
Rate of convergence

• The smoother f , i.e. the more continuous derivatives it has, the faster the convergence of the Fourier
series for f .

• If the first jump discontinuity is in the pth derivative of f , with the convention that p = 0 if there is a
jump discontinuity in f , then typically the slowest decaying an and bn decay like 1/np+1 as n→∞.

• This is an extremely useful result in practice (e.g. for approximately 1% accuracy we need 100 terms
for p = 0, but only 10 terms for p = 1) and for checking calculations (e.g. an erroneous contribution
to a Fourier coefficient can be rapidly identified if it does not have the typical rate of decay for large
n— such mistakes often occur when multiple integration by parts are required to evaluate a Fourier
coefficient).

Gibb’s phenomenon

• This is the persistent overshoot in Example 2 near a jump discontinuity. It happens whenever a
jump discontinuity exists.

• As the number of terms in the partial sum tends to ∞, the width of the overshoot region tends to
0 (by the Fourier Convergence Theorem), while the total height of the overshoot region approaches
γ |f (x+)− f (x� )|, where

γ =
1

π

π∫
� π

sinx

x
dx≈ 1.18,

i.e. approximately a 9% overshoot top and bottom. This is awful for approximation purposes!

Functions of any period

• Suppose now f : R → R is a periodic function of period 2L, where L is a positive number, not
necessarily equal to π .

• We want to develop the analogous results for the Fourier series for f (x). Since this will involve a
series in the trigonometric functions cos(nπx/L) and sin(nπx/L), where n is a positive integer, we
make the transformation

x=
LX

π
, f (x) = g(X)

which defines a new function g : R→ R.

• For X ∈ R, it follows that

g(X+ 2π ) = f

(
L

π
(X+ 2π )

)
= f

(
LX

π
+ 2L

)
= f

(
LX

π

)
= g(X),

where we used the fact that g(X) = f (LX/π) in the first equality; the fact that f is 2L-periodic in
the third equality; and the fact that f (x) = g(LX/π) in the third equality. Thus, g is 2π -periodic,
and we can use the transformation to derive the Fourier theory for f from that for g above.

• In particular, if we can write

g(X) =
a0
2

+
1∑
n=1

(
an cos(nX) + bn sin(nX)

)
,

so that the Fourier coefficients an and bn exist, then

an =
1

π

∫ π

� π
g(X) cos(nX) dX =

1

π

∫ L

� L
g
(πx
L

)
cos
(nπx

L

) π
L

dx=
1

L

∫ L

� L
f (x) cos

(nπx
L

)
dx

and

bn =
1

π

∫ π

� π
g(X) sin(nX) dX =

1

π

∫ L

� L
g
(πx
L

)
sin
(nπx

L

) π
L

dx=
1

L

∫ L

� L
f (x) sin

(nπx
L

)
dx.



• Definition: Suppose f is 2L-periodic and such that the Fourier coefficients an and bn exist. Then
we write

f(x) ∼ a0
2

+
∞∑
n=1

(
an cos

(nπx
L

)
+ bn sin

(nπx
L

))
,

where ∼ means the RHS is the Fourier series for f , regardless of whether or not it converges to f .

• Fourier Convergence Theorem (FCT): Let f : R→ R be 2L-periodic, with f and f ′ piecewise
continuous on (−L,L). Then, the Fourier coefficients an and bn exist, and

1

2

(
f(x+) + f(x−)

)
=
a0
2

+
∞∑
n=1

(
an cos

(nπx
L

)
+ bn sin

(nπx
L

))
for x ∈ R.

Cosine and sine series

• Definition: The even 2L-periodic extension fe : R→ R of f : [0, L]→ R is defined by

fe(x) =

{
f(x) for 0 ≤ x ≤ L ,

f(−x) for −L < x < 0 ,
with fe(x+ 2L) = fe(x) for x ∈ R.

The Fourier cosine series for f : [0, L]→ R is the Fourier series for fe, i.e.

fe(x) ∼ a0
2

+
∞∑
n=1

an cos
(nπx
L

)
,

where

an =
2

L

L∫
0

f(x) cos
(nπx
L

)
dx (n ∈ N).

• Definition: The odd 2L-periodic extension fo : R→ R of f : [0, L]→ R is defined by

fo(x) =

{
f(x) for 0 ≤ x ≤ L ,

−f(−x) for −L < x < 0 ,
with fo(x+ 2L) = fo(x) for x ∈ R.

The Fourier sine series for f : [0, L]→ R is the Fourier series for fo, i.e.

fo(x) ∼
∞∑
n=1

bn sin
(nπx
L

)
,

where

bn =
2

L

L∫
0

f(x) sin
(nπx
L

)
dx (n ∈ N\{0}).

• Remarks:

(1) Note that fo(x) is odd for x/L ∈ R\Z and odd (on R) if and only if f(0) = f(L) = 0.

(2) Note that if f is continuous on [0, L] and f ′ piecewise continuous on (0, L), then the Fourier
Convergence Theorem implies that

a0
2

+
∞∑
n=1

an cos
(nπx
L

)
= fe(x) for x ∈ R ,

∞∑
n=1

bn sin
(nπx
L

)
=

{
fo(x) for x/π ∈ R\Z,

0 for x/π ∈ R\Z.
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