MULTIVARIABLE CALCULUS HT20 SHEET 7 Stokes' theorem. Examples. Consequences.

1. Let 0 < a < b. Verify Stokes' Theorem when $\mathbf{F} = (y, z, x)$ and Σ is the upper half of the torus generated by rotating the circle $(x - b)^2 + z^2 = a^2$ about the z-axis.

2. The vector field $\mathbf{F}(\mathbf{R})$ is defined by

$$\mathbf{F}\left(\mathbf{R}\right) = \int_{C} \left|\mathbf{r} - \mathbf{R}\right|^{2} \, \mathrm{d}\mathbf{r}$$

where **r** lies on the simple closed curve C. Show that there are constant vectors **A** and **B** such that $\mathbf{F}(\mathbf{R}) = \mathbf{R} \wedge \mathbf{A} + \mathbf{B}$. Deduce that

$$abla \wedge \mathbf{F} = -4 \iint\limits_{S} \mathrm{d}\mathbf{S}$$

where S is any smooth surface spanning C.

3. Let Σ denote that part of the cone $x^2 + y^2 = z^2$, z > 0 which lies beneath the plane x + 2z = 1. Let $\mathbf{F}(x, y, z) = x\mathbf{j}$.

Show that the projection of $\partial \Sigma$ vertically to the *xy*-plane is an ellipse. Parametrise $\partial \Sigma$ and determine $\int_{\partial \Sigma} \mathbf{F} \cdot d\mathbf{r}$.

Show that $d\mathbf{S} \cdot \mathbf{k} = dx \, dy$ on Σ and verify Stokes' Theorem for \mathbf{F} on Σ .

4. Let $\mathbf{F}(x,y) = (u(x,y), v(x,y))$ be defined on \mathbb{R}^2 where u, v have continuous partial derivatives of all orders.

(i) Under what condition on u and v is curl $\mathbf{F} = \mathbf{0}$? Under what condition is div $\mathbf{F} = 0$? Show that if both these conditions hold then u and v are harmonic – that is, they satisfy Laplace's equation.

(ii) Conversely say U is a harmonic function. Use Green's Theorem to explain why

$$\mathbf{G}(X,Y) = \left(U(X,Y), \int_C U_y \,\mathrm{d}x - U_x \,\mathrm{d}y\right)$$

is a well-defined function, independent of the choice of curve C from (0,0) to (X,Y). Show that div $\mathbf{G} = 0$ and curl $\mathbf{G} = \mathbf{0}$.

(iii) What is G(x, y) if (a) $U(x, y) = x^2 - y^2$? (b) $U(x, y) = e^x \cos y$?

5. (Optional) Let $\mathbf{F} = \mathbf{r}/r^3 = \mathbf{e}_r/r^2$, in terms of spherical polar co-ordiantes, and let

$$R_1 = \mathbb{R}^3 \setminus \{\mathbf{0}\}$$
 and $R_2 = \{(x, y, z) \in \mathbb{R}^3 \colon x^2 + y^2 \neq 0\}.$

(i) Show that div $\mathbf{F} = 0$.

(ii) Show that

$$\mathbf{f} = \frac{\cot\theta}{r} e_{\phi}$$

is a vector potential for \mathbf{F} on R_2 – that is, show that $\mathbf{F} = \nabla \wedge \mathbf{f}$.

(iii) Why is **f** not a vector potential for **F** on R_1 ?