Analysis II: Continuity and Differentiability Sheet 3 HT 2020

- **1.** Let $f:[a,b] \to \mathbb{R}$ be continuous. Suppose that f(a) < f(b) and that f is a 1-1 mapping. Use Intermediate Value Theorem to show that f(a) < f(x) < f(b) for all $x \in (a,b)$. Hence or otherwise prove that f is strictly increasing on [a,b].
 - **2**. The function g is defined by

$$g(x) = \frac{x}{1 - |x|}$$
 for $-1 < x < 1$.

Show that g is 1-1, find g^{-1} and determine its domain. Are g and g^{-1} continuous?

- **3**. (a) Which of the following real-valued functions f, defined on [-1,1] by (i) and (ii) below, have inverses $f^{-1}:[f(-1),f(1)]\to[-1,1]$? Which have continuous inverses? Given brief reasons.
 - (i) $f(x) = (x+1)^2$;
 - (ii) f(x) = x for $x \in [-1, 0]$ and f(x) = x + 1 for $x \in (0, 1]$.
- (b) Let $f:(a,b] \to (c,d]$ be strictly increasing and onto, where a < b, c < d, and b,d are two real numbers. Show that f has a continuous inverse mapping from (c,d] to (a,b].
 - **4**. (a) Let a > 0. Show that $f(x) = \frac{1}{x}$ is uniformly continuous on $[a, \infty)$.
 - (b) Show that $f(x) = x^2$ is not uniformly continuous on $[0, \infty)$.
- **5**. (a) Suppose that h is continuous on $[0, \infty)$ and suppose that h is uniformly continuous on $[a, \infty)$ for some positive number a. Show that h is uniformly continuous on $[0, \infty)$.
- (b) Show that $f(x) = x^{1/3}$ is uniformly continuous on \mathbb{R} . Is it Lipschitz continuous?
- **6**. (a) Let a < b be two real numbers. Suppose that $f : (a, b] \to \mathbb{R}$ is continuous and suppose that the limit of f as $x \to a$ exists. Show that f is uniformly continuous on (a, b].
 - (b) Suppose now $g:(a,b]\to\mathbb{R}$ is uniformly continuous.
- (i) Show that if $(x_n) \subset (a, b]$ is a Cauchy sequence, then $(g(x_n))$ is also a Cauchy sequence.
- (ii) Suppose $x_n \in (a, b]$ and $y_n \in (a, b]$ (where $n = 1, 2, \cdots$) are two sequences and $x_n \to a$, $y_n \to a$ as $n \to \infty$. Show that $(g(x_n))$ and $(g(y_n))$ converge to the same limit. Deduce that g(x) has a limit as $x \to a$.