Groups and Group Actions, Sheet 7, TT18
 Orbits. Stabilizers. Orbit-Stabilizer Theorem.

1. Consider the following actions. [You are not asked to show they are actions.] In each case describe the orbits of the action and determine the stabiliser of the given s.
(i) $(0, \infty)$ acts on \mathbb{C} by multiplication, that is, $r \cdot z=r z ; s=i$.
(ii) \mathbb{Z} acts on \mathbb{Z}_{6} by addition, that is, $n \cdot \bar{m}=\overline{n+m}$ where the line denotes $\bmod 6$ congruence; $s=0$.
(iii) S_{3} acts on S_{3} by conjugation, that is, $\tau \cdot \sigma=\tau \sigma \tau^{-1}$; $s=(12)$.
(iv) $O(2)$ acts on \mathbb{R}^{2} by $A \cdot \mathbf{v}=A \mathbf{v} ; s=\mathbf{i}$.
2. Let f be a polynomial in the (commuting) variables $x_{1}, x_{2}, \ldots, x_{n}$ and let N be the number of distinct polynomials, including f itself, that can be obtained from f by permuting the variables. Prove that N divides n !

Give examples to show that every divisor of n ! occurs when $n=3$. Verify the Orbit-Stabilizer Theorem for each of your examples.
3. Let G be a group and let S denote the set of subgroups of G. Show that

$$
g \cdot H=g H g^{-1}, \quad \text { where } g \in G, H \leqslant G
$$

defines a left action of G on S.
Now let $G=S_{4}$. What is $\operatorname{Orb}(H)$ and $\operatorname{Stab}(H)$ in each of the following cases?

$$
H=V_{4}, \quad H=\operatorname{Sym}\{1,2,3\}, \quad H=\langle(1234)\rangle .
$$

4. Show that $G L_{3}(\mathbb{R})$ (the group of invertible 3×3 real matrices) acts on $M_{3 \times 3}(\mathbb{R})$ (the set of 3×3 real matrices) by $A \cdot M=A M$. Let

$$
M_{1}=\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right), \quad M_{2}=\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right), \quad M_{3}=\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 2 & 2 \\
1 & 1 & 2
\end{array}\right) .
$$

Show that M_{2} and M_{3} lie in the same orbit; determine a matrix A such that

$$
\operatorname{Stab}\left(M_{2}\right)=A \operatorname{Stab}\left(M_{3}\right) A^{-1}
$$

Show that M_{1} and M_{2} lie in different orbits, but that nonetheless $\operatorname{Stab}\left(M_{1}\right)=\operatorname{Stab}\left(M_{2}\right)$.
5. Cayley's Theorem states that every finite group is isomorphic to a subgroup of some S_{n}. For each of the following groups, what is the smallest n such that S_{n} contains a subgroup isomorphic to that group? Justify your answers and describe such a subgroup.

$$
C_{5}, \quad D_{10}, \quad C_{2} \times C_{2} \times C_{2}, \quad S_{3} \times S_{3} .
$$

