
MULTIVARIABLE CALCULUS HT20 SHEET 1

Multiple planar integrals. Change of variables.

1. Let a, b > 0. By swapping the order of double integrals of e−xy on the set [0,∞)× [a, b] show that
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Why does this integral represent the mean distance between two points chosen randomly and inde-
pendently from the unit interval [0, 1]?

4. (i) The moment of inertia of a uniform disc D of radius a and mass m about an axis vertically
through its centre equals

I0 =

��

D

r2 ρdA,

where ρ is the density of the disc. Determine ρ in terms of a and m. Use polar co-ordinates to show
that I0 equals ma2/2.

(ii) The vertical axis is moved from the centre of the disc to a point distance R � a away. The
moment of inertia now equals

IR =
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where d(r, θ, R) is the distance of the point (r, θ) from the axis. Find IR and show that it is an
increasing function of R for 0 � R � a.

5. Let
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(i) By applying the binomial theorem to the integrand, show that
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(ii) Set x = u− v and y = u+ v. Determine the Jacobian ∂(x, y)/∂(u, v). Show that
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where T is the triangle with vertices (0, 0) , (1, 0) and (1/2, 1/2) .

(iii) By splitting the interval 0 � u � 1 into halves, and using trigonometric substitutions and
identities, show that I = π2/6.



6. (Optional) (i) Let a � 0. By applying the method of Exercise 1 to e−yx sinx, show that
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Deduce that
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(ii) What is
�
∞

0
sin cx
x
dx where c is a real number?

(iii) Show that the integrals
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�� dx increase without bound as n becomes large.


