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Preface

These lecture notes are designed to accompany the first year course “Fourier Series and

Partial Differential Equations” and are taken largely from notes originally written by Dr

Yves Capdeboscq, Dr Alan Day and Dr Janet Dyson.

The first part of this course of lectures introduces Fourier series, concentrating on their

practical application rather than proofs of convergence. We will then discuss how the heat

equation, wave equation and Laplace’s equation arise in physical models. In each case we

will explore basic techniques for solving the equations in several independent variables,

and elementary uniqueness theorems.

Reading material

Fourier series.

• D. W. Jordan and P. Smith, Mathematical Techniques (Oxford University Press, 3rd

Edition, 2003), Chapter 26.

• E. Kreyszig, Advanced Engineering Mathematics (Wiley, 8th Edition, 1999), Chap-

ter 10.

• W. A. Strauss, Partial Differential Equations: An Introduction (Wiley, 1st Edition,

1992), Chapter 5.

Heat equation.

• G. F. Carrier and C. E. Pearson, Partial Differential Equations: Theory and Tech-

nique (Academic Press, 2nd Edition, 1998), Chapter 1.

• W. A. Strauss, Partial Differential Equations: An Introduction (Wiley, 1st Edition,

1992), Chapters 1–4.

• E. Kreyszig, Advanced Engineering Mathematics (Wiley, 8th Edition, 1999), Chap-

ter 12.

Wave equation.

• G. F. Carrier and C. E. Pearson, Partial Differential Equations: Theory and Tech-

nique (Academic Press, 2nd Edition, 1998), Chapter 3.

• W. A. Strauss, Partial Differential Equations: An Introduction (Wiley, 1st Edition,

1992), Chapters 1–4.
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CONTENTS 5

• E. Kreyszig, Advanced Engineering Mathematics (Wiley, 8th Edition, 1999), Chap-

ter 12.

Laplace’s equation.

• G. F. Carrier and C. E. Pearson, Partial Differential Equations: Theory and Tech-

nique (Academic Press, 2nd Edition, 1998), Chapter 4.

• W. A. Strauss, Partial Differential Equations: An Introduction (Wiley, 1st Edition,

1992), Chapter 6.



Chapter 1

Introduction

In this chapter we introduce the concept of initial and boundary value problems, and the

equations that we shall study throughout this course.

1.1 Initial and boundary value problems

Consider a second-order ordinary differential equation (ODE)

y′′ = f(x, y, y′), (1.1)

where y′ = dy/dx and y′′ = d2y/dx2. The problem is to find y(x), subject to appropriate

additional information.

1.1.1 Initial-value problem (IVP)

Suppose that y(a) = p and y′(a) = q are prescribed.

Figure 1

y = p+ q(x− a).

1.1.2 Boundary-value problem (BVP)

Suppose that y(x) is defined on an interval [a, b] and y(a) = A and y(b) = B are prescribed.

Figure 2

1.1.3 Existence and uniqueness

Recall that solutions may not exist, or if they exist they may not be unique.
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Chapter 1. Introduction 7

IVP: y′′ = 6y
1

3 , y(0) = 0, y′(0) = 0 has solutions y(x) = 0, y(x) = x3 (non-uniqueness);

BVP1: y′′ + y = 0, y(0) = 1, y(2π) = 0 has no solution (non-existence);

BVP2: y′′ + y = 0, y(0) = 0, y(2π) = 0 has infinitely many solutions, y(x) = c sin x,

where c is an arbitrary constant (non-uniqueness).

1.2 Some preliminaries

We state, but do not prove, two preliminary results.

Theorem 1.1 (Leibniz’s Integral Rule) Let F (x, t) and ∂F/∂t be continuous in both x

and t in some region of the (x, t) plane including (t, x) ∈ [t0, t1] × [a(t), b(t)], and the

functions a(t) and b(t) and their derivatives be continuous for t ∈ [t0, t1]. Then

G(t) =
d

dt

∫ b(t)

a(t)
F (x, t) dx = b′(t)F (b(t), t) − a′(t)F (a(t), t) +

∫ b(t)

a(t)

∂F (x, t)

∂t
dx. (1.2)

As a result, if a(t) and b(t) are constants with

G(t) =

∫ b

a
F (x, t) dx, (1.3)

then
dG

dt
=

∫ b

a

∂F (x, t)

∂t
dx. (1.4)

Lemma 1.2 If f(x) is continuous then

1

h

∫ a+h

a
f(x) dx → f(a) as h → 0.

Note that
G(t+ h)−G(t)

h
=

∫ b

a

F (x, t+ h)− F (x, t)

h
dx, (1.5)

and the integrand tends to ∂F (x, t)/∂t as h → 0.

1.3 The equations we shall study

It is proposed to study three linear second-order partial differential equations (PDEs) that

have applications throughout the physical sciences.

1.3.1 The heat equation

Also known as the diffusion equation, we will find T (x, t) such that

∂T

∂t
= κ

∂2T

∂x2
, (1.6)

where, for example, T (x, t) is a temperature at position x and time t, and κ is a positive

constant—the thermal diffusivity.
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1.3.2 The wave equation

Here, we will look at finding y(x, t) such that

∂2y

∂t2
= c2

∂2y

∂x2
, (1.7)

where, for example, y(x, t) is the transverse displacement of a stretched string at position

x and time t, and c is a positive constant—the wave speed.

1.3.3 Laplace’s equation

In this case the problem is to find T (x, y) such that

∂2T

∂x2
+

∂2T

∂y2
= 0, (1.8)

where, for example, T (x, y) may be a temperature and x and y are Cartesian coordinates

in the plane. In this case, Laplace’s equation models a two-dimensional system at steady

state in time: in three space-dimensions the temperature T (x, y, z, t) satisfies the heat

equation
∂T

∂t
= κ

(
∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2

)

. (1.9)

Note that equation (1.9) reduces to (3.8) if T is independent of y and z. If the temperature

field is static, T is independent of time, t, and is a solution of Laplace’s equation in R
3,

∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2
= 0, (1.10)

and, in the special case in which T is also independent of z, of Laplace’s equation in R
2,

∂2T

∂x2
+

∂2T

∂y2
= 0. (1.11)



Chapter 2

Fourier series

In the following chapters, we will look at methods for solving the PDEs described in

Chapter 1. In order to incorporate general initial or boundary conditions into our solutions,

it will be necessary to have some understanding of Fourier series.

For example, we can see that the series

y(x, t) =

∞∑

n=1

sin
(nπx

L

)[

An cos

(
nπct

L

)

+Bn sin

(
nπct

L

)]

, (2.1)

is a solution of the wave equation

∂2y

∂t2
= c2

∂2y

∂x2
, x ∈ [0, L] , t ≥ 0, (2.2)

which satisfies the boundary conditions

y(0, t) = 0 = y(L, t). (2.3)

We may view y(x, t) as the solution of the problem which models a vibrating string of

length L pinned at both ends, e.g. a guitar string.

0

y

l
x

We would like to find a solution with initial conditions

y(x, 0) = α sin
(πx

L

)

,
∂y

∂t
(x, 0) = 0, (2.4)

and we do this by calculating An and Bn as follows: from equation (2.1) we have

y(x, 0) =

∞∑

n=1

An sin
(nπx

L

)

, (2.5)

9



Chapter 2. Fourier series 10

and
∂y

∂t
(x, 0) =

∞∑

n=1

Bn

(nπc

L

)

sin
(nπx

L

)

. (2.6)

Hence, we want An, Bn such that

α sin
(πx

L

)

=
∞∑

n=1

An sin
(nπx

L

)

, 0 =
∞∑

n=1

Bn

(nπc

L

)

sin
(nπx

L

)

. (2.7)

By inspection we see that A1 = α, An = 0 for n 6= 1 and Bn = 0 ∀n. Thus, for these

initial conditions, the solution is

y(x, t) = α sin
(πx

L

)

cos

(
πct

L

)

. (2.8)

If we would like to take more general initial conditions

y(x, 0) = f(x),
∂y

∂t
(x, 0) = g(x), (2.9)

we need to find {An, Bn} such that

f(x) =

∞∑

n=1

An sin
(nπx

L

)

, g(x) =

∞∑

n=1

Bn

(nπc

L

)

sin
(nπx

L

)

. (2.10)

These are known the Fourier sine series of the functions f and g.

2.1 Periodic, even and odd functions

Definition f is a periodic function if there is an a > 0 such that

f(x+ a) = f(x), ∀x ∈ R. (2.11)

If this is the case a is called a period for f . Note that the period is not unique, but if there

is a smallest such a, it is called the prime period of f .

Notes.

1. Observe that this means that f(x) = c for c constant does not have a prime period.

2. Examples of periodic functions are sinx with prime period 2π and cos(2πx/a) with

prime period a. Examples of non-periodic functions are x and x2.

3. Observe that if f is defined on the half-open interval (α,α + a] we can extend it to

be a periodic function by demanding it is periodic with period a. This is called a

periodic extension.

α α+ a

y

xα− a
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Definition Formally, we define the periodic extension, F , of f as follows: given x ∈ R

there exists a unique integer m such that x − ma ∈ (α,α + a]. If we then set F (x) =

f(x−ma), we can see that F is periodic with period a.

2.1.1 Properties of periodic functions

If f, g are periodic functions with period a, then:

1. f, g are also periodic functions with period na for any n ∈ N;

2. for any α, β ∈ R, αf + βg is periodic with period a;

3. fg is periodic with period a;

4. for any λ > 0, f(λx) is periodic with period a/λ,

f(λ(x+ a/λ)) = f(λx+ a) = f(λx); (2.12)

5. for any α ∈ R,
∫ a

0
f(x) dx =

∫ α+a

α
f(x) dx, (2.13)

since ∫ α+a

α
f(x) dx =

∫ a

α
f(x) dx+

∫ α+a

a
f(x) dx. (2.14)

2.1.2 Odd and even functions

Definition A function f : R → R is said to be odd if

f(x) = −f(−x), ∀x ∈ R. (2.15)

For example, sin(λx) for λ ∈ R and x2n+1 for n ∈ N are both odd functions.

x

y

Definition A function g : R → R is said to be even if

g(x) = g(−x), ∀x ∈ R. (2.16)

Examples of even functions are cos(λx) for λ ∈ R and x2n for n ∈ N.
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x

y

Notes. If f , f1 are odd functions and g, g1 are even functions then:

1. f(0) = 0 because f(0) = −f(−0) = −f(0);

2. for any α ∈ R, ∫ α

−α
f(x) dx = 0; (2.17)

3. for any α ∈ R, ∫ α

−α
g(x) dx = 2

∫ α

0
g(x) dx; (2.18)

4. the functions h(x) = f(x)g(x), h1(x) = f(x)f1(x) and h2(x) = g(x)g1(x) are odd,

even and even, respectively.

2.2 Fourier series for functions of period 2π

Let f be a function of period 2π. We would like to get an expansion for f of the form

f(x) =
1

2
a0 +

∞∑

n=1

[an cos (nx) + bn sin (nx)] , (2.19)

where the an and bn are constants. Remember that sin(nx) and cos(nx) are periodic with

period 2π. We have two questions to answer.

Question 1: if equation (2.19) is true, can we find the an and bn in terms of f?

Question 2: with these an, bn, when, if ever, is equation (2.19) true?

2.2.1 Question 1

Suppose equation (2.19) is true and that we can integrate it term by term, i.e.

∫ π

−π
f(x) dx =

1

2
a0

∫ π

−π
dx+

∞∑

n=1

[

an

∫ π

−π
cos(nx) dx+ bn

∫ π

−π
sin(nx) dx

]

. (2.20)

Since ∫ π

−π
dx = 2π,

∫ π

−π
cos(nx) dx = 0,

∫ π

−π
sin(nx) dx = 0, (2.21)
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we must have

a0 =
1

π

∫ π

−π
f(x) dx. (2.22)

Thus if equation (2.19) is true, then we know a0.

Note that due to the properties of periodic functions, we could use
∫ 2π
0 f(x) dx instead

of
∫ π
−π f(x) dx in the preceding. More generally, we could integrate over any interval of

length 2π.

Lemma 2.1 Let n,m ∈ N \ 0. We then have the following equalities:

∫ π

−π
sin(mx) cos(nx) dx = 0, (2.23)

∫ π

−π
sin(mx) sin(nx) dx = πδnm, (2.24)

∫ π

−π
cos(mx) cos(nx) dx = πδnm, (2.25)

where δnm is the Kronecker delta defined by

δnm =

{

0 n 6= m,

1 n = m.
(2.26)

Proof. Equation (2.23) is trivial as sin(mx) cos(nx) is odd. For equation (2.24) we com-

pute, for n 6= m,

∫ π

−π
sin(mx) sin(nx) dx =

1

2

∫ π

−π
[− cos{(m+ n)x}+ cos{(m− n)x}] dx,

=
1

2

[
− sin{(m+ n)x}

m+ n
+

sin{(m− n)x}

m− n

]π

−π

,

= 0. (2.27)

If n = m we have
∫ π

−π
sin(nx) sin(mx) dx =

∫ π

−π

[
1− cos(2nx)

2

]

dx =
1

2

[

x−
sin(2nx)

2n

]π

−π

= π. (2.28)

Similar computations yield equation (2.25).

Thus, to find an and bn, we assume equation (2.19) is true. Multiplying both sides by

cos(mx) and integrating term-wise gives

∫ π

−π
f(x) cos(mx) dx =

1

2
a0

∫ π

−π
cos(mx) dx

+

∞∑

n=1

an

∫ π

−π
cos(nx) cos(mx) dx

+

∞∑

n=1

bn

∫ π

−π
sin(nx) cos(mx) dx. (2.29)
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The first term on the right-hand side is trivially zero for m 6= 0. Using Lemma 2.1 for the

remaining terms gives

∫ π

−π
f(x) cos(mx) dx =

∞∑

n=1

anπδnm = πam, (2.30)

and hence

am =
1

π

∫ π

−π
f(x) cos(mx) dx. (2.31)

Note that this also holds for m = 0 (which is the reason for the factor of 1/2).

Multiplying equation (2.19) by sin(mx) and integrating term-wise, we similarly obtain

bm =
1

π

∫ π

−π
f(x) sin(mx) dx. (2.32)

Definition Suppose f is such that

an =
1

π

∫ π

−π
f(x) cos(nx) dx, bn =

1

π

∫ π

−π
f(x) sin(nx) dx, (2.33)

exist. Then we shall write

f(x) ∼
1

2
a0 +

∞∑

n=1

[an cos(nx) + bn sin(nx)] , (2.34)

and call the series on the right-hand side the Fourier series for f , whether or not it

converges to f . The constants an and bn are called the Fourier coefficients of f .

Example 2.1 Find the Fourier series of the function f which is periodic with period 2π

and such that

f(x) = |x|, x ∈ (−π, π]. (2.35)

x

y

π−π

To find an, bn first notice that f is even, so f(x) sin(nx) is odd and

bn =
1

π

∫ π

−π
f(x) sin(nx) dx = 0, (2.36)
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for every n. Also, f(x) cos(nx) is even, so

an =
1

π

∫ π

−π
f(x) cos(nx) dx,

=
2

π

∫ π

0
f(x) cos(nx) dx,

=
2

π

∫ π

0
x cos(nx) dx,

=
2

π

([
x sin(nx)

n

]π

0

−

∫ π

0

sin(nx)

n
dx

)

,

= −
2

π

([
− cos(nx)

n2

]π

0

)

,

=
2

π

(
cos(nπ)− cos(0)

n2

)

,

=
2

π

[(−1)n − 1]

n2
. (2.37)

Note that this is not valid for n = 0. In fact, a0 = π. If n is even, n = 2m say, we have

a2m =
2((−1)2m − 1)

π(2m)2
= 0. (2.38)

If n is odd, n = 2m+ 1 say, we obtain

a2m+1 =
2(−1− 1)

π(2m+ 1)2
=

−4

π(2m+ 1)2
. (2.39)

2.2.2 Sine and cosine series

Let f be 2π-periodic. If f is odd then

f(x) ∼

∞∑

n=1

bn sin(nx), (2.40)

where

bn =
1

π

∫ π

−π
f(s) sin(ns) ds =

2

π

∫ π

0
f(s) sin(ns) ds, (2.41)

i.e. f has a Fourier sine series. In this case an = 0 because f(x) cos(nx) is odd. This is

also true if f(x) = −f(−x) for x 6= nπ, n ∈ Z, i.e. f is odd apart from the end points and

zero.

If f is even then

f(x) ∼
1

2
a0 +

∞∑

n=1

an cos(nx), (2.42)

where

an =
2

π

∫ π

0
f(s) cos(ns) ds, (2.43)

i.e. f has a Fourier cosine series.
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2.2.3 Question 2

Recall Question 2: with these an, bn, when, if ever, is equation (2.19) true? Consider what

happens in the following example.

Example 2.2 Consider the Fourier series of the function f which is periodic with period

2π and such that

f(x) =

{

1 0 < x ≤ π,

−1 −π < x ≤ 0.
(2.44)

xπ−π

y

1

−1

Note that f is odd, so we can conclude that f(x) cos(nx) is odd, giving an = 0 without

computation. On the other hand, f(x) sin(nx) is even, so

bn =
1

π

∫ π

−π
f(x) sin(nx) dx =

2

π

∫ π

0
sin(nx) dx = −

2 [(−1)n − 1]

nπ
, (2.45)

i.e.

b2m = 0, b2m+1 =
4

(2m+ 1)π
, (2.46)

and hence

f(x) ∼
4

π

∞∑

m=0

1

2m+ 1
sin [(2m+ 1)x] . (2.47)

Consider Question 2 for this case: when is

f(x) =
1

2
a0 +

∞∑

n=1

[an cos(nx) + bn sin(nx)]? (2.48)

Recall that
4

π

∞∑

m=0

sin[(2m+ 1)x]

2m+ 1
, (2.49)

means limn→∞ sn(x) where

sn(x) =
4

π

n∑

m=0

sin[(2m+ 1)x]

2m+ 1
. (2.50)

The question is therefore, does sn(x) converge for each x? If it does, is the limit f(x)?

Some partial sums, sn, are plotted in Figure 2.1.
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(a) s0 (b) s1 (c) s2

(d) s5 (e) s10 (f) s50

Figure 2.1: Convergence of the Fourier series for the function of Section 2.2.3.

2.3 Convergence of Fourier series

For the previous example it does appear that except at points of discontinuity the partial

sums do converge to f(x). At points of discontinuity they converge to zero. A similar

result is true also for most functions which appear in applications. To present this result

we first need to discuss one-sided limits.

Definition We say that the right-hand limit of f at c is

f(c+) = lim
h→0
h>0

f(c+ h), (2.51)

if this exists. Similarly, the left-hand limit of f at c is

f(c−) = lim
h→0
h>0

f(c− h), (2.52)

if this exists.

The existence part is important since, for example, f(x) = sin(1/x) does not have these

limits at zero.

Definition The function f is piecewise continuous on an interval (a, b) if we can divide

(a, b) into a finite number of sub-intervals, on each of which f is defined and continuous,

and the left- and right-hand limits at the endpoints of each sub-interval exist.
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Theorem 2.2 (Convergence theorem) Let f be a periodic function with period 2π, with

f and f ′ piecewise continuous on (−π, π). Then the Fourier series of f at x converges to

the value 1
2 [f(x+) + f(x−)], i.e.

1

2
[f(x+) + f(x−))] =

1

2
a0 +

∞∑

n=0

[an cos(nx) + bn sin(nx)] . (2.53)

Note that if f is continuous at x, then f(x+) = f(x−) = f(x) so the Fourier series

converges to f(x).

Note that if a function is defined on an interval of length 2π, we can find the Fourier

series of its periodic extension and equation (2.53) will then hold on the original interval.

But we have to be careful at the end points of the interval: e.g. if f is defined on (−π, π]

then at ±π the Fourier Series of f converges to 1
2 [f(π−) + f((−π)+)].

y

xπ−π

f(π−)

f(π+)

For Example 2.2 we have, by Theorem 2.2, that

1

2
[f(x+) + f(x−)] =

4

π

∞∑

m=0

1

2m+ 1
sin[(2m+ 1)x], (2.54)

where both sides reduce to zero at x = 0, ±π. At x = π/2 we obtain

1 =
4

π

∞∑

m=0

1

2m+ 1
sin

[
(2m+ 1)π

2

]

=
4

π

∞∑

m=0

(−1)m

2m+ 1
, (2.55)

and hence
π

4
=

∞∑

m=0

(−1)m

2m+ 1
. (2.56)

xπ−π

y

π
2

1

−1
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2.3.1 Rate of convergence

When using Fourier series in practical situations, we often need to truncate the series at

some finite value of n. In this case, we would be interested in questions such as how good

is the convergence? Also, what about the speed of the convergence? In general, the more

derivatives f has, the faster the convergence. We can roughly say that if the discontinuity

is in the pth derivative, then an, bn decay like n−p−1.

Lemma 2.3 Assume that F is continuous on [−π, π], and F ′ = f is piecewise continuous

on (−π, π). Let an, bn be the Fourier coefficients of f and An, Bn be the Fourier coefficients

of F . Then, An = −bn/n and Bn = an/n.

Proof. The proof is an integration by parts, and is not shown here.

In fact, this is best seen using complex Fourier coefficients, cn := an + ibn. Then the

lemma says that

cn(f
′) = −incn(f). (2.57)

This can be iterated and used to solve ODEs. For example, if f is a 2π periodic function,

with Fourier coefficients cn(f), and y is the solution of the differential equation

y(5)(x) + a4y
(4)(x) + a3y

(3)(x) + a2y
(2)(x) + a1y

(1)(x) + a0y(x) = f(x), (2.58)

then the Fourier coefficients of y, cn(y), n ≥ 0, are given by

[

(−in)5 + a4 (−in)4 + a3 (−in)3 + a2 (−in)2 + a1 (−in) + a0

]

cn(y) = cn(f). (2.59)

2.3.2 Gibbs Phenomenon

As can be seen in Figure 2.1, at a point of discontinuity, the partial sums always overshoot

the limiting values. This overshoot does not tend to zero as more terms are taken, but

the width of the overshooting region does tend to zero. This is known as the Gibbs

Phenomenon.

2.4 Functions of any period

Consider a function f of period 2L (L > 0). We want a series in cos(nπx/L) and

sin(nπx/L). To do this we make the transformation X = πx/L.

y

−π π

x

X

−L L



Chapter 2. Fourier series 20

Formally, we define g(X) = f(x) = f(LX/π) so that

g(X + 2π) = f

(
L(X + 2π)

π

)

= f

(
LX

π
+ 2L

)

= f

(
LX

π

)

= g(X), (2.60)

and g is 2π-periodic. Hence the previous theory holds for g, i.e. if we can write

g(X) =
1

2
a0 +

∞∑

n=1

[an cos(nX) + bn sin(nX)] , (2.61)

then

an =
1

π

∫ π

−π
g(X) cos(nX) dX,

=
1

π

∫ L

−L
g
(πx

L

)

cos
(nπx

L

) π

L
dx,

=
1

L

∫ L

−L
f(x) cos

(nπx

L

)

dx, (2.62)

and

bn =
1

π

∫ π

−π
g(X) sin(nX) dX,

=
1

π

∫ L

−L
g
(πx

L

)

sin
(nπx

L

) π

L
dx,

=
1

L

∫ L

−L
f(x) sin

(nπx

L

)

dx. (2.63)

So if we can write

f(x) =
1

2
a0 +

∞∑

n=1

[

an cos
(nπx

L

)

+ bn sin
(nπx

L

)]

, (2.64)

then (2.61) holds, so

an =
1

L

∫ L

−L
f(x) cos

(nπx

L

)

dx, bn =
1

L

∫ L

−L
f(x) sin

(nπx

L

)

dx. (2.65)

The series in equation (2.64) is called the Fourier series for f and an and bn are the

Fourier coefficients of f . Again, we use ∼ if we do not know whether or not it converges.

By Theorem 2.2, under suitable conditions the series in equation (2.61) converges to

g(X+) + g(X−)

2
, (2.66)

so we obtain

Theorem 2.4 Let f be a periodic function of period 2L which is sufficiently well-behaved.

Then the Fourier series of f at x converges to

f(x+) + f(x−)

2
, (2.67)

so equation (2.64) holds at any point where f is continuous.
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Example 2.3 Find the Fourier series of the 2L-periodic extension of

f(x) =

{

x x ∈ (0, L],

0 x ∈ (−L, 0].
(2.68)

Hence show that
π2

8
=

∞∑

m=0

1

(2m+ 1)2
. (2.69)

2L−L

y

x

We have

an =
1

L

∫ L

−L
f(x) cos

(nπx

L

)

dx =
1

L

∫ L

0
x cos

(nπx

L

)

dx =
L[(−1)n − 1]

n2π2
, n 6= 0,

(2.70)

as in Example 2.1. So we have a2m = 0 for m > 0 and

a2m+1 =
−2L

(2m+ 1)2π2
. (2.71)

For a0 we calculate

a0 =
1

L

∫ L

−L
f(x) dx =

1

L

∫ L

0
xdx =

L

2
, (2.72)

and for bn

bn =
1

L

∫ L

−L
f(x) sin

(nπx

L

)

dx,

=
1

L

∫ L

0
x sin

(nπx

L

)

dx,

=
1

L

([

−
Lx

nπ
cos
(nπx

L

)]L

0

+

∫ L

0

L

nπ
cos
(nπx

L

)

dx

)

,

=
1

L

(

−
L2(−1)n

nπ
+

[
L2

n2π2
sin
(nπx

L

)]L

0

)

,

= (−1)n+1 L

nπ
.

So

f(x) ∼
L

4
+

∞∑

m=0

−2L

(2m+ 1)2π2
cos

[
(2m+ 1)πx

L

]

+

∞∑

m=1

(−1)m+1 L

mπ
sin
(mπx

L

)

. (2.73)

By Theorem 2.4, if x ∈ [0, L) we obtain

x =
L

4
+

∞∑

m=0

−2L

(2m+ 1)2π2
cos

[
(2m+ 1)πx

L

]

+

∞∑

m=1

(−1)m+1 L

mπ
sin
(mπx

L

)

. (2.74)
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because f is continuous on [0, L). If we put x = 0 we calculate

0 =
L

4
+

∞∑

m=0

−2L

(2m+ 1)2π2
, (2.75)

which proves (2.69). If we set x = L in equation (2.73) we obtain

f(L+) + f(L−)

2
=

L

4
+

∞∑

m=0

−2L

(2m+ 1)2π2
cos[(2m+ 1)π], (2.76)

giving

0 + L

2
=

L

4
+

∞∑

m=0

−2L

(2m+ 1)2π2
, (2.77)

which gives equation (2.69) again.

2.4.1 Sine and cosine series

Given a function f defined on [0, L] we require an expansion with only cosine terms or

only sine terms. This will be done by extending f to be even (for only cosine terms) or

odd (for only sine terms) on (−L,L] and then extending to a 2L-period function. The

series obtained will then be valid on (0, L).

Definition If f is defined on [0, L], the even extension for f , denoted by fe, is the periodic

extension of

fe(x) =

{

f(x) x ∈ [0, L],

f(−x) x ∈ (−L, 0),
(2.78)

so that we have fe(x) = fe(−x) for all x. Thus:

fe(x) ∼
a0
2

+

∞∑

n=1

an cos
(nπx

L

)

, (2.79)

where

an =
1

L

∫ L

−L
fe(x) cos

(nπx

L

)

dx =
2

L

∫ L

0
f(x) cos

(nπx

L

)

dx, (2.80)

is called the Fourier cosine series of f .

Definition The odd extension for f , denoted by fo, is the periodic extension of

fo(x) =

{

f(x) x ∈ [0, L],

−f(−x) x ∈ (−L, 0),
(2.81)

so that fo(x) = −fo(−x) for all x 6= nL. Similarly,

fo(x) ∼
∞∑

n=1

bn sin
(nπx

L

)

, (2.82)

where

bn =
2

L

∫ L

0
f(x) sin

(nπx

L

)

dx,

is called the Fourier sine series for f .



Chapter 2. Fourier series 23

Note. For fo to really be odd we must have fo(0) = 0 and also fo(L) = −fo(−L) =

−fo(L) (the last equality follows from periodicity) giving fo(L) = 0 and therefore fo(nL) =

0 for all n ∈ Z. However, the value at of f at these isolated points does not affect the

Fourier series.

Example 2.4 Find the Fourier sine and cosine expansions of f(x) = x for x ∈ [0, L].

Sine expansion The odd extension is defined by

fo(x) =

{

x x ∈ [0, L],

−(−x) x ∈ (−L, 0).
(2.83)

x2L−L

y

In this case

bn =
2

L

∫ L

0
x sin

(nπx

L

)

dx = (−1)n+1 2L

nπ
, (2.84)

as in Example 2.3. For x ∈ [0, L) we therefore obtain

x =

∞∑

n=1

(−1)n+1 2L

nπ
sin
(nπx

L

)

. (2.85)

Cosine expansion The even extension is given by

fe(x) =

{

x x ∈ [0, L],

−x x ∈ [−L, 0).
(2.86)

x2L−L

y

Now,

a0 =
2

L

∫ L

0
xdx = L, (2.87)

and

an =
2

L

∫ L

0
x cos

(nπx

L

)

dx =







0 n = 2m even,
−4L

(2m+1)2π2 n = 2m+ 1 odd.
(2.88)

Thus for x ∈ [0, L] we get

x =
L

2
+

∞∑

m=0

−
4L

(2m+ 1)2π2
cos

[
(2m+ 1)πx

L

]

. (2.89)
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Recall that (2.74) is the Fourier series of

h(x) =

{

x x ∈ [0, L],

0 x ∈ (−L, 0).
(2.90)

y

L x−L

Looking at the results from the previous example this indicates that the Fourier series of

f(x) + g(x) equals the Fourier series of f(x) plus the Fourier series of g(x).



Chapter 3

The heat equation

In this chapter we shall look at the heat equation in one space dimension, learning a

method for its derivation, and some techniques for solving.

3.1 Derivation in one space dimension

A straight rigid metal rod lies along the x-axis. The lateral surface is insulated to prevent

heat loss.

Figure 3

Let ρ be the mass density per unit length, c be the specific heat, T (x, t) be the temperature

and:

• +q(x, t) be the heat flux from − to +;

• −q(x, t) be the heat flux from + to −.

Consider any interval [a, a+ h]:

internal energy =

∫ a+h

a
ρcT (x, t) dx; (3.1)

net heat flux out of [a, a+ h] = q(a+ h, t)− q(a, t). (3.2)

By conservation of energy, for every interval [a, a+ h],

rate of change of internal energy + net heat flux out = 0. (3.3)

i.e.
d

dt

∫ a+h

a
ρcT (x, t) dx+ [q(a+ h, t)− q(a, t)] = 0. (3.4)

Hence, by Leibniz,

1

h

∫ a+h

a
ρc

∂T

∂t
(x, t) dx+

[
q(a+ h, t)− q(a, t)

h

]

= 0, (3.5)

25
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and on letting h → 0 we get the equation

ρc
∂T

∂t
+

∂q

∂x
= 0. (3.6)

In order to close the system, we need to describe how the heat flux varies as a function of

x, t and T .

3.1.1 Fourier’s law

In one space dimension, the law of heat conduction, also known as Fourier’s law, states

that the time rate of heat transfer through a material is proportional to the negative

gradient in the temperature:

q(x, t) = −k
∂T

∂x
, (3.7)

where k is the thermal conductivity. The negative sign reflects the fact that heat flows

from high temperatures to low temperatures.

On substituting from equation (3.7) into (3.6) we arrive at the heat equation in one space

dimension:
∂T

∂t
= κ

∂2T

∂x2
, (3.8)

where κ = k/ρc is the thermal diffusivity.

3.2 Units and nondimensionalisation

Consider the units of the variables (x, t and T ) and parameter (κ) associated with the

heat equation. We will use the following notation to denote the dimensions of a variable

or parameter:

[p] = dimensions of p. (3.9)

In SI units we have

[x] = m (metres), [t] = s (seconds), [T ] = K (Kelvin). (3.10)

For the heat equation,
∂T

∂t
= κ

∂2T

∂x2
, (3.11)

we see that the left-hand side has units Ks−1. The term ∂2T/∂x2 has units Km−2. Hence

for the units of the right-hand side to balance those of the left-hand side, the units of κ

must be [κ] = m2s−1.

We can non-dimensionalise the heat equation by scaling our variables and parameters.

For example, let

x = lx̂, t = τ t̂, T = T0T̂ , (3.12)
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where l, τ and T0 are a typical lengthscale, timescale and temperature, respectively, for

the problem under consideration. Then

∂

∂t
=

dt̂

dt

∂

∂t̂
=

1

τ

∂

∂t̂
, (3.13)

∂

∂x
=

dx̂

dx

∂

∂x̂
=

1

l

∂

∂x̂
, (3.14)

∂2

∂x2
=

dx̂

dx

∂

∂x̂

(
1

l

∂

∂x̂

)

=
1

l2
∂2

∂x̂2
, (3.15)

and substituting into the heat equation we have

T0

τ

∂T̂

∂t̂
=

κT0

l2
∂2T̂

∂x̂2
. (3.16)

Rearranging gives
∂T̂

∂t̂
=

κτ

l2
∂2T̂

∂x̂2
. (3.17)

Considering the problem on a timescale where τ = l2/κ gives

∂T̂

∂t̂
=

∂2T̂

∂x̂2
. (3.18)

Notice that now

[x̂] = 1, [t̂] = 1, [T̂ ] = 1, (3.19)

since

[l] = m, [τ ] =

[
l2

κ

]

= s, [T0] = K. (3.20)

This means that we can compare heat problems on different scales: for example, two

systems with different l and κ will exhibit comparable behaviour on the same time scales

if l2/κ is the same in each problem.

3.3 Heat conduction in a finite rod

Let the rod occupy the interval [0, L]. If we look for solutions of the heat equation

∂T

∂t
= κ

∂2T

∂x2
, (3.21)

which are separable, T (x, t) = F (x)G(t), we find that

κ

F (x)
F ′′(x)

︸ ︷︷ ︸

independent of t

=
1

G(t)
G′(t)

︸ ︷︷ ︸

independent of x

, (3.22)

and hence both sides are constant (independent of both x and t). If the constant is −κλ2,

F (x) satisfies the ODE

F ′′(x) = −λ2F (x), (3.23)

the solution of which is

F (x) = A sin(λx) +B cos(λx). (3.24)
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If the ends are held at zero temperature then F (0) = F (L) = 0. The boundary condition

at x = 0 gives B = 0 and the boundary condition at x = L gives

A sin(λL) = 0. (3.25)

Since we want A 6= 0 to avoid a non-trivial solution, it must be that sin(λL) = 0 i.e. λ

must be such that λL = nπ where n is a positive integer. Hence λ must be one of the

numbers {nπ

L
: n = 1, 2, 3, . . .

}

. (3.26)

Moreover G(t) satisfies the ODE

G′(t) = −κλ2G(t) = −
κn2π2

L2
G(t), (3.27)

and, therefore, G(t) ∝ e−n2π2κt/L2

. Hence we have the separable solution

Tn(x, t) = an sin
(nπx

L

)

e−n2π2κt/L2

, (3.28)

which satisfies the heat equation (3.8) and the boundary conditions

T (0, t) = 0 and T (L, t) = 0 for t > 0. (3.29)

The general solution can therefore be written as a linear combination of the Tn so that

T (x, t) =
∞∑

n=1

an sin
(nπx

L

)

e−n2π2κt/L2

. (3.30)

3.4 Initial and boundary value problem (IBVP)

We now consider finding the solution of the heat equation

∂T

∂t
= κ

∂2T

∂x2
, 0 < x < L, t > 0, (3.31)

subject to the initial condition

T (x, 0) = f(x), 0 ≤ x ≤ L, (3.32)

and the boundary conditions

T (0, t) = 0 and T (L, t) = 0 for t > 0. (3.33)

In view of our preceding discussion we look for a solution as an infinite sum

T (x, t) =
∞∑

n=1

an sin
(nπx

L

)

e−n2π2κt/L2

. (3.34)

Example 3.1 Solve the IBVP for the case

T (x, 0) = sin
(πx

L

)

+
1

2
sin

(
2πx

L

)

= f(x), 0 ≤ x ≤ L. (3.35)

From equation (3.34) we see that

T (x, 0) =
∞∑

n=1

an sin
(nπx

L

)

. (3.36)

Comparing terms we see that a1 = 1, a2 = 1/2 and an = 0 (n ≥ 3) so that the solution is

T (x, t) = sin
(πx

L

)

e−π2κt/L2

+
1

2
sin

(
2πx

L

)

e−4π2κt/L2

. (3.37)
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3.4.1 Application of Fourier series

To solve for more general initial conditions, we can use Fourier series to determine the

constants an:

T (x, 0) =

∞∑

n=1

an sin
(nπx

L

)

, 0 ≤ x ≤ L. (3.38)

The question is now, given f(x), can it be expanded as a Fourier sine series

f(x) =
∞∑

n=1

an sin
(nπx

L

)

, 0 ≤ x ≤ L? (3.39)

From the lectures on Fourier series, we know that such an expansion exists if e.g. f is

piecewise continuously differentiable on [0, L]. The coefficients an are determined by the

orthogonality relations:

∫ L

0
sin
(mπx

L

)

sin
(nπx

L

)

dx =

{

0, m 6= n,
1
2L, m = n.

(3.40)

Thus

an =
2

L

∫ L

0
f(x) sin

(nπx

L

)

dx. (3.41)

Example 3.2 Find the solution of the IBVP when

f(x) =

{

0 for 0 ≤ x ≤ L1 and L2 ≤ x ≤ L,

1 for L1 < x < L2.
(3.42)

Here f(x) has the Fourier sine expansion

2

π

∞∑

n=1

1

n

[

cos

(
nπL1

L

)

− cos

(
nπL2

L

)]

sin
(nπx

L

)

, (3.43)

and the solution of IBVP is

T (x, t) =
2

π

∞∑

n=1

1

n

[

cos

(
nπL1

L

)

− cos

(
nπL2

L

)]

sin
(nπx

L

)

e−n2π2κt/L2

. (3.44)

3.5 Uniqueness

We have constructed a solution of our IBVP, and found a formula for it as the sum of an

infinite series, but is it the only solution?

Theorem 3.1 The IBVP has only one solution.

Proof. Let U be a solution of the same IBVP, i.e.

∂U

∂t
= κ

∂2U

∂x2
, 0 < x < L, t > 0, (3.45)

subject to the initial condition

U(x, 0) = f(x), 0 ≤ x ≤ L, (3.46)
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and the boundary conditions

U(0, t) = 0 and U(L, t) = 0 for t > 0. (3.47)

Now consider the difference W := U − T . Then W satisfies the IBVP

∂W

∂t
= κ

∂2W

∂x2
, 0 < x < L, t > 0, (3.48)

W (x, 0) = 0, 0 ≤ x ≤ L, (3.49)

and the boundary conditions

W (0, t) = 0 and W (L, t) = 0 for t > 0. (3.50)

Let

I(t) :=
1

2

∫ L

0
[W (x, t)]2 dx. (3.51)

Evidently I(t) ≥ 0 and I(0) = 0. By Leibniz’s rule,

I ′(t) =

∫ L

0
W

∂W

∂t
dx, (3.52)

= κ

∫ L

0
W

∂2W

∂x2
dx, (3.53)

= κ

∫ L

0

[

∂

∂x

(

W
∂W

∂x

)

−

(
∂W

∂x

)2
]

dx. (3.54)

On carrying out the integration and using the boundary conditions at x = 0 and x = L

we see that

I ′(t) = −κ

∫ L

0

(
∂W

∂x

)2

dx ≤ 0, (3.55)

and, therefore, I cannot increase. Hence

0 ≤ I(t) ≤ I(0) = 0, (3.56)

and I(t) = 0 for every t ≥ 0. Thus

∫ L

0
[W (x, t)]2dx = 0, (3.57)

for every t ≥ 0 and so W = 0 and U = T , which proves the theorem.

3.6 Non-zero steady state

It may be that the temperatures of the ends x = 0 and x = L are prescribed and constant

but not equal to zero.

Example 3.3 Solve the IBVP

∂T

∂t
= κ

∂2T

∂x2
, 0 < x < L, t > 0, (3.58)
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subject to the initial condition

T (x, 0) = 0, 0 ≤ x ≤ L, (3.59)

and the boundary conditions

T (0, t) = T0 and T (L, t) = T1 for t > 0. (3.60)

We cannot use separation of variables and Fourier series right at the outset. However, we

conjecture that, as t → ∞, T (x, t) → U(x), where

κ
d2U

dx2
= 0, U(0) = T0 and U(L) = T1, (3.61)

i.e.

U(x) = T0

(

1−
x

L

)

+ T1

(x

L

)

. (3.62)

If we now put S(x, t) := T (x, t)− U(x), we find that S is a solution of the IBVP

∂S

∂t
= κ

∂2S

∂x2
, 0 < x < L, t > 0, (3.63)

with

S(0, t) = 0 and S(L, t) = 0 for t > 0, (3.64)

and

S(x, 0) = −T0

(

1−
x

L

)

− T1

( x

L

)

. (3.65)

In view of the form of the boundary conditions, this IBVP can be solved by our previous

methods. The solution is

S(x, t) =
2

π

∞∑

n=1

1

n
[−T0 + (−1)nT1] sin

(nπx

L

)

e−n2π2κt/L2

, (3.66)

and so

T (x, t) = T0

(

1−
x

L

)

+T1

(x

L

)

+
2

π

∞∑

n=1

1

n
[−T0 + (−1)nT1] sin

(nπx

L

)

e−n2π2κt/L2

. (3.67)

3.7 Other boundary conditions

Other boundary conditions are possible, e.g. at an end which is thermally insulated the

heat flux is zero. Thus −kTx = 0 there and, therefore, Tx = 0. If both ends are thermally

insulated we look for separable solutions of the heat equation of the form

T (x, t) = F (x)G(t), (3.68)

where F ′(0) = F ′(L) = 0. We find that F ′′ = −λ2F , G′ = −λ2κG, and F = a cos(λx),

where sin(λL) = 0 and so L is one of the numbers {nπ/L : n = 0, 1, 2, 3, . . .}. The

separable solutions in these circumstances are

a0 and an cos
(nπx

L

)

e−n2π2κt/L2

(n = 1, 2, 3, . . .). (3.69)



Chapter 3. The heat equation 32

Thus if we consider the IBVP

∂T

∂t
= κ

∂2T

∂x2
, 0 < x < L, t > 0, (3.70)

with boundary conditions

∂T

∂x
(0, t) = 0 and

∂T

∂x
(L, t) = 0 for t > 0, (3.71)

and initial condition

T (x, 0) = f(x) for 0 ≤ x ≤ L, (3.72)

we look for a solution

T (x, t) =
1

2
a0 +

∞∑

n=1

an cos
(nπx

L

)

e−n2π2κt/L2

, (3.73)

where the prescribed f(x) has the Fourier cosine expansion

f(x) =
1

2
a0 +

∞∑

n=1

an cos
(nπx

L

)

, 0 ≤ x ≤ L. (3.74)

The required coefficients are

an =
2

L

∫ L

0
f(x) cos

(nπx

L

)

dx (n = 0, 1, 2, 3, . . .). (3.75)

Note that, as t → ∞,

T (x, t) →
1

2
a0 =

1

L

∫ L

0
f(s) ds, (3.76)

the extreme right-hand side being the mean initial temperature. The uniqueness of T (x, t),

for a given f(x), can be established much as before.



Chapter 4

The wave equation

In this chapter we look at the wave equation, concentrating on applications to waves on

strings. We discuss methods for solution and also uniqueness of solutions.

4.1 Derivation in one space dimension

Consider a flexible string stretched to a tension T , with mass density ρ, undergoing small

transverse vibrations. First suppose the string to be at rest along the x-axis in the (x, y)-

plane. A point initially at xi is displaced to r(x, t) = xi + y(x, t)j, where y(x, t) is the

transverse displacement and i and j are the usual unit vectors along the coordinate axes.

We will assume that |∂y/∂x| ≪ 1 and ignore gravity and air-resistance.

Figure 4

The vector

τ :=
∂r

∂x
= i+

∂y

∂x
j, (4.1)

is a tangent vector to the string and, since

|τ | =

√

1 +

(
∂y

∂x

)2

= 1 +
1

2

(
∂y

∂x

)2

−
1

8

(
∂y

∂x

)4

+ · · · , (4.2)

it is approximately a unit tangent. Thus, in the figure:

• +Tτ = force exerted by + on −;

• −Tτ = force exerted by − on +.

The velocity and acceleration vectors are

v =
∂r

∂t
=

∂y

∂t
j, a =

∂2r

∂t2
=

∂2y

∂t2
j, (4.3)

respectively.

Consider the piece of string which occupies the interval [a, a + h], where, at a later

stage in the argument, h → 0:

33
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Figure 5

net force = Tτ (a+ h, t)− Tτ (a, t); (4.4)

momentum =

∫ a+h

a
ρv(x, t) dx. (4.5)

By Newton’s Second Law, for every interval [a, a+ h],

net force = rate of change of momentum, (4.6)

=⇒ Tτ (a+ h, t)− Tτ (a, t) =
d

dt

∫ a+h

a
ρv(x, t) dx. (4.7)

On using Leibniz’s rule, and dividing through by h, we see that

T

(
τ (a+ h, t)− τ (a, t)

h

)

=
1

h

∫ a+h

a
ρ
∂v

∂t
(x, t) dx, (4.8)

and, on letting h → 0, that

T
∂τ

∂x
(a, t) = ρ

∂v

∂t
(a, t), (4.9)

for every a. Thus, if we substitute for τ and v in terms of the displacement y, we have

ρ
∂2y

∂t2
j = T

∂2y

∂x2
j, (4.10)

and, hence, the wave equation

ρ
∂2y

∂t2
= T

∂2y

∂x2
, (4.11)

or
∂2y

∂t2
= c2

∂2y

∂x2
, (4.12)

where c =
√

T/ρ is the wave speed.

4.2 Units and nondimensionalisation

Consider the units of the variables (x, t and y) and parameter (c) associated with the

wave equation. For the wave equation,

∂2y

∂t2
= c2

∂2y

∂x2
, (4.13)

we see that the left-hand side has units ms−2. The term ∂2y/∂x2 has units m−1. Hence

for the units of the right-hand side to balance those of the left-hand side, the units of c

must be [c] = ms−1, as we expect.

As before, can non-dimensionalise the wave equation by scaling our variables and

parameters. For example, let

x = lx̂, t = τ t̂, y = lŷ, (4.14)
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where l, and τ are a typical lengthscale and timescale, respectively, for the problem under

consideration. Then

∂

∂t
=

dt̂

dt

∂

∂t̂
=

1

τ

∂

∂t̂
, (4.15)

∂2

∂t2
=

dt̂

dt

∂

∂t̂

(
1

τ

∂

∂t̂

)

=
1

τ2
∂2

∂t̂2
, (4.16)

∂

∂x
=

dx̂

dx

∂

∂x̂
=

1

l

∂

∂x̂
, (4.17)

∂2

∂x2
=

dx̂

dx

∂

∂x̂

(
1

l

∂

∂x̂

)

=
1

l2
∂2

∂x̂2
, (4.18)

and substituting into the wave equation we have

l

τ2
∂2ŷ

∂t̂2
=

c2l

l2
∂2ŷ

∂x̂2
. (4.19)

Rearranging gives
∂2ŷ

∂t̂2
=

c2τ2

l2
∂2ŷ

∂x̂2
. (4.20)

Considering the problem on a timescale where τ = l/c gives

∂2ŷ

∂t̂2
=

∂2ŷ

∂x̂2
. (4.21)

Notice that now

[x̂] = 1, [t̂] = 1, [ŷ] = 1, (4.22)

since

[l] = m, [τ ] =

[
l

c

]

= s. (4.23)

This gives a relationship between problems with different lengthscales and wave speeds.

4.3 Normal modes of vibration for a finite string

A string is stretched between x = 0 and x = L and the ends are held fixed. If the string

is plucked, what notes do we hear? The question suggests that we want a solution which

is periodic in time, with a period to be determined.

The displacement y(x, t) satisfies the wave equation

∂2y

∂t2
= c2

∂2y

∂x2
, (4.24)

with boundary conditions

y(0, t) = 0 and y(L, t) = 0 for t > 0. (4.25)

We use the separation of variables technique i.e. we attempt to find some (not all) solutions

of equations (4.24) and (4.25) in the separable form

y(x, t) = F (x)G(t). (4.26)
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Substituting from (4.26) into (4.24) gives

c2
F ′′(x)

F (x)
︸ ︷︷ ︸

independent of t

=
1

G(t)
G′′(t)

︸ ︷︷ ︸

independent of x

. (4.27)

Hence both sides are constant, independent of both x and t, and we take this constant to

be equal to −ω2 to get

F ′′(x) = −
ω2

c2
F (x), G′′(t) = −ω2G. (4.28)

The ODE for F (x) is to be solved subject to the boundary conditions

F (0) = F (L) = 0. (4.29)

We have

F (x) = A sin
(ωx

c

)

+B cos
(ωx

c

)

, (4.30)

where the boundary condition at x = 0 gives B = 0, and the boundary condition at x = L

gives

A sin

(
ωL

c

)

= 0. (4.31)

Since we want A 6= 0, otherwise F = 0 and y = 0, it must be that sin (ωL/c) = 0, i.e. ω

must be such that ωL/c = nπ, where n is a positive integer, and ω must be one of the

numbers {nπc

L
: n = 1, 2, 3, . . .

}

. (4.32)

The ODE for G(t) has the solution

G(t) = a cos (ωt) + b sin (ωt) , (4.33)

and so equations (4.24) and (4.25) have solutions of the form

yn(x, t) = sin
(nπx

L

) [

an cos

(
nπct

L

)

+ bn sin

(
nπct

L

)]

, (4.34)

where n = 1, 2, 3, . . ., and an and bn are arbitrary constants. Such a solution is known as

a normal mode.

A normal mode is periodic in t,

y(x, t+ p) = y(x, t), (4.35)

with period

p =
2π

ω
=

2L

nc
, (4.36)

and frequency (pitch)
1

p
=

ω

2π
=

nc

2L
. (4.37)

The case n = 1 corresponds to the fundamental frequency c/(2L), and all other normal

frequencies are integer multiples of the fundamental frequency.

Note the graphs of the functions sin (nπx/L):
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Figure 6

Figure 7

Figure 8

The general solution can be written as a super-position of normal modes:

y(x, t) =

∞∑

n=1

sin
(nπx

L

)[

an cos

(
nπct

L

)

+ bn sin

(
nπct

L

)]

, (4.38)

and satisfies (4.24) and (4.25).

4.4 Initial-and-boundary value problems for finite strings

Consider the following IBVP: find y(x, t) such that

∂2y

∂t2
= c2

∂2y

∂x2
, for 0 < x < L and t > 0, (4.39)

and y satisfies the initial conditions

y(x, 0) = f(x) and
∂y

∂t
(x, 0) = g(x) for 0 ≤ x ≤ L, (4.40)

and the boundary conditions

y(0, t) = 0 and y(L, t) = 0 for t > 0, (4.41)

where f(x) and g(x) are known functions. According to (4.40), the initial transverse

displacement and the initial transverse velocity are prescribed. If e.g.

f(x) =

{

2hx/L 0 ≤ x ≤ L/2,

2h(L− x)/L L/2 ≤ x ≤ L,
(4.42)

and g(x) = 0, 0 ≤ x ≤ L, the mid-point of the string is pulled aside a distance h and the

string is released from rest.

Figure 9

We know that the general solution can be written as in equation (4.38), and hence the

boundary conditions must satisfy

y(x, 0) =

∞∑

n=1

an sin
(nπx

L

)

,
∂y

∂t
(x, 0) =

∞∑

n=1

(nπc

L

)

bn sin
(nπx

L

)

. (4.43)
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Example 4.1 Solve the IBVP for the case

f(x) = A sin
(πx

L

)

+B sin
(πx

L

)

cos
(πx

L

)

, g(x) = 0. (4.44)

Since

f(x) = A sin
(πx

L

)

+
1

2
B sin

(
2πx

L

)

, (4.45)

the solution is obtained by taking a1 = A, a2 = B/2, an = 0 for n ≥ 3 and bn = 0 ∀n to

give

y(x, t) = A sin
(πx

L

)

cos

(
πct

L

)

+
1

2
B sin

(
2πx

L

)

cos

(
2πct

L

)

. (4.46)

Example 4.2 Solve the IBVP for the case

f(x) = 0, g(x) = sin3
(πx

L

)

. (4.47)

Since

g(x) =
3

4
sin
(πx

L

)

−
1

4
sin

(
3πx

L

)

, (4.48)

we take an = 0 ∀n and identify

(πc

L

)

b1 =
3

4
,

(
2πc

L

)

b2 = 0,

(
3πc

L

)

b3 = −
1

4
, bn = 0 for n ≥ 4, (4.49)

to arrive at

y(x, t) =
3L

4πc
sin
(πx

L

)

sin

(
πct

L

)

−
L

12πc
sin

(
3πx

L

)

sin

(
3πct

L

)

. (4.50)

4.4.1 Application of Fourier series

To solve for more general initial conditions, we again look for a solution as a superposition

of normal modes:

y(x, t) =
∞∑

n=1

sin
(nπx

L

)[

an cos

(
nπct

L

)

+ bn sin

(
nπct

L

)]

, (4.51)

so that we arrive at the problem: given f(x) and g(x) can they be expanded as Fourier

sine series

f(x) =

∞∑

n=1

an sin
(nπx

L

)

, 0 ≤ x ≤ L, (4.52)

g(x) =
∞∑

n=1

(nπc

L

)

bn sin
(nπx

L

)

, 0 ≤ x ≤ L? (4.53)

From the lectures on Fourier Series we know that such an expansion as (4.52) exists if e.g.

f and g are piecewise continuously differentiable on [0, L]. The coefficients are determined

by the orthogonality relations:

∫ L

0
sin
(mπx

L

)

sin
(nπx

L

)

dx =

{

0 m 6= n,
1
2L m = n.

(4.54)
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Thus

an =
2

L

∫ L

0
f(x) sin

(nπx

L

)

dx, (4.55)

bn =
2

nπc

∫ L

0
g(x) sin

(nπx

L

)

dx. (4.56)

Example 4.3 (Guitar or lute) For the special case (4.42),

an =
2

L
.
2h

L

∫ L

2

0
x sin

(nπx

L

)

dx+
2

L
.
2h

L

∫ L

L

2

(L− x) sin
(nπx

L

)

dx, (4.57)

=
8h

π2n2
sin
(nπ

2

)

, (4.58)

and

bn =
2

nπc

∫ L

0
0. sin

(nπx

L

)

dx = 0. (4.59)

Hence the solution is

y(x, t) =
8h

π2

∞∑

n=1

1

n2
sin
(nπ

2

)

sin
(nπx

L

)

cos

(
nπct

L

)

, (4.60)

=
8h

π2

[
1

12
sin
(πx

L

)

cos

(
πct

L

)

−
1

32
sin

(
3πx

L

)

cos

(
3πct

L

)

+
1

52
sin

(
5πx

L

)

cos

(
5πct

L

)

− . . .

]

. (4.61)

Example 4.4 (Piano) The initial transverse displacement is zero and the section [l1, l2]

is given an initial transverse velocity v. Here f(x) = 0 for 0 ≤ x ≤ L, and

g(x) =

{

0 for 0 ≤ x < L1 and L2 < x ≤ L,

v for L1 ≤ x ≤ L2.
(4.62)

Thus an = 0 and

bn =
2

nπc

∫ L2

L1

v sin
(nπx

L

)

dx =
2vL

n2π2c

[

cos

(
nπL1

L

)

− cos

(
nπL2

L

)]

. (4.63)

The transverse displacement is

y(x, t) =
2vL

π2c

∞∑

n=1

1

n2

[

cos

(
nπL1

L

)

− cos

(
nπL2

L

)]

sin
(nπx

L

)

sin

(
nπct

L

)

. (4.64)

4.5 Normal modes for a weighted string

A string of length 2L has fixed ends and a mass m is attached to the mid-point; find the

normal frequencies of vibration.

Figure 10
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Let the string occupy the interval [−L,L], the mass being attached at x = 0. Let y−(x, t)

and y+(x, t) be the transverse displacements for −L ≤ x < 0 and 0 < x ≤ L, respectively.

Then y− and y+ must satisfy the wave equations

∂2y−

∂t2
= c2

∂2y−

∂x2
,

∂2y+

∂t2
= c2

∂2y+

∂x2
, (4.65)

and the boundary conditions

y−(−L, t) = 0 and y+(L, t) = 0 for t > 0. (4.66)

What conditions hold at the mass m? There are two: firstly,

y−(0, t) = y+(0, t) for t > 0; (4.67)

and, secondly, the mass m is subject to Newton’s Second Law,

Figure 11

m
∂2y

∂t2
(0, t)j = T

(

i+
∂y

∂x

+

j

)

− T

(

i+
∂y

∂x

−

j

)

, (4.68)

i.e.

m
∂2y

∂t2
(0, t) = T

[
∂y+

∂x
(0, t)−

∂y−

∂x
(0, t)

]

for t > 0. (4.69)

If we apply separation of variables arguments to (4.65) and (4.66) we see that y−, y+ must

be of the form

y−(x, t) = A sin
(ω

c
(L+ x)

)

cos(ωt+ ǫ), (4.70)

y+(x, t) = B sin
(ω

c
(L− x)

)

cos(ωt+ ǫ), (4.71)

where A, B, ǫ are constants and ω/(2π) is the, as yet unknown, normal frequency. Sub-

stitution into the boundary conditions (4.67) and (4.69) gives

A sin

(
ωL

c

)

= B sin

(
ωL

c

)

, (4.72)

and

−mω2A sin

(
ωL

c

)

= T

[

−B
(ω

c

)

cos

(
ωL

c

)

−A
(ω

c

)

cos

(
ωL

c

)]

, (4.73)

i.e.

A

[(mωc

T

)

sin

(
ωL

c

)

− cos

(
ωL

c

)]

= B cos

(
ωL

c

)

. (4.74)

If the linear homogeneous equations (4.72) and (4.74) are to have non-trivial solutions (A

and B not both zero) then the determinant must equal zero:

sin

(
ωL

c

)

cos

(
ωL

c

)

= sin

(
ωL

c

){(mωc

T

)

sin

(
ωL

c

)

− cos

(
ωL

c

)}

. (4.75)
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Thus either

sin

(
ωL

c

)

= 0 or cot

(
ωL

c

)

=
mωc

2T
. (4.76)

The first equality in equation (4.76) implies

ωL

c
= nπ i.e.

ω

2π
=

nc

2L
= 2n.

c

2.2L
, (4.77)

These correspond to the normal frequencies of a string of length 2L for which x = 0 is

a node. There is no simple formula for the solutions of the other equality. If we put

θ = ωL/c then ω = cθ/L, where

cot θ =
mc2

2TL
θ =

m

2ρL
θ, (4.78)

and we see there are infinitely many roots θ1, θ2, θ3, . . . and these determine infinitely many

normal frequencies in addition to those given by (4.77).

Figure 12

4.6 Uniqueness of an IBVP for a finite string

We consider the wave equation

∂2y

∂t2
= c2

∂2y

∂x2
, for 0 < x < L and t > 0, (4.79)

and prove a uniqueness theorem based on energy considerations. The kinetic energy of

the string is
1

2

∫ L

0
ρ

(
∂y

∂t

)2

dx. (4.80)

The stress energy is the product of the tension and the extension, where the extension is

∫ L

0

√

1 +

(
∂y

∂x

)2

dx− L =

∫ L

0

[

1 +
1

2

(
∂y

∂x

)2

+ . . .

]

dx− L, (4.81)

≈
1

2

∫ L

0

(
∂y

∂x

)2

dx. (4.82)

Thus

E(t) :=
1

2

∫ L

0

[

ρ

(
∂y

∂t

)2

+ T

(
∂y

∂x

)2
]

dx, (4.83)

is the energy of the string. The energy appears to depend upon the time but in important

cases it is actually constant.

Lemma 4.1 If y(x, t) is a solution of the wave equation (4.79) and satisfies the boundary

conditions

y(0, t) = 0 and y(L, t) = 0 for t ≥ 0, (4.84)

then E(t) is constant for t ≥ 0.
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Proof. Leibniz’s rule applied to equation (4.83) gives

E′(t) =

∫ L

0

[

ρ
∂y

∂t

∂2y

∂t2
+ T

∂y

∂x

∂2y

∂x∂t

]

dx, (4.85)

and, on substituting for ρ ∂2y/∂t2 from the wave equation (4.79), we find that

E′(t) = T

∫ L

0

[
∂2y

∂x2
∂y

∂t
+

∂y

∂x

∂2y

∂x∂t

]

dx, (4.86)

= T

∫ L

0

∂

∂x

(
∂y

∂x

∂y

∂t

)

dx, (4.87)

= T

[
∂y

∂x

∂y

∂t

]L

0

, (4.88)

hence E′(t) = 0 since the boundary conditions (4.84) tell us that ∂y/∂t(0, t) = 0 and

∂y/∂t(L, t) = 0 for t ≥ 0. Thus E(t) is constant.

Theorem 4.2 (Uniqueness) For each pair of functions f and g, the IBVP

ρ
∂2y

∂t2
= T

∂2y

∂x2
, for 0 < x < L and t > 0, (4.89)

y(x, 0) = f(x) and
∂y

∂t
(x, 0) = g(x) for 0 ≤ x ≤ L, (4.90)

y(0, t) = 0 and y(L, t) = 0 for t > 0, (4.91)

has at most one solution. [That a solution exists we know since we have constructed a

solution with the aid of separation of variables and Fourier series.]

Proof. Let y(x, t) and u(x, t) both be solutions of the IBVP. Consider the difference w :=

y − u and the associated energy

E(t) :=
1

2

∫ L

0

[

ρ

(
∂w

∂t

)2

+ T

(
∂w

∂x

)2
]

dx. (4.92)

Note that E ≥ 0. Now w(x, t) is a solution of the IBVP

ρ
∂2w

∂t2
= T

∂2w

∂x2
, for 0 < x < L and t > 0, (4.93)

w(x, 0) = 0,
∂w

∂t
(x, 0) = 0 (0 ≤ x ≤ L) (4.94)

w(0, t) = 0 and w(L, t) = 0 (t > 0). (4.95)

By Lemma 4.1 and the boundary conditions (4.95), E(t) ≡ constant, and, in view of the

initial conditions (4.94), E(0) = 0. Hence E(t) = 0 for every t > 0. Thus ∂w/∂x = 0,

∂w/∂t = 0 and w(x, t) is independent of both x and t. Using (4.95) again tells us that

w(x, t) ≡ 0. Thus y = u and the solution is unique.
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4.7 The general solution of the wave equation

The wave equation is untypical among PDEs in that it is possible to write down all the

solutions. Note that if F : R → R is any (twice differentiable) function, and

y(x, t) := F (x− ct), (4.96)

then
∂y

∂x
= F ′(x− ct),

∂2y

∂x2
= F ′′(x− ct), (4.97)

and
∂y

∂t
= −cF ′(x− ct),

∂2y

∂t2
= c2F ′′(x− ct), (4.98)

and so (4.96) is a solution of the wave equation. Equation (4.96) represents a wave of

constant shape propagating in the positive x-direction with speed c.

Figure 13

Similarly, if G : R → R is any (twice differentiable) function and

y(x, t) := G(x+ ct), (4.99)

then y(x, t) is a solution of the wave equation. Equation (4.99) represents a wave of

constant shape propagating in the negative x-direction with speed c.

Figure 14

Again, the sum

y(x, t) := F (x− ct) +G(x+ ct), (4.100)

is a solution of the wave equation. It will now be shown that every solution of the wave

equation must be of the form (4.100).

To verify this introduce new independent variables

ξ := x− ct, η := x+ ct, (4.101)

and seek a solution y(x, t) = Y (ξ, η). Then

∂y

∂x
=

∂Y

∂ξ
+

∂Y

∂η
,

∂2y

∂x2
=

∂2Y

∂ξ2
+ 2

∂2Y

∂ξ∂η
+

∂2Y

∂η2
, (4.102)

∂y

∂t
= −c

∂Y

∂ξ
+ c

∂Y

∂η
,

∂2y

∂t2
= c2

∂2Y

∂ξ2
− 2c2

∂2Y

∂ξ∂η
+ c2

∂2Y

∂η2
, (4.103)

and substitution into the wave equation gives

∂2Y

∂ξ2
+ 2

∂2Y

∂ξ∂η
+

∂2Y

∂η2
=

∂2Y

∂ξ2
− 2

∂2Y

∂ξ∂η
+

∂2Y

∂η2
. (4.104)
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Hence in the new variables the wave equation transforms to the equation

∂2Y

∂ξ∂η
= 0, (4.105)

i.e.
∂

∂ξ

(
∂Y

∂η

)

= 0. (4.106)

Thus ∂Y/∂η is independent of ξ and is a function of η only, say G′(η), i.e.

∂Y

∂η
= G′(η), (4.107)

and so
∂

∂η
[Y −G(η)] = 0. (4.108)

Thus Y −G(η) is a function of ξ only, say F (ξ), and therefore

Y −G(η) = F (ξ), (4.109)

and

Y (ξ, η) = F (ξ) +G(η) =⇒ y(x, t) = F (x− ct) +G(x+ ct). (4.110)

Further use of this conclusion will be made later.

Example 4.5 A string occupies −∞ < x ≤ 0 and is fixed at x = 0. A wave y(x, t) =

F (x− ct) is incident from x < 0. Find the reflected wave.

Figure 15

The solution of the wave equation is

y = F (x− ct)
︸ ︷︷ ︸

incident

+G(x+ ct)
︸ ︷︷ ︸

reflected

, (4.111)

where G is to be found. The condition y(0, t) = 0 is to be satisfied for all t. Hence

F (−ct) +G(ct) = 0, for all t, and so G(θ) = −F (−θ) for all θ. Thus

y(x, t) = F (x− ct)
︸ ︷︷ ︸

incident

−F (−x− ct)
︸ ︷︷ ︸

reflected

. (4.112)

4.8 Waves on infinite strings: D’Alembert’s formula

When the string occupies the interval (−∞,∞) the fact that the solution has the form

(4.100),

y(x, t) = F (x− ct) +G(x+ ct), (4.113)

is especially useful since we cannot now use separation of variables and Fourier series.
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Consider the following IVP: find y(x, t) if

∂2y

∂t2
= c2

∂2y

∂x2
, for −∞ < x < ∞ and t > 0, (4.114)

y(x, 0) = f(x) and
∂y

∂t
(x, 0) = g(x) for −∞ < x < ∞, (4.115)

where f and g are prescribed functions.

To solve this we attempt to choose F and G in (4.113) so as to satisfy the initial

conditions (4.115):

F (x) +G(x) = f(x), −cF ′(x) + cG′(x) = g(x). (4.116)

The second integrates to give

−F (x) +G(x) =
1

c

∫ x

0
g(s) ds+ a, (4.117)

where a is a constant. Hence

F (x) =
1

2

[

f(x)−
1

c

∫ x

0
g(s) ds− a

]

, (4.118)

G(x) =
1

2

[

f(x) +
1

c

∫ x

0
g(s) ds+ a

]

, (4.119)

and so

y(x, t) =
1

2

[

f(x− ct)−
1

c

∫ x−ct

0
g(s) ds− a

]

+
1

2

[

f(x+ ct) +
1

c

∫ x+ct

0
g(s) ds+ a

]

.

(4.120)

Thus we arrive at D’Alembert’s Formula

y(x, t) =
1

2
[f(x− ct) + f(x+ ct)] +

1

2c

∫ x+ct

x−ct
g(s) ds. (4.121)

The argument shows that, for given f and g, the IVP has one and only one solution (i.e.

existence and uniqueness).

Next let us ask how the solution at a point (x0, t0) = P , in the upper half of the

(x, t)-plane, depends upon the data f and g. We have

y(x0, t0) =
1

2
[f(x0 − ct0) + f(x0 + ct0)] +

1

2c

∫ x0+ct0

x0−ct0

g(x) dx, (4.122)

and this equation is usefully interpreted in terms of the following diagram.

Figure 16
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4.8.1 Characteristic diagram

Through P draw the characteristic lines x− ct = x0 − ct0, x + ct = x0 + ct0 to intersect

the x-axis at Q and R, as shown. Then

y(P ) =
1

2
[f(Q) + f(R)] +

1

2c

∫ R

Q
g(x) dx. (4.123)

Hence:

• y(P ) depends on f only through the values taken by f at Q and R;

• y(P ) depends on g only through the values taken by g on the interval QR.

The interval QR is the domain of dependence of P . This means that arbitrary alterations

to f and g outside the interval QR have no effect on y(P ). The D’Alembert formula

provides an explicit formula for y but care is required if f and g have different analytic

behaviours in different stretches.

Example 4.6 Find the solution of the wave equation for which

y(x, 0) = 0, −∞ < x < ∞, (4.124)

∂y

∂t
(x, 0) =







0 x < −l,

vx/l −l ≤ x ≤ l,

0 x > l.

(4.125)

In this case g(x) = ∂y/∂t(x, 0) changes its analytic behaviour at the points (−l, 0) and

(l, 0). We construct the characteristics through these points and thus divide up the upper-

half of the (x, t)-plane into six regions R1, . . . ,R6, as shown (R1 is below x+ ct = −l, R2

is above x+ ct = −l and above x− ct = −l, R3 is below x− ct = −l and below x+ ct = l,

R4 is above x+ ct = l and above x− ct = −l, R5 is above x+ ct = l and above x− ct = l

and R6 is below x− ct = l).

Figure 17

In R1,

y(x, t) =
1

2c

∫ x+ct

x−ct
0 ds = 0. (4.126)

In R2,

y(x, t) =
1

2c

∫
−l

x−ct
0 ds+

1

2c

∫ x+ct

−l

vs

l
ds =

v

4lc

[
(x+ ct)2 − l2

]
. (4.127)

In R3,

y(x, t) =
1

2c

∫ x+ct

x−ct

vs

l
ds =

v

4lc

[
(x+ ct)2 − (x− ct)2)

]
=

vxt

l
. (4.128)
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In R4,

y(x, t) =
1

2c

∫
−l

x−ct
0 ds+

1

2c

∫ l

−l

vs

l
ds+

1

2c

∫ x+ct

l
0 ds = 0. (4.129)

In R5,

y(x, t) =
1

2c

∫ l

x−ct

vs

l
ds+

1

2c

∫ x+ct

l
0 ds =

v

4lc

[
l2 − (x− ct)2

]
. (4.130)

In R6,

y(x, t) =
1

2c

∫ x+ct

x−ct
0 ds = 0. (4.131)

From this information we can find the shape of the string. We illustrate this for a time

t > l/c:

• for x < −l − ct the point (x, t) ∈ R1 and y(x, t) = 0;

• for −l − ct < x < l − ct, (x, t) ∈ R2 and y(x, t) =
v

4lc

[
(x+ ct)2 − l2

]
;

• for l − ct < x < −l+ ct, (x, t) ∈ R4 and y(x, t) = 0;

• for −l + ct < x < l + ct, (x, t) ∈ R5 and y(x, t) =
v

4lc

[
l2 − (x− ct)2

]
;

• for x > l + ct, (x, t) ∈ R6 and y(x, t) = 0.

Figure 18

As t increases we see two packets of displacement, one moving to the left with speed c and

the other to the right with speed c. Between them the displacement is zero.
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Laplace’s equation in the plane

Steady two-dimensional heat flow is governed by Laplace’s equation:

∂2T

∂x2
+

∂2T

∂y2
= 0. (5.1)

If r and θ are the usual plane polar coordinates,

x = r cos θ, y = r sin θ, (5.2)

Laplace’s equation becomes

∂2T

∂r2
+

1

r

∂T

∂r
+

1

r2
∂2T

∂θ2
= 0. (5.3)

For rectangles, discs, the exteriors of discs, and annuli, we can use separation of variables

and Fourier series to construct solutions of (5.1) and (5.3).

5.1 BVP in cartesian coordinates

Consider the following BVP: find the solution of Laplace’s equation (5.1) which is defined

on the rectangle {(x, y) : 0 ≤ x ≤ a, 0 ≤ y ≤ b} and satisfies the boundary conditions

T (0, y) = T (a, y) = 0, 0 < y < b, (5.4)

T (x, 0) = 0 and T (x, b) = f(x), 0 < x < a. (5.5)

Figure 19

To begin we look for special solutions of Laplace’s equation of the separable form T (x, y) =

F (x)G(y). Substituting into (5.1) and dividing through by F (x)G(y) gives

1

F (x)
F

′′

(x) +
1

G(y)
G

′′

(y) = 0. (5.6)

Hence there is a constant λ such that

F
′′

(x) = −λF (x), G
′′

(y) = λG(y). (5.7)

48
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The choices λ = n2π2/a2, F (x) = sin (nπx/a) (n = 1, 2, 3...) give the solutions

T (x, y) = sin
(nπx

a

)

G(y), (5.8)

which satisfy the boundary conditions (5.3). Furthermore G(y) is a solution of the ODE

G′′(y) =
n2y2

a2
G(y), (5.9)

and so

G(y) = A cosh
(nπy

a

)

+B sinh
(nπy

a

)

, (5.10)

in which hyperbolic functions, rather than trigonometric functions, occur. The choice

A = 0 ensures that the boundary condition T (x, 0) = 0 (0 < x < a) holds and thus we are

led to consider solutions of the BVP of the form

T (x, y) =

∞∑

n=1

Bn sin
(nπx

a

)

sinh
(nπy

a

)

. (5.11)

On setting y = b we see that the coefficients Bn are determined by the condition that

∞∑

n=1

Bn sin
(nπx

a

)

sinh

(
nπb

a

)

= f(x), 0 < x < a. (5.12)

Hence

Bn sinh

(
nπb

a

)

=
2

a

∫ a

0
f(s) sin

(nπs

a

)

ds, (5.13)

and the BVP has the solution

T (x, y) =
2

a

∞∑

n=1

1

sinh (nπb/a)

[∫ a

0
f(s) sin

(nπs

a

)

ds

]

sin
(nπx

a

)

sinh
(nπy

a

)

. (5.14)

5.2 BVP in polar coordinates

Next, let us consider separable solutions of Laplace’s equation of the form T (r, θ) =

F (r)G(θ). Substitution into (5.3) gives

F
′′

(r)G(θ) +
1

r
F

′

(r)G(θ) +
1

r2
F (r)G

′′

(θ) = 0. (5.15)

Hence
r2F

′′

(r) + rF
′

(r)

F (r)
+

G
′′

(θ)

G(θ)
= 0, (5.16)

and there is a constant λ such that

r2F ′′(r) + rF
′

(r) = λF (r), (5.17)

G
′′

(θ) = −λG(θ). (5.18)

The function G(θ) must be periodic with period 2π so that G(θ + 2π) = G(θ), and this

is possible only if λ = n2, where n is an integer. If n = 0, the only solutions of (5.18)

which are periodic are G(θ) ≡ constant. If n 6= 0 the periodic solutions are arbitrary linear
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combinations of cos (nθ) and sin (nθ). When n = 0 the solutions of (5.17) are of the form

F (r) = A + B log r. When n 6= 0, equation (5.17) is of Euler’s type and F (r) is a linear

combination of rn and r−n. Thus there are separable solutions of Laplace’s equation of

the forms

T (r) = A+B log r, (5.19)

and

T (r, θ) =
(
Arn +Br−n

)
[C cos (nθ) +D sin (nθ)] , (5.20)

where n is a positive integer and A, B, C, D are arbitrary constants. The solutions

log r, r−n cosnθ, r−n sinnθ are not defined at r = 0 and so are not admissible if the origin

belongs to the domain in which T is defined.

Example 5.1 Find T so as to satisfy Laplace’s equation in the annulus a < r < b and

the boundary conditions

T = T0 on r = a, T = T1 on r = b, (5.21)

where T0 and T1 are constants. By inspection, T = A + B log r, where A and B must

satisfy

A+B log a = T0, A+B log b = T1. (5.22)

Then

A =
T0 log b− T1 log a

log (b/a)
, B =

T1 − T0

log (b/a)
, (5.23)

and

T (r, θ) =
T0 log b− T1 log a

log (b/a)
+

T1 − T0

log (b/a)
log r. (5.24)

Example 5.2 A conductor occupies the region r ≤ a and the temperature satisfies the

boundary condition T (a, θ) = sin3 θ. Find T (r, θ) in r < a.

Note that

sin3 θ =
3

4
sin θ −

1

4
sin (3θ) . (5.25)

Hence

T =
3

4

(r

a

)

sin θ −
1

4

(r

a

)3
sin (3θ) . (5.26)

5.2.1 Application of Fourier series

We wish to find T so as to satisfy Laplace’s equation in the disc 0 ≤ r < a and the

boundary condition T = f(θ) on r = a, (0 ≤ θ ≤ 2π), where f is a prescribed function.

Here the solution is of the form

T (r, θ) = A+
∞∑

n=1

rn [Cn cos (nθ) +Dn sin (nθ)] , (5.27)

and the boundary condition gives

A+

∞∑

n=1

an [Cn cos (nθ) +Dn sin (nθ)] = f(θ), 0 ≤ θ ≤ 2π. (5.28)
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Thus

A =
1

2π

∫ 2π

0
f(θ) dθ, (5.29)

Cn =
1

πan

∫ 2π

0
f(θ) cos (nθ) dθ, (5.30)

Dn =
1

πan

∫ 2π

0
f(θ) sin (nθ) dθ. (5.31)

Example 5.3 Find T (r, θ) so as to satisfy Laplace’s equation in the disc r < a and the

boundary condition

T (a, θ) = | sin θ|, 0 ≤ θ ≤ 2π. (5.32)

The solution is

T (r, θ) = A+
∞∑

n=1

rn [Cn cos (nθ) +Dn sin (nθ)] , (5.33)

where

A =
1

2π

∫ 2π

0
| sin θ|dθ =

1

2π

[∫ π

0
sin θ dθ −

∫ 2π

π
sin θ dθ

]

=
2

π
, (5.34)

Cn =
1

πan

∫ 2π

0
| sin θ| cos (nθ) dθ =

{

0 n odd,

−4/(πan(n2 − 1)) n even,
(5.35)

Dn =
1

πan

∫ 2π

0
| sin θ| sin (nθ) dθ = 0, (5.36)

and so

T (r, θ) =
2

π
−

4

π

∞∑

n=1

( r

a

)2n cos (2nθ)

4n2 − 1
. (5.37)

5.2.2 Poisson’s formula

Consider again the problem from Section 5.2.1: find T so as to satisfy Laplace’s equation

in the disc 0 ≤ r < a and the boundary condition T = f(θ) on r = a, (0 ≤ θ ≤ 2π), where

f is a prescribed function. Poisson’s formula states that the solution to this problem can

be written

T (r, θ) =
(a2 − r2)

2π

∫ 2π

0

f(φ)

a2 + r2 − 2ar cos(θ − φ)
dφ. (5.38)

Lemma 5.1 If λ and α are real and |λ| < 1 then

1

2
+

∞∑

n=1

λn cosnα =
1− λ2

2(1 + λ2 − 2λ cosα)
. (5.39)
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Proof.

∞∑

n=1

λn cosnα = Re

∞∑

n=1

λneinα, (5.40)

= Re

∞∑

n=1

(λeiα)n, (5.41)

= Re

[
λeiα

1− λeiα

]

, (5.42)

=
λ cosα− λ2

1 + λ2 − 2λ cosα
. (5.43)

Hence
1

2
+

∞∑

n=1

λn cosnα =
1− λ2

2(1 + λ2 − 2λ cosα)
. (5.44)

Proof of Poisson’s formula. Taking care over the dummy variable of integration we get

T (r, θ) =
1

2π

∫ 2π

0
f(φ) dφ (5.45)

+
1

π

∞∑

n=1

( r

a

)n
[

cos (nθ)

∫ 2π

0
f(φ) cos (nφ) dφ

+sin (nθ)

∫ 2π

0
f(φ) sin (nφ) dφ

]

, (5.46)

=
1

2π

∫ 2π

0

{

1

2
+

∞∑

n=1

( r

a

)n
cos [n(θ − φ)]

}

f(φ) dφ, (5.47)

and, on appealing to Lemma 5.1, with λ = r/a and α = θ − φ, the result follows.

Corollary 5.2 (Mean value property of solution of Laplace’s equation) The value of T

at the centre of the disc is

T (0, θ) =
1

2π

∫ 2π

0
f(φ) dφ = mean value over boundary. (5.48)

5.3 Uniqueness

Uniqueness is established with the aid of Green’s Theorem:

Theorem 5.3 (Green’s theorem) If R is a bounded and connected plane region whose

boundary ∂R is the union C1∪ . . .∪Cn of a finite number of simple closed curves, oriented

so that R is on the left, and if p(x, y) and q(x, y) are continuous and have continuous first

derivatives on R ∪ ∂R, then

∫

∂R
p dx+ q dy =

∫ ∫

R

(
∂q

∂x
−

∂p

∂y

)

dxdy. (5.49)
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Figure 20

In the figure, R is the shadowed region. It has two ‘holes’ and ∂R is the union of three

simple closed curves oriented as shown.

5.3.1 Uniqueness for the Dirichlet problem

We consider uniqueness of solutions to the Dirichlet problem, working in Cartesian coor-

dinates.

Theorem 5.4 Consider the BVP

∂2T

∂x2
+

∂2T

∂y2
= 0 in R, T = f on ∂R, (5.50)

where f is a prescribed function and R is a bounded and connected region as in the

statement of Green’s theorem. Then the BVP has at most one solution.

Proof. Let S also be a solution, so that

∂2S

∂x2
+

∂2S

∂y2
= 0 in R, S = f on ∂R. (5.51)

Then the difference W := T − S in a solution of the BVP

∂2W

∂x2
+

∂2W

∂y2
= 0 in R, W = 0 on ∂R. (5.52)

Consider the identity

W

(
∂2W

∂x2
+

∂2W

∂y2

)

+

(
∂W

∂x

)2

+

(
∂W

∂y

)2

=
∂

∂x

(

W
∂W

∂x

)

+
∂

∂y

(

W
∂W

∂y

)

. (5.53)

Integrate both sides over R and appeal to Laplace’s equation and Green’s theorem to find

that

∫ ∫

R

[(
∂W

∂x

)2

+

(
∂W

∂y

)2
]

dxdy =

∫ ∫

R

∂

∂x

[(

W
∂W

∂x

)

+
∂

∂y

(

W
∂W

∂y

)]

dxdy,

=

∫

∂R

[

−W
∂W

∂y
dx+W

∂W

∂x
dy

]

. (5.54)

Since W = 0 on ∂R the line integral must vanish and so

∫ ∫

R

[(
∂W

∂x

)2

+

(
∂W

∂y

)2
]

dxdy = 0. (5.55)

This is possible only if ∂W/∂x = 0, ∂W/∂y = 0 in R. Hence W is constant and since

W = 0 on ∂R the constant can only equal zero. Hence T = S and the solution is

unique.
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Example 5.4 We now consider a BVP in an unbounded region, for which our uniqueness

proof does not apply. A conductor occupies the region r ≥ a, i.e. that exterior to the

circle r = a, and T satisfies the boundary condition T = x on r = a. Find T in r > a,

given that T remains bounded as r → ∞.

In terms of polar coordinates the boundary condition is T = a cos θ for r = a and

0 ≤ θ ≤ 2π. This suggests that we seek a solution of the form

T =

(

Ar +
B

r

)

cos θ. (5.56)

If T is to remain bounded as r → ∞ we must have A = 0, and to match the boundary

condition on r = a we must have B = a2. Hence the solution is

T (r, θ) =
a2 cos θ

r
, (5.57)

or, in Cartesian coordinates,

T (x, y) =
a2x

x2 + y2
. (5.58)

Example 5.5 (Poisson’s equation) The same argument establishes uniqueness for the

BVP:
∂2T

∂x2
+

∂2T

∂y2
= F (x, y) in R, T = f(x, y) on ∂R, (5.59)

where F and f are prescribed functions.

5.3.2 Uniqueness for the Neumann problem

Firstly, we consider the Neumann problem in Cartesian coordinates.

Theorem 5.5 Consider the BVP

∂2T

∂x2
+

∂2T

∂y2
= F (x, y) in R,

∂T

∂n
= g(x, y) on ∂R, (5.60)

where F and g are prescribed functions. Then the BVP has no solution unless
∫ ∫

R
F dxdy =

∫

∂R
g ds. (5.61)

When a solution exists it is not unique; all solutions differ by a constant.

Proof. For the first part we use Green’s theorem
∫ ∫

R

(
∂2T

∂x2
+

∂2T

∂y2

)

︸ ︷︷ ︸

F

dxdy =

∫

∂R

∂T

∂x
dy −

∂T

∂y
dx =

∫

∂R

∂T

∂n
︸︷︷︸

g

ds. (5.62)

For the second part, let U be a solution of the same BVP i.e.

∂2U

∂x2
+

∂2U

∂y2
= F (x, y) in R,

∂U

∂n
= g(x, y) on ∂R, (5.63)

and consider W := U − T . Then W is a solution of the problem

∂2W

∂x2
+

∂2W

∂y2
= 0 in R,

∂W

∂n
= 0 on ∂R. (5.64)
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Using the identity

W

(
∂2W

∂x2
+

∂2W

∂y2

)

+

(
∂W

∂x

)2

+

(
∂W

∂y

)2

=
∂

∂x

(

W
∂W

∂x

)

+
∂

∂y

(

W
∂W

∂y

)

, (5.65)

we find that

∫ ∫

R

[(
∂W

∂x

)2

+

(
∂W

∂y

)2
]

dxdy =

∫

∂R
−W

∂W

∂y
dx+W

∂W

∂x
dy, (5.66)

=

∫

∂R
W

∂W

∂n
ds, (5.67)

= 0. (5.68)

Thus ∂W/∂x = 0, ∂W/∂y = 0 so that W = U − T is constant.

Example 5.6 (Polar Neumann problem) Find T so as to satisfy Laplace’s equation in

the disk 0 ≤ r < a and the boundary condition

∂T

∂n
(a, θ) = g(θ), 0 ≤ θ ≤ 2π, (5.69)

where g is a prescribed function.

First, we define n = cos θi+ sin θj and note that since x = r cos θ, y = r sin θ,

∂T

∂r
=

∂T

∂x

∂x

∂r
+

∂T

∂y

∂y

∂r
, (5.70)

= cos θ
∂T

∂x
+ sin θ

∂T

∂y
, (5.71)

= (cos θi+ sin θj) ·

(
∂T

∂x
i+

∂T

∂y
j

)

, (5.72)

= n · ∇T, (5.73)

=
∂T

∂n
. (5.74)

[In this case ∂T/∂n is a genuine derivative.]

Let g(θ) have the Fourier expansion

g(θ) =
1

2
p0 +

∞∑

n=1

[pn cos (nθ) + qn sin (nθ)] , (5.75)

where

p0 =
1

π

∫ 2π

0
g(θ) dθ, (5.76)

pn =
1

π

∫ 2π

0
g(θ) cos (nθ) dθ, (5.77)

qn =
1

π

∫ 2π

0
g(θ) sin (nθ) dθ. (5.78)

Look for solutions in the form

T (r, θ) = A+

∞∑

n=1

rn [Cn cos (nθ) +Dn sin (nθ)] . (5.79)
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We have
∂T

∂r
=

∞∑

n=1

nrn−1 [Cn cos (nθ) +Dn sin (nθ)] , (5.80)

and the boundary condition gives

∞∑

n=1

nan−1 [Cn cos (nθ) +Dn sin (nθ)] = g(θ), 0 ≤ θ ≤ 2π. (5.81)

We conclude immediately that the condition

∫ 2π

0
g(θ) dθ = 0, (5.82)

is necessary for a solution to exist.

If this condition is satisfied then there are solutions

T (r, θ) = A+

∞∑

n=1

rn [Cn cos (nθ) +Dn sin (nθ)] , (5.83)

where

Cn =
1

nπan−1

∫ 2π

0
g(θ) cos (nθ) dθ, (5.84)

Dn =
1

nπan−1

∫ 2π

0
g(θ) sin (nθ) dθ, (5.85)

and A is an arbitrary constant, i.e. solutions are non-unique, if they exist.

Example 5.7 Find T so as to satisfy Laplace’s equation in the disc 0 ≤ r < a and the

boundary condition
∂T

∂n
(a, θ) = sin3 θ, 0 ≤ θ ≤ 2π. (5.86)

Here

sin3 θ =
3

4
sin θ −

1

4
sin (3θ) , (5.87)

and ∫ 2π

0
sin3 θ dθ = 0, (5.88)

and the solutions are

T (r, θ) = A+
3

4
r sin θ −

1

12

r3

a2
sin (3θ) , (5.89)

where A is arbitrary.

5.4 Well-posedness

PDE problems often arise from modelling a particular physical system. In this case we

could like to be able to make predictions as to the behaviour of the system based on our

analysis of the PDE under consideration.
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Definition A problem is said to be well-posed (well-set) if the following three conditions

are satisfied:

1. EXISTENCE—there is a solution;

2. UNIQUENESS—there is no more than one solution;

3. CONTINUOUS DEPENDENCE—the solution depends continuously on the data.

Example 5.8 As an illustration consider the IVP

∂2y

∂t2
= c2

∂2y

∂x2
−∞ < x < ∞, t > 0, (5.90)

y(x, 0) = f(x),
∂y

∂t
(x, 0) = g(x), −∞ < x < ∞, (5.91)

where f and g are the initial data. We know that there is exactly one solution, given by

D’Alembert’s formula:

y(x, t) =
1

2
[f(x− ct) + f(x+ ct)] +

1

2c

∫ x+ct

x−ct
g(s) ds. (5.92)

Thus 1. and 2. hold.

Suppose we are interested in making predictions in the time interval 0 < t < T for

some time T . Consider a similar problem

∂2y

∂t2
= c2

∂2y

∂x2
−∞ < x < ∞, t > 0, (5.93)

y(x, 0) = F (x),
∂y

∂t
(x, 0) = G(x), −∞ < x < ∞, (5.94)

where F and G are different initial data. Again, we know that there is exactly one solution:

Y (x, t) =
1

2
[F (x− ct) + F (x+ ct)] +

1

2c

∫ x+ct

x−ct
G(s) ds, (5.95)

and

Y (x, t)− y(x, t) =
1

2
[(F (x− ct)− f(x− ct)) + (F (x+ ct)− f(x+ ct))] (5.96)

+
1

2c

∫ x+ct

x−ct
[G(s)− g(s)] ds. (5.97)

Now let ǫ > 0 be arbitrary and suppose that

|F (x)− f(x)| < δ and |G(x) − g(x)| < δ for −∞ < x < ∞. (5.98)
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Then

|Y (x, t)− y(x, t)| ≤
1

2
|F (x− ct)− f(x− ct)|

+
1

2
|F (x+ ct)− f(x+ ct)|

+
1

2c

∫ x+ct

x−ct
|G(s)− g(s)|ds, (5.99)

<
1

2
δ +

1

2
δ +

1

2c

∫ x+ct

x−ct
δ ds, (5.100)

=
1

2
δ +

1

2
δ +

1

2c
· 2ctδ, (5.101)

= (1 + t)δ (5.102)

< (1 + T )δ. (5.103)

Thus if the new data (F,G) are close to the original data (f, g) in the sense that

|F (x) − f(x)| <
ǫ

1 + T
and |G(x) − g(x)| <

ǫ

1 + T
for −∞ < x < ∞, (5.104)

then the corresponding solutions are close together in the sense that

|Y (x, t)− y(x, t)| < ǫ for −∞ < x < ∞ and 0 < t < T. (5.105)

In this sense 3. holds and the IVP is well-posed.

Example 5.9 By contrast the corresponding IVP for Laplace’s equation is not well-posed.

If y(x, t) = 0, f(x) = 0, g(x) = 0 then y is a solution of the IVP

∂2y

∂x2
+

∂2y

∂t2
= 0, −∞ < x < ∞, t > 0, (5.106)

y(x, 0) = f(x),
∂y

∂t
(x, 0) = g(x), −∞ < x < ∞. (5.107)

If

Y (x, t) = δ2 cos
(x

δ

)

sinh

(
t

δ

)

, F (x) = 0, G(x) = δ cos
(x

δ

)

, (5.108)

Then Y (x, t) is a solution of the IVP

∂2Y

∂x2
+

∂2Y

∂t2
= 0, −∞ < x < ∞, t > 0, (5.109)

Y (x, 0) = F (x),
∂Y

∂t
(x, 0) = G(x), −∞ < x < ∞. (5.110)

Again suppose we want to make predictions in 0 < t < T . Then

|F (x)− f(x)| = 0 < δ, |G(x) − g(x)| = δ
∣
∣
∣cos

(x

δ

)∣
∣
∣ < δ, (5.111)

and

|Y (0, t) − y(0, t)| = δ2 sinh

(
t

δ

)

< δ2 sinh

(
T

δ

)

. (5.112)

But

δ2 sinh

(
T

δ

)

=
1

2
δ2
(

eT/δ − e−T/δ
)

→ ∞ as δ → 0, (5.113)

and we cannot make

|Y (0, t) − y(0, t)| < ǫ for 0 < t < T, (5.114)

by making δ suitably small.


