is to identify these points on x-axis and sketch the
characteristic lines x± c = constant through each of them - this is the characteristic diagram.

• This divides the (x, t)-plane, with t > 0, into regions in which the contributions from f and g may be
different.

• Back to the earlier example...
Characteristic diagram

• DF =⇒ y(P ) = 1
2(f(Q) + f(R)), where P,Q,R are points shown.

• PQ ‖ x− ct = ±L, and PR ‖ x+ ct = ±L, so solution as follows:

– P ∈ R1 =⇒ y = 1
2 [0 + 0]

– P ∈ R2 =⇒ y = 1
2

[
0 + ε cos4

(
π
2c(x+ ct)

)]
– P ∈ R3 =⇒ y = 1

2

[
ε cos4

(
π
2c(x− ct)

)
+ ε cos4

(
π
2c(x+ ct)

)]
– P ∈ R4 =⇒ y = 1

2 [0 + 0]

– P ∈ R5 =⇒ y = 1
2

[
ε cos4

(
π
2c(x− ct)

)
+ 0
]

– P ∈ R6 =⇒ y = 1
2 [0 + 0]

• Since y is continuous on characteristics bounding regions, it does not matter to which region each
belongs, e.g. could pick

– R1 : x+ ct < −L, t > 0;

– R2 : −L ≤ x+ ct ≤ L, x− ct ≤ L;

– R3 : −L < x+ ct < L, −L < x− ct < L, t > 0;

etc.

Example 4.6. Suppose y(x, t) such that

(1) ytt = c2yxx for −∞ < x <∞, t > 0;

(2) y(x, 0) = f(x), yt(x, 0) = g(x) for −∞ < x <∞.

Find y(x, t) when f(x) = 0 and g(x) =

{
vx/L for |x| ≤ L ,

0 otherwise,
, where L, v ∈ R+.

• Recall D’Alembert’s Formula (DF) for the solution of (1)-(2):

y(x, t) =
1

2
(f(x− ct) + f(x+ ct)) +

1

2c

x+ct∫
x−ct

g(s) ds
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• Thus,

y(P ) =
1

2c

R∫
Q

g(s) ds ,

where P,Q,R are the points shown

Characteristic diagram
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• PQ ‖ x− ct = ±L and PR ‖ x+ ct = ±L, so solution as follows:

R1 : y =
1

2c

x+ct∫
x−ct

0 ds = 0

R2 : y =
1

2c

−L∫
x−ct

0 ds+
1

2c

x+ct∫
−L

vs

L
ds =

v

4Lc

(
(x+ ct)2 − L2

)

R3 : y =
1

2c

x+ct∫
x−ct

vs

L
ds =

v

4Lc

(
(x+ ct)2 − (x− ct)2

)
=
vxt

L

R4 : y =
1

2c

−L∫
x−ct

0 ds+
1

2c

L∫
−L

vs

L
ds+

1

2c

x+ct∫
L

0 ds = 0

R5 : y =
1

2c

L∫
x−ct

vs

L
ds+

1

2c

x+ct∫
L

0 ds =
v

4Lc

(
L2 − (x− ct)2

)

R6 : y =
1

2c

x+ct∫
x−ct

0 ds = 0

• Note solution continuous across borders between regions.

• Note there are corners =⇒ not a classical (twice continuously-differentiable) solution!
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Fourier Series & PDEs: Lectures 13-14

Laplace’s equation in the plane

• Heat conduction in a rigid isotropic material (e.g. metal) is governed in 3D by the heat equation

Tt = κ∇2T ,

where T (x, y, z, t) is the temperature, κ the thermal diffusivity and ∇2T = Txx + Tyy + Tzz.

• Derive in Multivariable Calculus from conservation of energy and Fourier’s Law using the Divergence
Theorem:

d

dt

∫∫∫
V

ρCT dV =

∫∫
∂V

q · (−n) dS (Energy)

=⇒
(Div. Thm)

∫∫∫
V

ρcTt dV = −
∫∫∫
V

∇ · q dV

=⇒ ρcTt +∇ · q = 0 . (assuming LHS cts)

Substitute q =
(Fourier’s Law)

−k∇T to give

Tt =
k

ρc
∇ · ∇T = κ∇2T .

• In this course we consider 2D steady-state solutions:

T = T (x, y) = =⇒ Txx + Tyy = 0 .

This is Laplace’s equation.

BVP in Cartesian Coordinates

• Find T (x, y) such that

(1) Txx + Tyy = 0 for 0 < x < a, 0 < y < b;

(2) T (0, y) = 0, T (a, y) = 0 for 0 < y < b;

(3) T (x, 0) = 0, T (x, b) = f(x) for 0 < x < a;

• Apply Fourier’s method.
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Step I

• T = F (x)G(y) in (1) =⇒ F ′′(x)
F (x) = −G′′(y)

G(y) for FG 6= 0.

• LHS independent of y and RHS independent of x =⇒ LHS=RHS independent of x and y =⇒
LHS=RHS=−λ ∈ R, say.

• Hence −F ′′ = λF for 0 < x < a. (2) and T nontrivial =⇒ F (0) = 0, F (a) = 0.

• Solved before! Only nontrivial solutions are F (x) = B sin
(
nπx
a

)
, B ∈ R, for λ =

(
nπ
a

)2
, n ∈ N \ {0}.

• λ = nπ
a =⇒ G′′ −

(
nπ
a

)2
G = 0 =⇒ G = C cosh

(nπy
a

)
+D sinh

(nπy
a

)
, C,D ∈ R.

• Combo =⇒ nontrivial separable solutions of (1)-(2) are

Tn(x, y) = sin
(nπx

a

)(
an cosh

(nπy
a

)
+ bn sinh

(nπy
a

))
,

where an, bn ∈ R and n ∈ N \ {0}.

Step II

Formally superimpose =⇒ T (x, y) =
∞∑
n=1

Tn(x, y) is the general series solution of (1)-(2).

Step III

• BC on y = 0 =⇒ 0 =
∞∑
n=1

an sin
(
nπx
a

)
=⇒ an = 0∀n.

• BC on y = b =⇒ f(x) =
∞∑
n=1

bn sinh
(
nπb
a

)
sin
(
nπx
a

)
for 0 < x < a, so that bn sinh

(
nπb
a

)
=

2
a

a∫
0

f(x) sin
(
nπx
a

)
dx by the theory of FS.

• NB: Could also apply BC on y = 0 to find an = 0 at end of Step I, i.e. before superimposing in step
III.

• NB: ON sheet consider case in which a = b = L and f = T ? ∈ R.

BVP in plane polar coordinates

• In plane polar coordinates (r, θ), Laplace’s equation for T (r, θ) becomes

∂2T

∂r2
+

1

r

∂T

∂r
+

1

r2

∂2T

∂θ2
= 0 for r > 0 (?)

• Start by finding all nontrivial separable solutions that are 2π-periodic in θ.

T = F (r)G(θ) =⇒ F ′′G+
1

r
F ′G+

1

r2
FG′′ = 0

=⇒
× r2

FG

r2F ′′(r) + rF ′(r)

F (r)
= −G

′′(θ)

G(θ)
(FG 6= 0)

• LHS independent of θ, RHS independent of r =⇒ LHS=RHS independent r and θ =⇒ LHS=RHS=λ ∈
R.

• Hence, need to find all λ ∈ R such that G′′(θ) + λG(θ) = 0 has a nontrivial solution G(θ) of period
2π. Consider cases.
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(i) λ = −ω2 (ω > 0 wlog) =⇒ G(θ) = A coshωθ +B sinhωθ, (A,B ∈ R).

• G 2π periodic =⇒ G(0) = G(±2π) =⇒ A = A cosh 2πω ±B sinh 2πω =⇒
(+,−)

A(cosh 2πω −

1) = 0, B sinh 2πω = 0 =⇒
ω>0

(ii) λ = 0 =⇒ G(θ) = A+Bθ, (A,B ∈ R).

• G 2π-periodic =⇒ B = 0, but A arbitrary admissible.

r2F ′′ + rF ′ = 0 =⇒ r(rF ′)′ = 0

=⇒ rF ′ = d (r > 0, d ∈ R)

=⇒ F = c+ d log r (c ∈ R)

• Combo =⇒ T0 = A0 + B0 log r, (A0, B0 ∈ R). This is a cylindrically-symmetric solution
(i.e. independent of θ).

(iii) λ = ω2 (ω > 0 wlog) =⇒ G(θ) = R cos (ωθ + Φ), (RΦ ∈ R).

• G nontrivial =⇒ R 6= 0 =⇒ G has prime period 2π
ω .

Hence, G 2π-periodic and nontrivial =⇒ ∃n ∈ N \ {0} such that n2π
ω = 2π, i.e. ω = n for

some n ∈ N \ {0}.
In practice, better to write G(θ) = A cosnθ + B sinnθ, where A = R cos Φ, B = −R sin Φ
are arbitrary real constants.

• λ = n2 =⇒ r2F ′′ + rF ′ − n2F = 0 for r > 0 (Euler’s ODE).
Let r = et,, F (r) = W (t), then dW

dt = dF
dr

dr
dt = r dF

dr , so

d2W

dt2
=

d

dr

(
r

dF

dr

)
dr

dt
= r

d

dr

(
r

dF

dr

)
= r2F ′′ + rF ′ = n2F = n2W .

W = eµt =⇒ µ2 = n2 =⇒ W has general solution W = Cent+De−nt, (C,D ∈ R) =⇒ F
has general solution

F (r) = Crn +Dr−n (C,D ∈ R)

NB: Alternatively, let F (r) = rµ, then µ(µ−1)+µ−µ2 = 0 =⇒ µ2 = n2 =⇒ µ = ±n =⇒
general solution as above by theory of linear 2nd order ODEs.

• Combo =⇒ Tn = (Anr
b + Bnr

−n) cosnθ + (Cnr
n + Dnr

−n) sinnθ, where An = AC,
Bn = AD, Cn = BC, Dn = BD are arbitrary real constants and n ∈ N \ {0}.

• Superimpose =⇒ general series solution of (?) is

T (r, θ) =
∞∑
n=0

Tn(r, θ) = A0 +B0 log r +
∞∑
n=1

(
(Anr

n +Bnr
−n) cosnθ

+ (Cnr
n +Dnr

−n) sinnθ
)
.

BVP in plane polar coordinates continued

• Last lecture we showed that the general series solution of

d2T

dr2
+

1

r

∂T

∂r
+

1

r2

∂2T

∂θ2
= 0 (r > 0)

is given by

T (r, θ) =

∞∑
n=0

Tn(r, θ) = A0 +B0 log r +

∞∑
n=1

(
(Anr

n +Bnr
−n) cosnθ

+ (Cnr
n +Dnr

−n) sinnθ
)
, (?)

where An, Bn, Cn, Dn ∈ R.
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Example 5.1. Find T such that

(1) ∇2T = 0 in a < r < b,

(2) T = T ?0 on r = a, T = T ?1 on r = b,

where a, b, T ?0 , T
?
1 ∈ R.

• (1) =⇒ (?) pertains. BCs (2) can only be satisfied if

T ?0 = A0 +B0 log a+

∞∑
n=1

(
(Ana

n +Bna
−n) cosnθ + (Cna

n +Dna
−n) sinnθ

)
,

T ?1 = A0 +B0 log b+
∞∑
n=1

(
(Anb

n +Bnb
−n) cosnθ + (Cnb

n +Dnb
−n) sinnθ

)
,

each for −π < θ ≤ π, say.

• Since the Fourier coefficients of a Fourier series are unique, we can equation them on LHS and RHS
of each equality =⇒[

1 log a
1 log b

] [
A0

B0

]
=

[
T ?0
T ?1

]
,

[
an a−n

bn b−n

] [
An
Bn

]
=

[
0
0

]
,

[
an a−n

bn b−n

] [
Cn
Dn

]
=

[
0
0

]
︸ ︷︷ ︸

n∈N\{0}

=⇒
a<b

[
A0

B0

]
=

1

log
(
b
a

) [log b − log a
−1 1

] [
T ?0
T ?1

]
,

[
An
Bn

]
=

[
0
0

]
,

[
Cn
Dn

]
=

[
0
0

]
︸ ︷︷ ︸

n∈N\{0}

=⇒ T =
T ?0 log b− T ?1 log a

log
(
b
a

) +
T ?1 − T ?0
log
(
b
a

) log r .

Dimensionally correct?

T = T ?0
log
(
r
b

)
log
(
a
b

) + T ?1
log
(
r
b

)
log
(
b
a

) X

• NB: Alternatively, we could have sought a circularly-symmetric solution T = T (r) from the outset
because boundary data is independent of θ. However, method above generalises to T ?0 and T ?1 being
functions of θ.

Example 5.2. Find T such that

(1) ∇2T = 0 in r < a,

(2) T (a, 0) = T ? sin3 θ for −π < θ ≤ π,

where a, T ? ∈ R+.

(1) =⇒ T must be twice differentiable with respect to x and y at origin

=⇒ T must certainly be continuous and therefore bounded at origin

=⇒ (?) pertains but with Bn = 0 ∀n ∈ N and Dn = 0 ∀n ∈ N \ {0}.

• (2) then requires

T ? sin3 θ = An +

∞∑
n=1

(Ana
n cosnθ +Bna

n sinnθ)

for −π < θ ≤ π.
But the FS for the LHS is given by the identity

T ? sin3 θ =
3T ?

4
sin θ − T ?

4
sin 3θ

43



so equating Fourier coefficients gives

B1a =
3T ?

4
, B3a

3 = −T
?

4

and the rest vanish.
Hence, T = 3T ?

4

(
r
a

)
sin θ − T ?

4

(
r
a

)3
sin 3θ.

• Question: What is the heat flux out of the disc through r = a?

• Answer: Outward pointing unit normal n = er, so by Fourier’s Law

q · n|r=a = (−k∇T ) · er|r=a = −kTr(a, θ) = −k
(

3T ?

4a
sin θ − 3T ?

4a
sin 3θ

)
.

• NB: ∇2T = 0 ⇐⇒ ∇ · q = 0 =⇒
∫
r=a

q · n ds =
∫∫
r<a
∇ · q dx dy = 0, so zero net flux through r = a

as there’s no volumetric heating.

Poisson’s Integral Formula

• Find T such that ∇2T = 0 in r < a with T (a, θ) = f(θ) for −π < θ ≤ π, where a ∈ R+ and f is given.

• As in the last example, general series solution is given by (?) with Bn = 0 ∀n ∈ N, Dn = 0 ∀n ∈ N\{0},
so BC satisfied if

f(θ) = A0︸︷︷︸
a
2

+

∞∑
n=1

Anan︸ ︷︷ ︸
an

cosnθ +Bna
n︸ ︷︷ ︸

bn

sinnθ

 for − π < θ ≤ π .

• Theory of FS then gives

A0 =
a

2
=

1

2π

π∫
−π

f(φ) dφ

An =
an
an

=
1

πan

π∫
−π

f(φ) cos (nφ) dφ (n ∈ N \ {0})

Bn =
bn
an

=
1

πan

π∫
−π

f(φ) sin (nφ) dφ , (n ∈ N \ {0})

where we have introduced a dummy variable φ for convenience below.

• Given a particular f , can evaluate these expressions (see example 5.2), but remarkably we can sum
for general f (sufficiently).

• Substitute Fourier coefficients into general series solution and assume
∑∫

=
∫ ∑

gives

T (r, θ) =
1

2π

π∫
−π

f(φ) dφ+
∞∑
n=1

 1

π

π∫
−π

(r
a

)n
[cos (nθ) cos (nφ) + sin (nθ) sin (nφ)]f(φ) dφ


=

1

π

π∫
−π

(
1

2
+
∞∑
n=1

(r
a

)n
cosn(θ − φ)

)
f(φ) dφ .
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• Let α = θ − φ and z = r
ae
iα, then

1

2
+
∞∑
n=1

(r
a

)n
cosnα = <

(
1

2
+
∞∑
n=1

(r
a

)n
einα

)

= <

(
1

2
+

∞∑
n=1

zn

)

= <
(

1

2
+

z

1− z

)
(|z| < 1)

=
1

2
<
(

1 + z

1− z

)
=

a2 − r2

2(a2 − 2ar cosα+ r2)
. (a = a

r e
iα)

• Hence, obtain PIF:

T (r, θ) =
a2 − r2

2π

π∫
−π

f(φ) dφ

a2 − 2ar cos (θ − φ) + r2
. (r < a)

• NB: r = 0 =⇒ T = 1
2π

π∫
−π

f(φ) dφ.

This means temperature at the centre of the disc is the average of the temperature profile around the
boundary.

• Next time: uniqueness.
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Fourier Series & PDEs: Lectures 15-16

Uniqueness

Green’s Theorem in the plane (Divergence Theorem Form)

Let R be a closed bounded region in the (x, y)-plane, whose boundary ∂R is the union C1 ∪ C2 ∪ · · · ∪ Cm
of a finite number of piecewise smooth simple closed curves.

Let F = (F1(x, y), F2(x, y)) be continuous and have continuous first order derivatives on R ∪ ∂R. Then∫∫
R

∇ · F dx dy =

∫
∂R

F · n ds ,

where n is the outward pointing unit normal to ∂R in the (x, y)-plane and ds an element of arclength.

Example 5.3. Derivation of the 2D inhomogeneous heat equation

[Energy] :
d

dt

∫∫
R

ρcT dx dy

︸ ︷︷ ︸
Rate of change of internal heat energy

=

∫
∂R

q · (−n) ds

︸ ︷︷ ︸
Net heat flux into R through ∂R

+

∫∫
R

Qdx dy

︸ ︷︷ ︸
V olumetricheating

• NB: [each term]=J m−1 s−1 since this is per unit distance in the z-direction.

• Assuming Tt continuous on R ∪ ∂R and using Green’s Theorem with F = q gives∫∫
R

ρcTt +∇ · q−Qdx dy = 0 .

• Assuming integrand continuous, R arbitrary =⇒ ρcTt +∇ · q = Q.

• Finally, Fourier’s Law q = −k∇T gives ρcTt = ∇ · (k∇T ) +Q.

Uniqueness for the Dirichlet problem

Theorem 5.1. Suppose T (x, y) such that ∇2T = 0 in R with T = f on ∂R (Dirichlet problem), where R
as in Green’s Theorem and path-connected and f given. Then the BVP has at most one solution.

Proof. Let W be the difference between two solutions, then linearity gives

(1) ∇2W = 0 in R,

(2) W = 0 on ∂R.

Trick: let F = W∇W = ∇
(

1
2W

2
)

in Green’s Theorem.

• Then
∫∫
R

∇ ·W∇W dx dy =
∫
∂R

W∇W · n ds.
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• But

(1) =⇒ ∇ · (W∇W ) = W∇2W +∇W · ∇W = |W |2 in R

(2) =⇒ W∇W · n = 0 on ∂R ,

so
∫∫
R

|∇W |2 dx dy = 0.

• Assuming ∇W is continuous on R∪ ∂R, this implies ∇W = 0 on R =⇒ W = constant on R (as it’s
path connected).

• But W = 0 on ∂R, so assuming W is continuous on R∪∂R, the constant must vanish, so that W = 0
on R ∪ ∂R.

Example 5.4. Find T such that ∇2T = 0 in r < a with T = T ? xa on r = a.

• If we can find any solution, then the uniqueness theorem guarantees it is the only solution.

• Could proceed via general series solution or Poisson’s Integral Formula, but quicker to spot T = T ? xa .

Example 5.5. Find T such that ∇2T = 0 in r > a with T = T ? xa on r = a and T bounded as r →∞.

• Spot B1r
−1 cos θ is a solution provided B1a

−1 = T ?.

• Question: is it the only solution?

• Answer: Uniqueness theorem above not applicable because R not bounded. But, if W is the difference
between two solutions, then for fixed b > a∫∫
a<r<b

|∇W |2 dx dy =
∇2W=0 in a<r<b

∫∫
a<r<b

∇ · (W∇W ) dx dy =

∫
r=b

W∇W · er ds︸ ︷︷ ︸
W ∂W

∂r
r dθ

−
∫
r=b

W∇W · er ds

︸ ︷︷ ︸
=0 since W=0 on r=a

.

So we have uniqueness provided rW ∂W
∂r → 0 as r →∞, which is the case if e.g. r ∂T∂r → 0 as r →∞.

Uniqueness for the Neumann Problem

Theorem 5.2. Suppose T (x, y) such that ∇2T = F in R with ∂T
∂n ≡ n ·∇T = g on ∂R (Neumann problem),

where R as in Green’s Theorem and path-connected and F, g given. Then the BVP has no solution unless∫∫
R

F dx dy =

∫
∂R

g ds .

When a solution exists, it is not unique: any two solutions differ by a constant.

Proof. • Suppose there is a solution T and let F = ∇T in Green’s Theorem, then∫∫
R

F dx dy =

∫∫
R

∇ · (∇T ) dx dy =

∫
∂R

∇T · n ds =

∫
∂R

g ds .

• Now let W be the difference between two solutions, so that ∇2W = 0 in R and ∂W
∂n = 0 on ∂R. Then∫∫

R

|∇W |2 dx dy =
PDE

∫∫
R

∇ · (W∇W ) dx dy =
Green’s Theorem

∫
∂R

W∇W · n ds =
BC

0 ,

as before.
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• Assuming ∇W is continuous on R ∪ ∂R, this imples ∇W = 0 on R, so that W = constant on R.
Hence, W = constant on R ∪ ∂R assuming W is continuous there.

Example 5.6. Find T such that ∇2T = 0 in r < a with ∂T
∂n = g(θ) on r = a, where g is given.

• General series solution of ∇2T = 0 in r < a is

T = A0 +
∞∑
n=1

(Anr
n cosnθ +Bnr

n sinnθ) .

• On r = a, ∂T
∂n = n · ∇T = ∂T

∂r , so BC can be satisfied only if

g(θ) =

∞∑
n=1

(
nAna

n−1 cosnθ + nBna
n−1 sinnθ

)
for − π < θ ≤ π (say)

• Theory of FS then requires

0 =
1

π

π∫
−π

g(θ) dθ (†)

nAna
n−1 =

1

π

π∫
−π

g(θ) cosnθ dθ (n ∈ N \ {0})

nBna
n−1 =

1

π

π∫
−π

g(θ) sinnθ dθ . (n ∈ N \ {0})

• Two cases: Either

(i) g such that (†) not true, in which case there is no solution; or

(ii) g such that (†) is true, in which case the solution is not unique (since A0 is arbitrary, while rest
of Fourier coefficients are uniquely determined).

• This agrees with uniqueness theorem, which guarantees that in case (II) we’ve found all possible
solutions.

Well-posedness

• An IBVP or BVP is wellposed if ∃! solution that depends continuously on the data in the ICs and/or
BCs.

Example 6.1. Wave equation

• Suppose y(x, t) such that

(i) ytt = yxx for −∞ < x <∞, t > 0,

(ii) y(x, 0) = f(x), yt(x, 0) = g(x) for −∞ < x <∞,

where f, g are given.

• By D’Alembert’s Formula ∃! solution since (1)-(2) =⇒

y(x, t) =
1

2
(f(x− ct) + f(x+ ct)) +

1

2

x+t∫
x−t

g(s) ds .
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• Now change data f, g to F,G, and let Y be the new solution:

Y (x, t) =
1

2
(F (x− ct) + F (x+ ct)) +

1

2

x+t∫
x−t

G(s) ds .

• Suppose ∃δ > 0 such that |f(x)− F (x)| < δ, |g(x)−G(x)| < δ ∀x ∈ R. (†)
Then

|y(x, t)− Y (x, t)| =
∣∣∣∣12(f(x− t)− F (x− t)) +

1

2
(f(x+ t)− F (x+ t))

∣∣∣∣+
1

2

x+t∫
x−t

g(s)−G(s) ds

≤ 1

2
|f(x− t)− F (x− t)|+ 1

2
|f(x+ t)− F (x+ t)|+ 1

2

x+t∫
x−t

|g(s)−G(s)| ds

≤ 1

2
δ +

1

2
δ +

1

2
· 2t · δ

= (1 + t)δ for −∞ < x <∞, t ≥ 0 . (‡)

• Fix any T > 0 and any ε > 0. If we pick δ = ε
1+T in (†), then (‡) implies

|y(x, t)− Y (x, t)| ≤ ε 1 + t

1 + T
< ε for −∞ < x <∞, 0 < t < T .

• In this sense, the solution depends continuously on the data and the IVP is well-posed.

Example 6.2. Try IVP for Laplace’s equation!

• Suppose y(x, t) such that

(i) yxx + ytt = 0 for −∞ < x <∞, t > 0,

(ii) y(x, 0) = f(x), yt(x, 0) = g(x) for −∞ < x <∞,

where f, g are given.

• Problem (I): f1 = 0, g1 = 0 =⇒ y1 = 0 is a solution.

• Problem (II): f2 = 0, g2 = δ cos
(
x
δ

)
=⇒ y2 = δ2 cos

(
x
δ

)
sinh

(
t
δ

)
is a solution for any δ > 0.

• Observe that |f1(x)− f2(x)| = 0, |g1(x)− g2(x)| ≤ δ ∀x ∈ R.

• But |y1(0, t)− y2(0, t)| = δ2 sinh
(
t
δ

)
→∞ as δ → 0+ for any fixed t > 0, so cannot make |y1(0, t)− y2(0, t)| <

ε for all 0 < t < T by taking δ suitably small.

• IVP for Laplace’s equation is not well-posed - called ill-posed!

Summary

1. Introduced theory of Fourier Series

• Periodic, even and odd functions and periodic extensions;

• Euler’s formulae for Fourier coeffs via orthogonality relations;

• Statement of a powerful pointwise convergence theorem;

• Related rate of convergence to smoothness;

• Discussed Gibb’s phenomenon - try to avoid!

2. Heat equation
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• Derivation in 1D, 2D and 3D;

• Simple solutions;

• Units and nondimensionalisation;

• Fourier’s method for IBVPs;

• Generalised to inhomogeneous heat equation and BCs.

• Uniqueness

3. Wave equation

• Derivation in 1D with gravity and air resistance;

• Normal modes and natural frequencies;

• Fourier’s method for IBVPs - plucked and flicked strings;

• Forced and dampled wave equation with inhomogeneous BCs;

• Normal modes for composite and weighted strings;

• D’Alembert’s solution and characteristic diagrams;

• Uniqueness.

4. Laplace’s equation

• Derivation in 2D and 3D;

• Fourier’s method for BVPs in (x, y) and (r, θ);

• Poisson’s Integral Formula for Dirichlet problem on a disk;

• Uniqueness of Dirichlet problem;

• Nonexistence and nonuniqueness of Neumann problem;

5. Well-posedness

• Introduced concepts developed later on in course.

Final comments

• Problem sheet questions not too far from prelims questions, so should set you up well for the exam.

• Should try at least 3-5 past papers, but maybe avoid the TT 2015 paper - it turned out much tougher
than anticipated.
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