
Fourier Series and PDEs Problem Sheet 8

1. An infinite metal slab of constant thermal conductivity k has cross-section that is a semi-infinite
strip of width L. The temperature T (x, y) in each cross-section satisfies the boundary value
problem given by Laplace’s equation

∂2T

∂x2
+
∂2T

∂y2
= 0 for 0 < x < L, y > 0,

with the boundary conditions

Tx(0, y) = 0 for y > 0,

Tx(L, y) = 0 for y > 0,

lim
y→∞

Ty(x, y) =
q∗

k
for 0 < x < L,

T (x, 0) = T ∗ sin
(πx
L

)
for 0 < x < L,

where q∗ and T ∗ are positive constants.

(a) Use the method of separation of variables, the principle of superposition and the theory of
Fourier series to derive the series solution given by

T (x, y) =
2T ∗

π
+
q∗y

k
−
∞∑

m=1

4T ∗

(4m2 − 1)π
cos

(
2mπx

L

)
exp

(
−2mπy

L

)
.

[You may quote the formulae for the Fourier coefficients of a cosine series.]

(b) Hence, or otherwise, show that if y∗ is a non-negative constant then∫ L

0
k
∂T

∂y
(x, y∗) dx = Lq∗.

What is the physical significance of this equality?

2. An infinite straight metal rod of constant thermal conductivity k has cross-section that is a
path-connected region S bounded by a simple closed curve C. The temperature T (x, y) in each
cross-section satisfies Poisson’s equation

−k
(
∂2T

∂x2
+
∂2T

∂y2

)
= Q(x, y) for (x, y) ∈ S,

with Newton’s law of cooling giving the boundary condition

−k∂T
∂n

= h (T − Ta) for (x, y) ∈ C,

where Q is the given volumetric heat source, h is the constant heat transfer coefficient, Ta is the
constant ambient temperature and ∂T/∂n denotes the outward normal derivative of T on C.

(a) Use Green’s Theorem to show that there is at most one solution if h > 0, and that if h = 0
then any two solutions differ by a constant.

(b) Now take the region S to be the disc of radius a with centre at the origin (0, 0).

(i) Find the cylindrically symmetric solution if Q is constant and h > 0.

(ii) Give an example to show that there exists a h < 0 for which the solution is not unique
if Q = 0 and Ta = 0.



3. (a) Suppose that the temperature T (r, θ) satisfies Laplace’s equation

∂2T

∂r2
+

1

r

∂T

∂r
+

1

r2
∂2T

∂θ2
= 0 for r > 0,

where (r, θ) are plane polar coordinates. Use the method of separation of variables and the
principle of superposition to derive the general series solution given by

T (r, θ) = A0 +B0 log(r) +
∞∑
n=1

((
Anr

n +
Bn

rn

)
cos(nθ) +

(
Cnr

n +
Dn

rn

)
sin(nθ)

)
,

where An, Bn, Cn and Dn are constants. You should state where you impose the constraint
that the solution is periodic in θ with period 2π.

(b) Let a, b, T ∗ and q∗ be positive constants, with a < b, and let k be the constant thermal
conductivity. Derive the solution T (r, θ) of Laplace’s equation in the region

(i) r > a with the boundary conditions

T (a, θ) = T ∗ cos2 θ and lim
r→∞

r
∂T

∂r
(r, θ) = 0 for − π < θ ≤ π;

(ii) a < r < b with the boundary conditions

T (a, θ) = T ∗ cos(θ) and − k∂T
∂r

(b, θ) = q∗ for − π < θ ≤ π;

(iii) r < a with the boundary conditions

T (a, θ) =

{
0 for − π < θ ≤ 0,

T ∗ for 0 < θ ≤ π.

[You may quote the formulae for the Fourier coefficients of a Fourier series.]

(c) Find the heat flux q · n out of each region in part (b) through the boundary at r = a,
where the heat flux vector q = −k∇T according to Fourier’s Law and in each case n is the
outward pointing unit normal to r = a.

[Before taking the limit r → a− in case (iii), you may find it helpful to sum the series
solution for Tr(r, θ) by making a suitable choice for z in the identity

z

1− z2
=
∞∑

m=0

z2m+1,

which is valid for z ∈ C such that |z| < 1.]

Please send comments and corrections to oliver@maths.ox.ac.uk


