Dynamics: Problem Sheet 4 (of 8)

Coupled oscillations, energy and angular momentum, circular motion.

1. Consider the following system of coupled second order ODEs for $x(t)$, $y(t)$:

$$
\ddot{x} = 1 + \sin y - e^{3x} \n\ddot{y} = e^{x-3y} - 1.
$$

(a) Show that $(x, y) = (0, 0)$ is an equilibrium configuration, and that the linearized equations of motion about this point are

$$
\begin{pmatrix} \ddot{x} \\ \ddot{y} \end{pmatrix} = M \begin{pmatrix} x \\ y \end{pmatrix}, \quad \text{where } M = \begin{pmatrix} -3 & 1 \\ 1 & -3 \end{pmatrix}.
$$

,

(b) By determining the eigenvalues and eigenvectors of M , hence show that the *normal* mode solutions to the equations in part (a) are

$$
\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = A \begin{pmatrix} 1 \\ 1 \end{pmatrix} \cos(\sqrt{2}t + \phi) , \qquad \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = B \begin{pmatrix} 1 \\ -1 \end{pmatrix} \cos(2t + \psi) ,
$$

where A, B, ϕ and ψ are constants.

- 2. A particle of mass m moves in \mathbb{R}^3 under the influence of a force $\mathbf{F} = -k\mathbf{r}$, where r is the position vector of the particle and $k > 0$ is constant.
	- (a) Explain why \bf{F} is both a *conservative* force, and a *central* force, where a choice of potential energy function is $V(\mathbf{r}) = \frac{1}{2}k|\mathbf{r}|^2$. Hence deduce that the particle moves in a plane through the origin.
	- (b) Taking the plane of motion to be the (x, y) plane, the solution to the equation of motion may be written as

$$
\mathbf{r}(t) = a \sin(\omega t + \phi) \mathbf{i} + b \cos(\omega t + \phi) \mathbf{j},
$$

where $\omega = \sqrt{k/m}$, and a, b and ϕ are constant. (This solution was found on Problem Sheet 2, question 2.) Assuming this solution, compute the total energy E and total angular momentum L about the origin, thus confirming that both are indeed constant. Show in particular that the *specific angular momentum* $\mathbf{L}/m = 2A/T$, where A is the area of the ellipse traced out by the solution, and T is the period of the solution.

- 3. At a given instant of time, a particle of mass m has position vector \bf{r} , measured from the origin O of an inertial frame, and velocity v. Let $\mathcal L$ be the straight line through r with tangent vector **v**. Show that the angular momentum $\mathbf{L}_{\mathcal{O}}$ of the particle about O has magnitude $|L_0| = d|p|$, where d is the perpendicular distance between O and \mathcal{L} , and p is the (linear) momentum of the particle. When is $\mathbf{L}_O = \mathbf{0}$?
- 4. A point particle moves on a circle of radius l in the (z, x) plane, centred on the origin.
	- (a) i. By introducing polar coordinates $(z, x) = (-r \cos \theta, r \sin \theta)$, show that the particle has acceleration

$$
\ddot{\mathbf{r}} = -l\dot{\theta}^2 \,\mathbf{e}_r + l\ddot{\theta} \,\mathbf{e}_\theta \;,
$$

where $\mathbf{e}_r = -\cos\theta\,\mathbf{k} + \sin\theta\,\mathbf{i}$, $\mathbf{e}_\theta = \sin\theta\,\mathbf{k} + \cos\theta\,\mathbf{i}$.

ii. Suppose that the particle has mass m , and that the acceleration in part (a) arises from Newton's second law with a total force

$$
\mathbf{F} = -mg\,\mathbf{k} + \mathbf{T} \; .
$$

Show that

$$
\mathbf{T} \cdot \mathbf{e}_r = -ml\dot{\theta}^2 - mg\cos\theta.
$$

(b) i. Consider swinging on a swing with a chain of length l . Explain why the chain never becomes slack provided

$$
-\cos\theta \ < \ \frac{l\dot{\theta}^2}{g}
$$

holds throughout the motion, where θ is the angle the chain makes with the downward vertical.

ii. The swing initially hangs downwards, and a friend gives you a push in the horizontal direction with initial speed v . Using conservation of energy, show that provided $v > \sqrt{5gl}$ you'll swing all the way over the top without the chain ever becoming slack. [Please don't try this! \circ]

Please send comments and corrections to sparks@maths.ox.ac.uk.