Analysis II: Continuity and Differentiability Sheet 4 HT 2020

1. Consider the following choices of sequence $\left(f_{n}\right)$ of functions on the interval $[0,1]$ whose $n^{\text {th }}$ term $f_{n}(x)$ is defined as follows:
(i) $\left(\frac{x}{2}\right)^{n}$; (ii) $\sin (n x)$;
(iii) $\frac{x}{1+n x^{2}}$; (iv) $n^{2}(1-x) x^{n}$;
(v) $\sqrt{n}(1-x) x^{n}$; (vi) $\min \left\{x^{-1}, n\right\}$ for $x \in(0,1]$, and 0 for $x=0$.
(a) For each sequence, determine the pointwise limit or show that it fails to exist.
(b) For each sequence which does converge pointwise, establish whether or not convergence is uniform on $[0,1]$.
2. (a) Prove that the following series converge uniformly on the specified set E :
(i) $\sum_{k=0}^{\infty} x^{k} / k^{100}, E=[-1,1]$;
(ii) $\sum_{k=0}^{\infty} x^{2 k} /(2 k)!, E=[-C, C]$ (for fixed $C>0$);
(iii) $\sum_{k=0}^{\infty} x^{k}, E=\left\{x \in \mathbb{R}:|x| \leq 1-10^{-42}\right\}$.
(b) Suppose that the real power series $\sum_{k=0}^{\infty} c_{k} x^{k}$ converges for every $x \in \mathbb{R}$. Prove that the series converges uniformly on \mathbb{R} if and only if there exists $N \in \mathbb{N}$ such that $c_{k}=0$ for all $k>N$.
3. (a) Prove that the series

$$
\sum_{k=0}^{\infty} \frac{\sin ^{2}(k x)}{1+k^{2} x^{2}}
$$

converges for each $x \in \mathbb{R}$ and let $f(x)$ be its sum. Prove that the series converges uniformly on $\{x \in \mathbb{R}:|x| \geq \delta\}$ for any given $\delta>0$. Deduce that f is continuous on $\mathbb{R} \backslash\{0\}$.
(b) Show that f is not continuous at $x=0$.
4. (a) Let $g:(a, b) \rightarrow \mathbb{R}$ be differentiable at $x_{0} \in(a, b)$ and $g\left(x_{0}\right) \neq 0$. Prove that $x \rightarrow \frac{1}{g(x)}$ is differentiable at x_{0} and

$$
\left(\frac{1}{g}\right)^{\prime}\left(x_{0}\right)=-\frac{g^{\prime}\left(x_{0}\right)}{g\left(x_{0}\right)^{2}} .
$$

(b) Let $f, g:(a, b) \rightarrow \mathbb{R}$ be differentiable at $x_{0} \in(a, b)$ with $g\left(x_{0}\right) \neq 0$. Prove that $x \rightarrow \frac{f(x)}{g(x)}$ is differentiable at x_{0} and the derivative is given by the quotient rule:

$$
\left(\frac{f}{g}\right)^{\prime}\left(x_{0}\right)=\frac{f^{\prime}\left(x_{0}\right) g\left(x_{0}\right)-f\left(x_{0}\right) g^{\prime}\left(x_{0}\right)}{g\left(x_{0}\right)^{2}} .
$$

[Results from the algebra of limits may be assumed.]
5. (a) Show that the function

$$
f(x):=\left\{\begin{array}{lc}
x^{3} \sin (1 / x) & \text { if } x>0 \\
0 & \text { if } x \leq 0
\end{array}\right.
$$

is differentiable for all $x \in \mathbb{R}$ and find its derivative.
(b) Calculate $f^{\prime \prime}(x)$ for $x \neq 0$, and show that $f^{\prime \prime}(0)$ does not exist.
(c) Construct a function $g: \mathbb{R} \rightarrow \mathbb{R}$ for which $g^{\prime \prime}$ exists and is continuous but $g^{\prime \prime \prime}(0)$ fails to exist.
[Where they are applicable, you may use the chain rule and algebraic properties of derivatives.]

