Analysis II: Continuity and Differentiability Sheet 5 HT 2020

1. (a) The functions f, g and h are defined for $x \in \mathbb{R}$ by

$$
f(x)=x^{3}+1, \quad g(x)=1-(x-1)^{3}, \quad h(x)=\arctan x
$$

Give explicit formulae for the inverse functions of f and g. Sketch the graphs of f, g and h and of their inverses. Determine the points at which these inverses are differentiable.
(b) Show that there exists a differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $(f(x))^{5}+$ $f(x)+x=0$ for all $x \in \mathbb{R}$.
[Hint: If f exists and has an inverse function g, what should be the function g ?]
(c) Suppose that $f:[a, b] \rightarrow \mathbb{R}$ is a strictly increasing continuous function which is twice differentiable at $x_{0} \in(a, b)$, with $f^{\prime}\left(x_{0}\right) \neq 0$. Show that the second derivative of the inverse function g at $f\left(x_{0}\right)$ exists and find a formula for it.
2. (a) Suppose that $h: \mathbb{R} \backslash\{a\} \rightarrow \mathbb{R}$ and $h(x) \rightarrow l$ as $x \rightarrow a$. Show that if $l>0$, then there exists $\delta>0$ such that $h(x)>0$ for all x such that $0<|x-a|<\delta$.
(b) Now suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ has derivative $f^{\prime}(a)$ at a. Show that if $f^{\prime}(a)>0$ then there exists $\delta>0$ such that $f(x)>f(a)$ for all x such that $a<x<a+\delta$.
(c) Let $g(x)=|f(x)|$ and suppose that $f(a)=0$. Prove that g is differentiable at $x=a$ if and only if $f^{\prime}(a)=0$.
3. (a) By using Rolle's theorem, prove that if $p(x)$ is a polynomial with real coefficients then the equation
$\left(x^{2}-x\right)^{2} p^{\prime \prime \prime}(x)+6 x\left(2 x^{2}-3 x+1\right) p^{\prime \prime}(x)+6\left(6 x^{2}-6 x+1\right) p^{\prime}(x)+12(2 x-1) p(x)=0$ has a solution in $(0,1)$.
[Hint. Consider the function $f(x)=\left(x^{2}-x\right)^{2} p(x)$.]
(b) Let $f(x)=\left(x^{2}-1\right)^{n}$. Prove that for $r=0,1, \cdots, n, f^{(r)}(x)$ is a polynomial whose value is 0 at no fewer than r distincit points of $(-1,1)$. Hence prove that $f^{(n)}(x)$ is a polynomial of degree n, with distinct roots, all of which lie in $(-1,1)$.
4. (a) For which real values does the polynomial $f(x):=1+x+\cdots+x^{2 m-1}$ take the value 0 ? What can you say about the sign of $f(x)$ as x varies?
(b) Prove that the function

$$
g(x):=1+x+\frac{x^{2}}{2}+\cdots+\frac{x^{n}}{n}
$$

has no real roots when n is even. What can you say about the roots of g when n is odd ?
5. (a) Suppose that $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be functions. Which of the following statements are true? In each case give either a proof or a counterexample.
(i) If $f(x) \rightarrow \infty$ as $x \rightarrow 0$ and $\lim _{x \rightarrow 0} f(x) g(x)=0$, then $\lim _{x \rightarrow 0} g(x)=0$.
(ii) If $f(x) \rightarrow \infty$ as $x \rightarrow 0$ and $\lim _{x \rightarrow 0} g(x)=0$, then $\lim _{x \rightarrow 0} f(x) g(x)=1$.
(iii) If $f(x) \rightarrow \infty$ as $x \rightarrow 0$ and $\lim _{x \rightarrow 0} g(x)=1$, then $f(x) g(x) \rightarrow \infty$ as $x \rightarrow 0$.
(b) (i) Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be functions. Suppose that $f(x) \rightarrow k$ as $x \rightarrow \infty$, and that g is continuous at k. Prove that $g(f(x)) \rightarrow g(k)$ as $x \rightarrow \infty$.
(ii) Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be functions. Suppose that $f(x) \rightarrow \infty$ as $x \rightarrow \infty$, and that $g(x) \rightarrow l$ as $x \rightarrow \infty$. Prove that $g(f(x)) \rightarrow l$ as $x \rightarrow \infty$.
6. Let f, g and h be three functions on $[a, b]$ which are continuous on $[a, b]$ and differentiable on (a, b). Consider the function

$$
F(x)=\left|\begin{array}{ccc}
f(x) & g(x) & h(x) \\
f(a) & g(a) & h(a) \\
f(b) & g(b) & h(b)
\end{array}\right| \quad \text { for } x \in[a, b] .
$$

Show that there is a point $\xi \in(a, b)$ such that $F^{\prime}(\xi)=0$. Then, by setting $h \equiv 1$, prove the generalized MVT.

