MULTIVARIABLE CALCULUS HT20 SHEET 1
Multiple planar integrals. Change of variables.

1. Let a,b > 0. By swapping the order of double integrals of e~*¥ on the set [0, c0) X [a,b] show that
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3. Show that
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Why does this integral represent the mean distance between two points chosen randomly and inde-
pendently from the unit interval [0, 1]?

4. (i) The moment of inertia of a uniform disc D of radius a and mass m about an axis vertically

through its centre equals
Iy = / / r? pdA,
D

where p is the density of the disc. Determine p in terms of @ and m. Use polar co-ordinates to show
that Iy equals ma?/2.

(ii) The vertical axis is moved from the centre of the disc to a point distance R < a away. The

moment of inertia now equals
Ir = //d(T,Q,R)deA
D

where d(r,0, R) is the distance of the point (r,6) from the axis. Find Iz and show that it is an
increasing function of R for 0 < R < a.
5. Let
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(i) By applying the binomial theorem to the integrand, show that

(ii) Set x = u — v and y = u + v. Determine the Jacobian 0(x,y)/0(u,v). Show that
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where T is the triangle with vertices (0,0), (1,0) and (1/2,1/2).

(iii) By splitting the interval 0 < u < 1 into halves, and using trigonometric substitutions and
identities, show that I = 72/6.



6. (Optional) (i) Let a > 0. By applying the method of Exercise 1 to e ¥ sin x, show that

/ (1 — e_‘”) siz:n dz = tan"! a.
0

Deduce that [;* 522 dz = 7 /2.

(ii) What is [ #2¢¢ dz where ¢ is a real number?

(iii) Show that the integrals [ }%} dz increase without bound as n becomes large.



