Analysis II: Continuity and Differentiability Sheet 4 HT 2020

1. Consider the following choices of sequence (f_n) of functions on the interval [0,1] whose n^{th} term $f_n(x)$ is defined as follows:

(i) $\left(\frac{x}{2}\right)^n$; (ii) $\sin(nx)$;

(iii) $\frac{x}{1+nx^2}$; (iv) $n^2(1-x)x^n$;

(v) $\sqrt{n}(1-x)x^n$; (vi) min $\{x^{-1}, n\}$ for $x \in (0, 1]$, and 0 for x = 0.

(a) For each sequence, determine the pointwise limit or show that it fails to exist. (b) For each sequence which does converge pointwise, establish whether or not convergence is uniform on [0, 1].

2. (a) Prove that the following series converge uniformly on the specified set E: (i) $\sum_{k=0}^{\infty} x^k / k^{100}$, E = [-1, 1];(ii) $\sum_{k=0}^{\infty} x^{2k} / (2k)!$, E = [-C, C] (for fixed C > 0); (iii) $\sum_{k=0}^{\infty} x^k$, $E = \{x \in \mathbb{R} : |x| \le 1 - 10^{-42}\}.$ (b) Suppose that the real power series $\sum_{k=0}^{\infty} c_k x^k$ converges for every $x \in \mathbb{R}$.

Prove that the series converges uniformly on \mathbb{R} if and only if there exists $N \in \mathbb{N}$ such that $c_k = 0$ for all k > N.

3. (a) Prove that the series

$$\sum_{k=0}^{\infty} \frac{\sin^2(kx)}{1+k^2x^2}$$

converges for each $x \in \mathbb{R}$ and let f(x) be its sum. Prove that the series converges uniformly on $\{x \in \mathbb{R} : |x| \ge \delta\}$ for any given $\delta > 0$. Deduce that f is continuous on $\mathbb{R}\setminus\{0\}.$

(b) Show that f is not continuous at x = 0.

4. (a) Let $g: (a,b) \to \mathbb{R}$ be differentiable at $x_0 \in (a,b)$ and $g(x_0) \neq 0$. Prove that $x \to \frac{1}{g(x)}$ is differentiable at x_0 and

$$\left(\frac{1}{g}\right)'(x_0) = -\frac{g'(x_0)}{g(x_0)^2}$$

(b) Let $f, g: (a, b) \to \mathbb{R}$ be differentiable at $x_0 \in (a, b)$ with $g(x_0) \neq 0$. Prove that $x \to \frac{f(x)}{q(x)}$ is differentiable at x_0 and the derivative is given by the quotient rule:

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g(x_0)^2}.$$

[Results from the algebra of limits may be assumed.]

5. (a) Show that the function

$$f(x) := \begin{cases} x^3 \sin(1/x) & \text{if } x > 0, \\ 0 & \text{if } x \le 0 \end{cases}$$

is differentiable for all $x \in \mathbb{R}$ and find its derivative.

(b) Calculate f''(x) for $x \neq 0$, and show that f''(0) does not exist.

(c) Construct a function $g: \mathbb{R} \to \mathbb{R}$ for which g'' exists and is continuous but g'''(0) fails to exist.

[Where they are applicable, you may use the chain rule and algebraic properties of derivatives.]