MULTIVARIABLE CALCULUS HT20 SHEET 4 Div, Grad and Curl. Physical Interpretation. Identities.

1. Show directly that $\nabla^2(\phi\psi) = \phi\nabla^2\psi + 2\nabla\phi \cdot \nabla\psi + \psi\nabla^2\phi$ for scalar fields ϕ and ψ .

2. (i) Let
$$
\phi(x, y, z) = y^2 - xz
$$
 and **f** $(x, y, z) = (z^2, x^2, y^2)$. Find $\nabla \phi$ and $\nabla \cdot \mathbf{f}$.

(ii) For the orthonormal basis $e_1 = (0, -1, 0)$, $e_2 = (1, 0, -1) / \sqrt{2}$, $e_3 = (1, 0, 1) / \sqrt{2}$, create new co-ordinates X, Y, Z such that

$$
X\mathbf{e}_1 + Y\mathbf{e}_2 + Z\mathbf{e}_3 = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}.
$$

Determine x, y, z in terms of X, Y, Z .

(iii) Find Φ , F_1 , F_2 , F_3 such that Φ $(X, Y, Z) = \phi(x, y, z)$ and $F_1\mathbf{e}_1 + F_2\mathbf{e}_2 + F_3\mathbf{e}_3 = f_1\mathbf{i} + f_2\mathbf{j} + f_3\mathbf{k}$. Verify, by direct calculation, that

$$
\nabla \phi = \Phi_X \mathbf{e}_1 + \Phi_Y \mathbf{e}_2 + \Phi_Z \mathbf{e}_3; \qquad \nabla \cdot \mathbf{f} = (F_1)_X + (F_2)_Y + (F_3)_Z.
$$

3. Let r and θ denote plane polar co-ordinates and set $\mathbf{e}_r = (\cos \theta, \sin \theta, 0)$ and $\mathbf{e}_\theta = (-\sin \theta, \cos \theta, 0)$. Let $\mathbf{F}(r,\theta) = F_r \mathbf{e}_r + F_{\theta} \mathbf{e}_{\theta}$ be a vector field. Prove that

$$
\nabla \cdot \mathbf{F} = \frac{1}{r} \frac{\partial}{\partial r} (rF_r) + \frac{1}{r} \frac{\partial F_{\theta}}{\partial \theta}.
$$

- 4. Let $f(x, y, z) = (y/(x^2 + y^2), -x/(x^2 + y^2), 0)$ where $(x, y) \neq (0, 0)$.
- (i) Show that curl $f = 0$.
- (ii) Find $\int_{\cal C} {\bf f} \cdot {\rm d}{\bf r}$ for each of the following closed curves ${\cal C}.$
- (a) C is parametrised by $\mathbf{r}(t) = (\cos t, \sin t, 0)$ for $0 \le t \le 2\pi$.
- (b) C is parametrised by

$$
\mathbf{r}(t) = \begin{cases} (\cos t, \sin t, t) & 0 \leq t \leq 4\pi, \\ (1, 0, 8\pi - t) & 4\pi \leq t \leq 8\pi. \end{cases}
$$

(c) C is the square with vertices $(0, 1), (1, 1), (1, 2), (0, 2)$ with an anticlockwise orientation.

(iii) Find a scalar field ϕ such that $\mathbf{f} = \nabla \phi$ on $R_1 = \{(x, y, z) : y > 0\}$. How does the existence of ϕ relate to your answer to $4\text{(ii)}(c)$?

(iv) Show that there does not exist ψ such that $\mathbf{f} = \nabla \psi$ on $R_2 = \{(x, y, z) : (x, y) \neq (0, 0)\}.$

- 5. (i) With **f** as in Exercise 4, show that div $\mathbf{f} = 0$.
- (ii) Suppose that a particle $(x(t), y(t))$ moves according to the flow

$$
dx/dt = y/(x^2 + y^2)
$$
, $dy/dt = -x/(x^2 + y^2)$.

Show that, on changing to polar co-ordinates (r, θ) these differential equations become

$$
dr/dt = 0, \qquad d\theta/dt = -1/r^2.
$$

(iii) Suppose that particles initially occupy the region $R_0 = \{(r, \theta): 0 < a < r < b, 0 < \theta < \alpha < \pi/2\}$. If the particles move according to the above flow, describe the region R_t which they occupy a short time t afterwards. Sketch R_0 and R_t , and show that the regions have the same area.

6. (Optional) (i) In spherical polar co-ordinates

 $\mathbf{r}(r, \theta, \phi) = (r \sin \theta \cos \phi, r \sin \theta \sin \phi, r \cos \theta).$

Show that we can write

$$
\mathrm{d}\mathbf{r} = h_r \mathrm{d}r \mathbf{e}_r + h_\theta \mathrm{d}\theta \mathbf{e}_\theta + h_\phi \mathrm{d}\phi \mathbf{e}_\phi
$$

where \mathbf{e}_r , \mathbf{e}_θ , \mathbf{e}_ϕ are a right-handed orthonormal basis and h_r , h_θ , $h_\phi > 0$. Show that $h_r h_\theta h_\phi =$ $r^2 \sin \theta = \partial(x, y, z) / \partial(r, \theta, \phi).$

(ii) More generally $\mathbf{r}(u_1, u_2, u_3)$ is a parametrization of space by *orthogonal curvilinear co-ordinates* if

$$
d\mathbf{r} = h_1 du_1 \mathbf{e}_1 + h_2 du_2 \mathbf{e}_2 + h_3 du_3 \mathbf{e}_3
$$

where e_1 , e_2 , e_3 are a right-handed orthonormal basis. Show in this case that

$$
\frac{\partial(x,y,z)}{\partial(u_1,u_2,u_3)} = h_1h_2h_3.
$$

(iii) Show further for a scalar field $\Phi(u_1, u_2, u_3)$ that

$$
\nabla \Phi = \frac{1}{h_1} \frac{\partial \Phi}{\partial u_1} \mathbf{e}_1 + \frac{1}{h_2} \frac{\partial \Phi}{\partial u_2} \mathbf{e}_2 + \frac{1}{h_3} \frac{\partial \Phi}{\partial u_3} \mathbf{e}_3.
$$