Analysis II: Continuity and Differentiability Sheet 7 HT 2020

[Every time you use L’Hopital’s Rule you should explain why it is applicable.]
1. Evaluate the following limits by making use of known derivatives, AOL, and

sandwiching techniques, as appropriate:
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2. Evaluate the following limits:

i) lim, 0 =
i

( ?na: )
(ii) limg_o 5527,

2
(iil) lim,_,o ﬁ,
(

: 1 1
111) hmm_m (12 - xsinx) :

3. Prove L’Hopital’s rule at oo: Suppose f,g : (a,00) — R are differentiable,
with f(z) — 0 and g(x) — 0 as © — oo. If ¢'(z) # 0 on (a,00) and f'(z)/¢ (x) — 1
as r — 00, then
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4. (a) Evaluate lim,_, (1 + \/—5>
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5. Let f: R — R be twice differentiable on R and assume that f”(0) exists.

Prove that
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6. Assume that the conditions for the Mean Value Theorem hold for the function
f:la,a+ h] = R, so that for some 6 € (0,1) we have

fla+h)— f(a)=hf'(a+0h) .

Fix f and a, and for each non-zero h write #(h) for a corresponding value of 6. Prove
that if f”(a) exists and is non-zero then
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