Fourier series for functions of period 2π

• Let $f: \mathbb{R} \to \mathbb{R}$ be a periodic function of period 2π . We want an expansion for f of the form

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx)).$$
 (*)

- Q1: If (\star) is true, can we find the constants a_n, b_n in terms of f?
- Q2: With these a_n and b_n , when is (\star) true?

Question 1

• Suppose (\star) is true and that we can integrate it term by term, then

$$\int_{-\pi}^{\pi} f(x) dx = \frac{1}{2} a_0 \int_{-\pi}^{\pi} dx + \sum_{n=1}^{\infty} \left(a_n \int_{-\pi}^{\pi} \cos(nx) dx + b_n \int_{-\pi}^{\pi} \sin(nx) dx \right),$$

giving

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \, \mathrm{d}x \,,$$

i.e. $a_0/2$ is the mean of f over a period.

• Lemma: Let $m, n \in \mathbb{N} \setminus \{0\}$. Then we have the orthogonality relations:

$$\int_{-\pi}^{\pi} \cos(mx) \cos(nx) dx = \pi \delta_{mn}, \quad \int_{-\pi}^{\pi} \cos(mx) \sin(nx) dx = 0 \quad \int_{-\pi}^{\pi} \sin(mx) \sin(nx) dx = \pi \delta_{mn},$$

where δ_{mn} is Kronecker's delta. The proof is on the first problem sheet.

• Fix $m \in \mathbb{N} \setminus \{0\}$, multiply (\star) by $\cos(mx)$ and assume that the orders of summation and integration may be interchanged:

$$\int_{-\pi}^{\pi} f(x) \cos(mx) dx = \frac{1}{2} a_0 \int_{-\pi}^{\pi} \cos(mx) dx$$

$$+ \sum_{n=1}^{\infty} \left(a_n \int_{-\pi}^{\pi} \cos(mx) \cos(nx) dx + b_n \int_{-\pi}^{\pi} \cos(mx) \sin(nx) dx \right)$$

$$= \frac{1}{2} a_0 \cdot 0 + \sum_{n=1}^{\infty} \left(a_n \pi \delta_{mn} + b_n \cdot 0 \right)$$

$$= \pi a_m,$$

giving

$$a_m = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(mx) dx$$
 for $m \in \mathbb{N} \setminus \{0\}$.

• Similarly, fix $m \in \mathbb{N} \setminus \{0\}$, multiply (\star) by $\sin(mx)$ and assume that the orders of summation and integration may be interchanged to obtain

$$b_m = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(mx) dx$$
 for $m \in \mathbb{N} \setminus \{0\}$.

• **Definition:** Suppose f is 2π -periodic and such that the Fourier coefficients

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx \quad (n \in \mathbb{N}), \qquad b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx \quad (n \in \mathbb{N} \setminus \{0\})$$

exist. Then we write

$$f(x) \sim \frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx)),$$

where \sim means the RHS is the Fourier series for f, regardless of whether or not it converges to f.

