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1 Introduction

These notes are to accompany the Hilary Term 2020 Oxford Prelims course
Groups and Group Actions. Specifically, they are for the first half of the
course (the second half will be in Trinity Term).

This course is an introduction to group theory. We’ll meet many ex-
amples of groups, and explore their properties. This will include studying
permutations, and the important symmetric group. A highlight of the first
half of the course will be Lagrange’s theorem, which we can use to prove
many interesting results, for example in number theory.

There are several resources that will help you as you study the course:

- the lectures

- these notes
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- Richard Earl’s notes from the 2014 course

- the problems sheets, with starter, main course and pudding problems

- the solutions to the starter and pudding problems

- each other

- tutorials in college.

In places, you will find blanks in these notes. They are there deliberately!
We’ll fill in these blanks during lectures. I’ll also add some comments during
lectures that you might want to add to these notes.

Acknowledgements

These notes, and the lectures they accompany, are extremely closely based on
those produced by Dr Richard Earl. The same applies to the problems sheets.
These notes are designed to match up precisely to my lectures. Richard Earl’s
notes are also on the course materials website, and include many additional
helpful insights and examples that we don’t have time to cover in lectures.

I would like these notes to be as useful as possible. If you (whether
student or tutor) think that you’ve noticed a typo, or mistake, or part that
is unclear, please check the current, up-to-date, notes on the website, to see
whether I’ve already fixed it. If not, please email me (vicky.neale@maths)
and I’ll do something about it, and (with your permission) thank you here.

Thanks to Matei Iorgulescu, Mukesh Ramanathan, Paul Scarr, Edward
Turner, Flora Walker, Carl Westerlund for helping to fix glitches in these
notes, problems sheets and solutions.

2 Introduction to groups

Definition. Let S be a set. A binary operation ∗ in S is a function

∗ : S × S → S

(a, b) 7→ a ∗ b.

Example. • +, −, × on R, but not ÷ on R

• matrix multiplication on the set Mn(C) of n× n complex matrices

• min and max on N
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• ◦, composition of functions, on the set Sym(X) of bijections from a set
X to itself

Definition. We say that a binary operation ∗ on a set S is associative if
a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c ∈ S.

Exercise. Which of the examples above are associative?

Definition. Let ∗ be a binary operation on a set S. We say that e ∈ S is
an identity element (or identity) if e ∗ a = a = a ∗ e for all a ∈ S.

Exercise. Which of the examples above have an identity element?

Proposition 1. Let ∗ be a binary operation on a non-empty set S. If there
is an identity e ∈ S, then it is unique.

Proof. Let e1, e2 be identity elements.
Then

e1 ∗ e2 = e2 as e1 an identity

and e1 ∗ e2 = e1 as e2 an identity

so e1 = e2.

Definition. Let ∗ be a binary operation on a set S, with identity e. Take
a ∈ S. We say that b ∈ S is an inverse for a if a ∗ b = e = b ∗ a.

Exercise. For the examples above that have an identity, which elements
have inverses?

Proposition 2. Let ∗ be an associative binary operation on a set S, with
identity e. Take a ∈ S. If a has an inverse, then the inverse is unique.

Proof. Let b, b′ be inverses of a.
Then

b′ ∗ (a ∗ b) = b′ ∗ e = b′

and (b′ ∗ a) ∗ b = e ∗ b = b,

but ∗ is associative so these are equal, so b = b′.

Definition. Let ∗ be a binary operation on a set S. Let T be a subset of S.
We say that T is closed under ∗ if ∗ : T ×T → T is a binary operation on T .

Remark. We can always define a restriction map ∗ : T × T → S, but only
sometimes do we have t ∗ t′ ∈ T for all t, t′ ∈ T .
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Example. + and − are binary operations on R, and N ⊆ R.
N is closed under + but not under −.

Definition. A group is a set G together with a binary operation ∗ on G such
that

(i) ∗ is associative;

(ii) there is an identity;

(iii) each element of G has an inverse.

Conditions (i), (ii) and (iii) are collectively called the group axioms.

Remark. We write the group as (G, ∗), or simply as G when the operation
is clear.

We often write the operation multiplicatively: when it will not be am-
biguous, we write gh for g ∗ h, and gn for ggg · · · g︸ ︷︷ ︸

n times

(for n ≥ 1). With this

convention, we write g−1 for the inverse element of g, so g−1g = e = gg−1.
(Do not use this notation if the operation is addition, when for example

the inverse of g is −g.)

Remark. When presented with a set G and operation ∗, to show that (G, ∗)
is a group we must check the group axioms ((i), (ii), (iii) above)—but we
must also ensure that ∗ is a binary operation on G, which in practice often
means checking that G is closed under ∗. This is not listed as a fourth group
axiom because it is part of the definition of a group that ∗ must be a binary
operation on G.

Example. Which of these are groups? (We’ll fill in the answers in the
lecture, or you could complete the answers for yourself.)

• (Z,+)

• (N,+)

• Mn(R), the set of n×N real matrices, under matrix multiplication
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• GLn(R), the set of invertible n× n real matrices, under matrix multi-
plication

• (Q,+)

• (Q,×)

• {0, 1} under addition modulo 2 (0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1,
1 + 1 = 0)

• a vector space V under +

Proposition 3. Let G be a group. Let g, g1, g2, g3 ∈ G, let m, n ∈ Z. Then

(i) (g1g2)
−1 = g−12 g−11 ;

(ii) (gn)−1 = (g−1)n;

(iii) gmgn = gm+n;

(iv) (gm)n = gmn;

(v) if g1g2 = g1g3, then g2 = g3 (‘cancellation on the left’);

(vi) if g1g2 = g3g2, then g1 = g3 (‘cancellation on the right’).

Proof. Exercise, using the group axioms.

Definition. We say that a group (G, ∗) is Abelian if g ∗ g′ = g′ ∗ g for all g,
g′ ∈ G—that is, if the binary operation ∗ is commutative.

Exercise. Which of the groups in the example above are Abelian?

Example. • Let SLn(R) be the set of real invertible n×n matrices with
determinant 1, that is, SLn(R) = {A ∈ GLn(R) : detA = 1}, the
special linear group.
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• Let O(n) be the set of n× n real orthogonal matrices, that is, O(n) =
{A ∈ GLn(R) : AAT = I = ATA}, the orthogonal group.

• Let U(n) be the set of n×n unitary complex matrices, that is, U(n) =

{A ∈ GLn(C) : AA
T

= I = A
T
A}, the unitary group.

Each of these is a group under matrix multiplication. Each is Abelian for
n = 1, and non-Abelian for n ≥ 2.

Definition. We say that a group G is cyclic if there is some g ∈ G such that
G = {gn : n ∈ Z}.

Example. (Z,+) is cyclic, generated by 1. It is also generated by −1.

Remark. A cyclic group must be Abelian, as gngm = gn+m = gm+n = gmgn.

Definition. For n ≥ 1, we define the nth cyclic group Cn to be the set
{e, g, g2, . . . , gn−1}, where gn = e, and for 0 ≤ i, j ≤ n− 1 we define

gi ∗ gj =

{
gi+j if i+ j < n

gi+j−n if i+ j ≥ n
.

Definition. Let Pn be a regular n-gon in the plane (here n ≥ 3). For n ≥ 3,
define the nth dihedral group D2n to be the set of isometries of the plane that
send Pn to Pn. These isometries are called symmetries of Pn.

Exercise. Show that D2n is a group under composition.

Example. n = 3, so Pn is an equilateral triangle.

Figure 1: Equilateral triangle with vertices labelled anticlockwise from bot-
tom left 1, 2, 3, with centre marked, and with a dashed vertical line through
the top vertex 3 and the centre.
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Write r for the rotation anticlockwise by 2π
3

about the centre of the trian-
gle, and s for the reflection in the vertical axis (see Figure 1). We can study
the symmetries of Pn by considering how they permute the vertices.

e :

(
1 2 3
1 2 3

)
r :

(
1 2 3
2 3 1

)
r2 :

(
1 2 3
3 1 2

)
s :

(
1 2 3
2 1 3

)
rs :

(
1 2 3
3 2 1

)
r2s :

(
1 2 3
1 3 2

)
These give all 3! = 6 permutations of the vertices, so there are no further

symmetries of the P3.
So D6 = {e, r, r2, s, rs, r2s}.

Example. n = 4, so Pn is a square.

Figure 2: Square with vertices labelled anticlockwise from bottom left 1, 2,
3, 4, with centre marked, and with a dashed vertical line through the centre.

Write r for rotation anticlockwise by π
2

about the centre of the square,
and s for reflection in the vertical axis (see Figure 2).

Exercise. Show that e, r, r2, r3, s, rs, r2s, r3s are 8 distinct symmetries of
the square.
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We can’t obtain all possible permutations of the vertices. Eg if we swap
1 and 4, then we must also swap 2 and 3, so we cannot obtain(

1 2 3 4
4 2 3 1

)
.

So have we found all the elements of D8?

Proposition 4. Let Pn be a regular n-gon in the plane. Write r for rotation
anticlockwise by 2π

n
about the centre of Pn, and s for reflection in an axis of

Pn. Then the symmetries of Pn are e, r, r2, . . . , rn−1, s, rs, r2s, . . . , rn−1s.

Proof. Label the vertices of Pn anticlockwise as 1, 2, . . . , n.
Let f be a symmetry of Pn, and consider f(Pn).

Case 1 The vertices of f(Pn) are numbered 1, 2, . . . , n anticlockwise.
Say vertex 1 has moved to position k (where 1 ≤ k ≤ n. Then applying

(r−1)k−1 will return vertex 1 to position 1, and hence all vertices to their
starting positions.

So (r−1)k−1f = e, so f = rk−1.
Case 2 The vertices of f(Pn) are numbered 1, 2, . . . , n clockwise.

Then fs keeps the vertices in anticlockwise order, so as in Case 1 we have
fs = rk−1 for some k (1 ≤ k ≤ n), and then f = fs2 = rk−1s.

So the symmetries of Pn are contained in the list e, r, r2, . . . , rn−1, s, rs,
r2s, . . . , rn−1s.

Now e, r, r2, . . . , rn−1 each send vertex 1 to a different position, and
hence are all distinct.

Similarly, s, rs, r2s, . . . , rn−1s are all distinct.
The former collection leave the vertices in anticlockwise order, whereas

the latter switch them to clockwise, so in fact all 2n symmetries are distinct.

We can build new groups from old.

Definition. Given groups (G, ∗G) and (H, ∗H), we define their product group
(or product) to be (G×H, ∗) with ∗ defined by

(g1, h1) ∗ (g2, h2) = (g1 ∗G g2, h1 ∗H h2).

Proposition 5. The operation ∗ just defined makes (G×H, ∗) into a group.

Proof. • closure: since ∗G and ∗H are binary operations on G and H
respectively, we have (g1 ∗G g2, h1 ∗H h2) ∈ G×H for all g1, g2 ∈ G and
h1, h2 ∈ H.
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• associativity: follows from the associativity of ∗G and ∗H (exercise).

• identity: the identity element in (G×H, ∗) is eG×H = (eG, eH).

• inverses: given (g, h) ∈ G×H, we have (g, h)−1 = (g−1, h−1) ∈ G×H.

Definition. The order of a group (G, ∗) is the cardinality |G| of the set G.
If |G| is finite, then we say that G is a finite group.

We can study finite groups using Cayley tables (and Cayley graphs).

Example. The Cayley table of D6 is

↓ × → e r r2 s rs r2s
e e r r2 s rs r2s
r r r2 e rs r2s s
r2

s s r2s rs e r2 r
rs
r2s

Some entries here have been left blank for you to complete.
This is a Latin square: every row and every column contains each element

exactly once.

Definition. Let G = {g1, g2, . . . , gn} be a finite group. The Cayley table,
or group table, of G is a square n × n grid in which the entry in row i and
column j is gi ∗ gj.

Remark. G is Abelian if and only if its Cayley table is symmetrical about
the � (top left to bottom right) diagonal.

Proposition 6. A Cayley table is a Latin square: each element appears
exactly once in each row and in each column.

Proof. Let G be a finite group, take g ∈ G.
Define

fg : G→ G

g′ 7→ gg′.

This is a bijection (its inverse is g′ 7→ g−1g′).
So the entries in the row corresponding to g are precisely the elements of

G in some order, each appearing exactly once.
Similarly for columns.
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Definition. Let (G, ∗) be a group. We say that a subset H ⊆ G is a subgroup
if the restriction of ∗ to H makes H into a group, that is,

• H is closed under ∗ (if h1, h2 ∈ H then h1h2 ∈ H);

• H has an identity (eG ∈ H);

• H contains inverses (if h ∈ H then h−1 ∈ H).

In this case we write H ≤ G to mean that H is a subgroup of G.

Remark. H inherits associativity of ∗ from G, so there is no need to check
this.

Definition. Let G be a group, and take g ∈ G. We define the order of g,
o(g), to be the smallest positive integer k such that gk = e. If no such integer
k exists, then we say that g has infinite order.

Remark. We have now defined the order of a group and the order of an
element. These are different uses of the word ‘order’, although we’ll see later
that there are connections.

Sometimes we find that two groups have the same structure (eg the Cay-
ley tables are essentially the same), although the elements may be labelled
differently.

Definition. Let (G, ∗G) and (H, ∗H) be groups. An isomorphism between
G and H is a bijective map θ : G→ H such that θ(g1 ∗G g2) = θ(g1) ∗H θ(g2)
for all g1, g2 ∈ G.

If such an isomorphism exists, then we say that G and H are isomorphic,
and write G ∼= H.

Example. Here are some more examples of groups.

• We write (0,∞) for the set of positive real numbers, which forms a
group under multiplication.

• C∗ := {z ∈ C : z 6= 0}, the set of nonzero complex numbers, forms a
group under multiplication.

• S1 := {z ∈ C : |z| = 1}, the unit circle in the complex plane, forms a
group under multiplication.

• For n ≥ 1, we define SO(n) := {A ∈ O(n) : detA = 1} to be the
special orthogonal group, of orthogonal matrices with determinant 1.
This forms a group under matrix multiplication.

Sheet 1 Q6 invites you to explore some potential isomorphisms involving
these groups.
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3 Permutations

Definition. Let S be a set. A permutation of S is a bijection S → S. The
set of permutations of S is written Sym(S).

Given a positive integer n, we write Sn for Sym({1, 2, . . . , n}).

Remark. The convention in this course is that for σ, τ ∈ Sn and k ∈
{1, 2, . . . , n}, we write kσ for σ(k) and kστ for τ(σ(k)). That is, we “write
permutations on the right”. You will find that some people/books write
permutations on the left instead.

Theorem 7. Let S be a set.

(i) Sym(S) is a group under composition, called the symmetry group of S.

(ii) If |S| ≥ 3, then Sym(S) is non-Abelian.

(iii) |Sn| = n!.

Proof. (i) Exercise.

(ii) Let x1, x2, x3 be three distinct elements of S.

We seek to find two elements of Sym(S) that don’t commute.

Define

f : x1 7→ x2

x2 7→ x1

x 7→ x for other x

and

g : x2 7→ x3

x3 7→ x2

x 7→ x for other x.

Then f , g ∈ Sym(S)

and x1gf = x1f = x2 while x1fg = x2g = x3

so fg 6= gf .

(iii) To specify f ∈ Sn, we say what f does to each of 1, 2, . . . , n.

There are n possibilities for 1f ,

and f is injective so there are n− 1 possibilities for 2f , and so on.

This gives n! possibilities for f .
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Example. We saw previously that the elements of D6 (the symmetries of an
equilateral triangle) are the six permutations in S3. Here we also write them
using cycle notation, which we’ll meet shortly.

e :

(
1 2 3
1 2 3

)
e

r :

(
1 2 3
2 3 1

)
(1 2 3)

r2 :

(
1 2 3
3 1 2

)
(1 3 2)

s :

(
1 2 3
2 1 3

)
(1 2)

rs :

(
1 2 3
3 2 1

)
(1 3)

r2s :

(
1 2 3
1 3 2

)
(2 3)

Drawing up Cayley tables shows that D6 and S3 are isomorphic.

Definition. A permutation σ ∈ Sn is a cycle if there are distinct a1, . . . ,
ak ∈ {1, 2, . . . , n} such that

aiσ = ai+1 for 1 ≤ i ≤ k − 1

and akσ = a1

and xσ = x for x 6∈ {a1, . . . , ak}.

Such a cycle has length k. We call it a k-cycle. We write it as (a1 a2 . . . ak).

Remark. • A k-cycle has order k.

• We often call a 2-cycle a transposition.

Example. In S5, (1 2 3) and (2 4 5 1 3) = (5 1 3 2 4) are cycles (3-cycle
and 5-cycle respectively), but (1 2 3)(4 5) is not a cycle.

Definition. The cycles (a1 . . . ak) and (b1 . . . bl) are disjoint if ai 6= bj for
all i, j.

Proposition 8. Let α = (a1 . . . ak) and β = (b1 . . . bl) be disjoint cycles.
Then α and β commute.
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Proof. We have

aiαβ = ai+1β = ai+1 for 1 ≤ i ≤ k − 1

and aiβα = aiα = ai+1 for 1 ≤ i ≤ k − 1

and akαβ = a1β = a1

and akβα = akα = a1

and similarly bjαβ = bjβα for 1 ≤ j ≤ l,

and for x 6∈ {a1, . . . , ak, b1, . . . , bl} we have xαβ = x = xβα.
So αβ = βα.

Example. Let

σ =

(
1 2 3 4 5 6 7 8 9
5 6 9 7 3 2 4 8 1

)
∈ S9.

Have

1→ 5→ 3→ 9→ 1

and 2→ 6→ 2

and 4→ 7→ 4

and 8→ 8

so σ = (1 5 3 9)(2 6)(4 7)(8) as a product of disjoint cycles.
Then σ−1 = (1 9 3 5)(2 6)(4 7)(8)
and σ101 = (1 5 3 9)101(2 6)101(4 7)101(8)101 = (1 5 3 9)(2 6)(4 7)(8).

Theorem 9. Every permutation in Sn can be written as a product of disjoint
cycles. Moreover, this product is unique up to cycling elements without cycles
and permuting the order of the cycles.

Proof. Take σ ∈ Sn.
Existence: Take a1 ∈ {1, 2, . . . , n}. Consider a1, a1σ, a1σ

2, . . . .
All of these are in the finite set {1, 2, . . . , n}, so we must have a1σ

r = a1σ
s

for some r, s with r < s.
Then a1 = a1σ

s−r, so in fact a1 is the first element to be repeated.
Say k1 is the smallest positive integer with a1σ

k1 = a1.
Then σ permutes {a1, a1σ, a1σ2, . . . , a1σ

k1−1} (the orbit of a1) via the
cycle (a1 a1σ a1σ

2 . . . a1σ
k1−1).

If k1 = n, then σ = (a1 a1σ a1σ
2 . . . a1σ

k1−1) is a cycle and we are done.
If not, then there is a2 not in the orbit of a1. Repeating the same argument

shows that σ permutes the orbit of a2 via a cycle.
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The two cycles must be disjoint, because if a1σ
i = a2σ

j then a2 = a1σ
i−j

is in the orbit of a1, which it isn’t.
Continuing in this way, we obtain σ as a product of disjoint cycles. The

process must stop, because {1, 2, . . . , n} is finite so eventually the orbits will
use it all up.
Uniqueness: Suppose that σ = π1 · · · πr = τ1 · · · τs

where π1, . . . , πr are disjoint cycles
and τ1, . . . , τs are disjoint cycles.
Then 1 appears in exactly one πi, without loss of generality say it’s π1 (if

necessary reorder the cycles, which is allowed since they commute),
and similarly 1 appears in exactly one τj, say τ1.
Now without loss of generality 1 appears at the start of π1 and τ1 (if

necessary cycle elements within the cycle).
Then 1σ = 1π1 = 1τ1 and so on,
and so π1 = τ1 = (1 1σ 1σ2 . . . 1σk−1) where k is the size of the orbit of

1 under σ.
Repeating with an element not in the orbit of 1 shows that π2 = τ2 and

so on.
So in fact the decomposition into disjoint cycles are the same.

Remark. We often do not record 1-cycles, eg σ = (1 5 3 9)(2 6)(4 7)(8) is
usually written as (1 5 3 9)(2 6)(4 7).

Definition. For a given permutation σ ∈ Sn, Theorem 9 shows that the
lengths of the cycles of σ (when written as a product of disjoint cycles) are
well defined. This is called the cycle type of σ.

Example. The permutation (1 5 3 9)(2 6)(4 7) ∈ S9 has cycle type 4, 2, 2,
1.

Proposition 10. Let π ∈ Sn be written as π = σ1σ2 · · ·σk as a product of
disjoint cycles. For 1 ≤ i ≤ k, let li be the length of σi. Then the order of π
is lcm(l1, . . . , lk). “cycle type determines order”

Proof. Exercise.

Definition. We say that two permutations σ, τ ∈ Sn are conjugate if there
is some ρ ∈ Sn with σ = ρ−1τρ.

Lemma 11. Let (a1 a2 . . . ak) be a cycle in Sn, and take σ ∈ Sn. Then

σ−1(a1 a2 . . . ak)σ = (a1σ a2σ . . . akσ).

Proof. Exercise (on Sheet 2).
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Theorem 12. Let σ, τ ∈ Sn. They are conjugate if and only if they have
the same cycle type.

Proof. (⇒) Assume that σ, τ are conjugate, so there is ρ ∈ Sn such that
σ = ρ−1τρ.

Say τ = π1 · · · πr where the πi are disjoint cycles.
By Lemma 11, ρ−1πiρ is a cycle of the same length as πi.
But σ = ρ−1τρ = ρ−1π1ρρ

−1π2ρ · · · ρ−1πrρ
so σ has the same cycle type as τ .
(⇐) Assume that σ and τ have the same cycle type, say

σ = (a1 . . . ak1)(ak1+1 . . . ak2) · · · (akm−1+1 . . . akm)

and τ = (b1 . . . bk1)(bk1+1 . . . bk2) · · · (bkm−1+1 . . . bkm).

Define ρ ∈ Sn as follows: define aiρ = bi for 1 ≤ i ≤ km.
Then, by Lemma 11, ρ−1(a1 . . . ak1)ρ = (b1 . . . bk1) and so on,
so ρ−1σρ = τ , so σ and τ are conjugate.

Definition. An n× n matrix is a permutation matrix if each row and each
column contains exactly one entry that is 1, with all other entries 0.

Remark. Take σ ∈ Sn. We obtain a corresponding permutation matrix Pσ
by specifying that the nonzero entry in row i is a 1 in column iσ. So Pσ has
i, j entry δiσ,j. Note that Pσ genuinely is a permutation matrix.

Example. In S3, we have

P(1 2) =

 0 1 0
1 0 0
0 0 1


and

P(1 3 2) =

 0 0 1
1 0 0
0 1 0

 .

Lemma 13. If σ, τ ∈ Sn, then Pστ = PσPτ .

Proof. The i,j entry of PσPτ is

(PσPτ )i,j =
n∑
k=1

(Pσ)i,k(Pτ )k,j (definition of matrix multiplication)

=
n∑
k=1

δiσ,kδkτ,j

= δiστ,j

= (Pστ )i,j.
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Lemma 14. If σ ∈ Sn is a transposition, then det(Pσ) = −1.

Proof. Say σ = (i j).
Then Pσ is In with rows i and j swapped,
so det(Pσ) = − det(In) = −1.

Definition. A permutation is odd (resp. even) if it can be written as a
product of an odd (resp. even) number of transpositions.

Theorem 15. (i) Any permutation in Sn can be written as a product of
transpositions.

(ii) A permutation cannot be both even and odd.

Proof. (i) Any permutation in Sn can be written as a product of dis-
joint cycles (Theorem 9), so we concentrate on an arbitrary cycle
(a1 a2 . . . ak).

We have

(a1 a2 . . . ak) = (a1 a2)(a1 a3) · · · (a1 ak).

(ii) Say σ = τ1 · · · τk where τ1, . . . , τk are transpositions.

Then

det(Pσ) = det(Pτ1 · · ·Pτk) by Lemma 13

= det(Pτ1) · · · det(Pτk) as det multiplicative

= (−1)k by Lemma 14.

So σ cannot be both even and odd.

Remark. From this, we see that a cycle is odd if and only if it has even
length.

So a permutation is even if and only if its cycle type has an even number
of cycles of even length.

Also, (ii) shows that σ is even if and only if det(Pσ) = 1.

Definition. For n ≥ 1, define An := {σ ∈ Sn : σ is even }, the nth alternat-
ing group.

Proposition 16. (i) An is a subgroup of Sn.
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(ii) For n ≥ 2, the order of An is 1
2
n!.

(iii) For n ≥ 4, An is non-Abelian.

Proof. (i) – Closure: Take σ, τ ∈ An, so σ and τ are even.

Then det(Pσ) = det(Pτ ) = 1 by Theorem 15,

so det(Pστ ) = det(PσPτ ) = det(Pσ) det(Pτ ) = 1 (using Lemma
13),

so στ is even so στ ∈ An.

– Identity: Note that e (the identity permutation) is a product of 0
transpositions and hence even, so e ∈ An.

– Inverses: Take σ ∈ An. Then

det(PσPσ−1) = det(Pσ) det(Pσ−1)

= det(Pσ−1),

but also

det(PσPσ−1) = det(In)

= 1,

so σ−1 is even so σ−1 ∈ An.

So An ≤ Sn.

(ii) Define

f : An → Sn \ An
σ 7→ (1 2)σ.

Note that f is well defined: if σ is even, then (1 2)σ is odd.

And f is a bijection: it has inverse σ 7→ (1 2)σ.

So |An| = |Sn \ An| = |Sn| − |An|, so |An| = 1
2
|Sn| = 1

2
n!.

(iii) For n ≥ 4, (1 2 3) and (1 2 4) are elements of An.

Now

(1 2 3)(1 2 4) =

while (1 2 4)(1 2 3) =

so An is non-Abelian.

These products have been left blank for you to fill in.
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Remark. In Sn, two permutations are conjugate if and only if they have the
same cycle type. This is not true in An. If two elements are conjugate in
An, then they are conjugate in Sn and so have the same cycle type. But it
is possible for two elements of An to have the same cycle type without being
conjugate in An. For example, (1 2 3) and (1 3 2) are not conjugate in A4

(exercise: show this).

4 Subgroups

Proposition 17 (Subgroup test). Let G be a group. The subset H ⊆ G is
a subgroup of G if and only if H is non-empty and h1h

−1
2 ∈ H for all h1,

h2 ∈ H.

Proof. (⇒) Assume that H is a subgroup of G.
Then e ∈ H, so H is non-empty.
Also, if h1, h2 ∈ H then h−12 ∈ H as H contains inverses
so h1h

−1
2 ∈ H as H is closed under the group operation.

(⇐) Assume that H is non-empty, say h ∈ H, and that h1h
−1
2 ∈ H for all

h1, h2 ∈ H.

• Identity: Have hh−1 = e ∈ H.

• Inverses: Take h1 ∈ H. Have eh−1 = h−11 ∈ H.

• Closure: Take h1, h2 ∈ H. Then h−12 ∈ H so h1(h
−1
2 )−1 = h1h2 ∈ H.

So H ≤ G.

Proposition 18. Let G be a group. Let H, K be subgroups of G. Then
H ∩K is a subgroup of G.

Proof. Exercise.

Remark. We can extend this to show that for any index set I, if Hi (for

i ∈ I) are subgroups of a group G, then
⋂
i∈I

Hi is a subgroup of G.

Definition. Let G be a group. Let S be a subset of G. The subgroup
generated by S, written 〈S〉, is the smallest subgroup of G that contains S,
that is,

〈S〉 =
⋂

S⊆H≤G

H.

The elements of S are called the generators of 〈S〉.
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Remark. For g ∈ G, we write 〈g〉 for 〈{g}〉.

Example. G = Z, S = {14, 21}.
We have 7 = 21− 14 ∈ 〈S〉, so 〈S〉 contains all multiples of 7.
Also, every element of 〈S〉 is a multiple of 7.
So 〈S〉 = 7Z.

Division algorithm Let a, b be integers with b > 0. Then there are unique
integers q and r such that a = qb+ r and 0 ≤ r < b.

Proposition 19. Let G be a group. Take g ∈ G.

(i) We have 〈g〉 = {gk : k ∈ Z}.

(ii) If g has finite order, then 〈g〉 = {e, g, g2, . . . , go(g)−1}.

Proof. (i) ⊇: Clearly if k ∈ Z then gk ∈ 〈g〉, so 〈g〉 ⊇ {gk : k ∈ Z}.
⊆:

Claim. H = {gk : k ∈ Z} is a subgroup of G.

Proof of claim

– We have e = g0 ∈ H so H is non-empty.

– If gk, gl ∈ H, then (gk)(gl)−1 = gk−l ∈ H.

So by subgroup test have H ≤ G, which proves the claim.

So 〈g〉 ⊆ H.

So 〈g〉 = H.

(ii) Let d = o(g).

⊇: Clearly 〈g〉 ⊇ {e, g, . . . , gd−1}.
⊆: Take gk ∈ 〈g〉.
By the division algorithm, we have k = qd + r for some q, r ∈ Z with
0 ≤ r ≤ d− 1.

Then gk = gqd+r = (gd)qgr = gr ∈ {e, g, . . . , gd−1}.
So 〈g〉 ⊆ {e, g, . . . , gd−1}.
So 〈g〉 = {e, g, . . . , gd−1}.
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Remark. So a group G is cyclic precisely when there is some g ∈ G such
that G = 〈g〉.

In particular, a finite group G is cyclic if and only if there is some g ∈ G
with o(g) = |G|.

Example. • C5 = {e, g, g2, g3, g4} is generated by any one of g, g2, g3,
g4.

• C6 = {e, g, g2, g3, g4, g5} is generated by either of g, g5.

• C2 × C2 is not cyclic: it has order 4, but contains no element of order
4.

Theorem 20. Let G be a cyclic group, say G = 〈g〉.

(i) If G is finite, with |G| = n, then G ∼= Cn.

(ii) If G is infinite, then G ∼= Z.

Proof. (i) We see that g has order n, and G = {e, g, . . . , gn−1} ∼= Cn.

(ii) Define

θ : G→ Z
gk 7→ k.

This is an isomorphism.

Theorem 21. Let G be a cyclic group. Let H be a subgroup of G. Then H
is cyclic.

Proof. Say G = 〈g〉.
If H = {e}, then H is cyclic and we are done.
So suppose not, so gk ∈ H for some k ∈ Z \ {0}.
Then we must have gl ∈ H for some l ∈ Z>0, because if gk ∈ H then also

g−k ∈ H.
Let d = min{m ∈ Z>0 : gm ∈ H}.
Then certainly 〈gd〉 ⊆ H.
Take gn ∈ H. By the division algorithm, there are q, r ∈ Z with n = qd+r

and 0 ≤ r < d.
Then gn = gqd+r, so gr = gn−qd = gn(gd)−q ∈ H.
Since 0 ≤ r < d and d is minimal, we must have r = 0. That is, d divides

n, and so gn ∈ 〈gd〉.
So H = 〈gd〉 is cyclic.
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Remark. Applying this to the cyclic group Z shows that every subgroup of
Z is of the form 〈m〉 = mZ for some integer m.

Consequently, given any two integers m and n, there are integers h and l
such that

〈m,n〉 = 〈h〉 and 〈m〉 ∩ 〈n〉 = 〈l〉.

We may assume that h and l are positive.

Example. m = 14, n = 21. Then 〈14, 21〉 = 〈7〉 and 〈14〉 ∩ 〈21〉 = 〈42〉, so
we can take h = 7, l = 42.

Proposition 22. Let m, n be integers. Let h, l be positive integers such that
〈m,n〉 = 〈h〉 and 〈m〉 ∩ 〈n〉 = 〈l〉. Then

(i) h | m and h | n (that is, h is a common factor of m and n);

(ii) there are a, b ∈ Z such that h = am+ bn ( Bézout’s lemma);

(iii) if d | m and d | n, then d | h (that is, h is divisible by every common
factor of m and n);

(iv) m | l and n | l (that is, l is a common multiple of m and n);

(v) if m | c and n | c, then l | c (that is, any common multiple of m and n
is a multiple of l).

Proof. (i) We have m ∈ 〈m,n〉 = 〈h〉, so m = kh for some k ∈ Z so h | m.
Similarly h | n.

(ii) We have h ∈ 〈h〉 = 〈m,n〉 so h = am + bn for some a, b ∈ Z (here we
use that Z is Abelian).

(iii) Suppose that d | m and d | n. Then d | (rm+ sn) for any r, s ∈ Z. So
from (ii) we have d | h.

(iv) We have l ∈ 〈l〉, so l ∈ 〈m〉 and l ∈ 〈n〉 so m | l and n | l.

(v) Suppose that m | c and n | c. Then c ∈ 〈m〉 and c ∈ 〈n〉, so c ∈
〈m〉 ∩ 〈n〉 = 〈l〉. So l | c.

Definition. We define h here to be the highest common factor (hcf ) of m
and n, and l to be the least common multiple (lcm) of m and n.

Lemma 23. Let G be a group, let g ∈ G be an element with finite order d.
We have gk = e if and only if d | k.
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Proof. (⇐) Assume that d | k, say k = ad where a ∈ Z.
Then gk = (gd)a = e.

(⇒) Assume that gk = e.
By the division algorithm, we have k = qd+ r for some integers q, r with

0 ≤ q < d.
Then gr = gk−qd = gk(gd)q = e.
Since r < d and d is minimal, we have r = 0.
So d | k.

Theorem 24 (Chinese Remainder Theorem). Let m, n be coprime positive
integers (that is, they have hcf 1). Then Cm×Cn is cyclic, and is isomorphic
to Cmn.

Proof. Say Cm = 〈g〉 and Cn = 〈h〉.

Claim. (g, h) ∈ Cm × Cn has order mn.

Proof of claim We have (g, h)mn = ((gm)n, (hn)m)) = (e, e), so the
order of (g, h) is at most mn.

Also, for any k ∈ Z>0 if (g, h)k = (e, e) then gk = e and hk = e.
So m | k and n | k, by Lemma 23.
Since m and n are coprime, by Bézout there are integers a and b such

that am+ bn = 1.
Then akm + bkn = k, and both terms on the left are divisible by

mn, so mn | k, so k ≥ mn.
So the order of (g, h) is mn, which proves the claim.

Now |Cm × Cn| = mn, so Cm × Cn is a group of order mn containing an
element with order mn, so Cm × Cn is cyclic and Cm × Cn ∼= Cmn.

5 Equivalence relations

Definition. A (binary) relation on a set S is a subset of S × S.
For a relation R ⊆ S × S, we write aRb if and only if (a, b) ∈ R.

Definition. Let ∼ be a relation on a set S. We say that ∼ is an equivalence
relation if

• ∼ is reflexive (that is, if a ∼ a for all a ∈ S);

• ∼ is symmetric (that is, if a ∼ b then b ∼ a);

• ∼ is transitive (that is, if a ∼ b and b ∼ c, then a ∼ c).
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Example. • S = GLn(R), with A ∼ B if and only if there is P ∈
GLn(R) with A = P−1BP .

• S is a group, with x ∼ y if and only if x = y or x = y−1.

Proposition 25. Let n ≥ 2 be an integer. Define a relation ∼ on Z by a ∼ b
if and only if a− b is a multiple of n. Then ∼ is an equivalence relation.

Proof. Take a, b, c ∈ Z.

• reflexive: a− a is a multiple of n.

• symmetric: if n divides a− b then n divides b− a.

• transitive: if n divides a− b and b− c, say a− b = kn and b− c = ln
where k, l ∈ Z, then a − c = (a − b) + (b − c) = (k + l)n so n divides
a− c.

Definition. The equivalence relation in Proposition 25 is called congruence
modulo n.

Definition. Let G be a group. We say that g1, g2 ∈ G are conjugate if there
is h ∈ G with g1 = h−1g2h.

Proposition 26. Let G be a group. Conjugacy in G is an equivalence rela-
tion.

Proof. Write h ∼ k if and only if h and k are conjugate in G (that is, if and
only if there is g ∈ G with h = g−1kg).

Take g1, g2, g3 ∈ G.

• reflexive: have g1 = e−1g1e so g1 ∼ g1.

• symmetric: if g1 ∼ g2, then there is h ∈ G with g1 = h−1g2h. Then
g2 = hg1h

−1 = (h−1)−1g1(h
−1) so g2 ∼ g1.

• transitive: if g1 ∼ g2 and g2 ∼ g3, then there are h1, h2 ∈ G with
g1 = h−11 g2h1 and g2 = h−12 g3h2.

Then g1 = h−11 (h−12 g3h2)h1 = (h2h1)
−1g3(h2h1), so g1 ∼ g3.

Definition. Let ∼ be an equivalence relation on a set S. For a ∈ S, we define
the equivalence class of a, written [a] or a, to be the set {b ∈ S : a ∼ b}. “all
the things related to a.”
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Example. The equivalence classes for congruence modulo n are

0 = nZ
1 = 1 + nZ
2 = 2 + nZ
...

n− 1 = (n− 1) + nZ

—by the division algorithm, this is all.

Example. For a permutation σ ∈ Sn, its equivalence class under conjugation
in Sn is its conjugacy class, which, as we saw, consists precisely of those
permutations in Sn that have the same cycle type as σ.

Definition. Let S be a set, let I be an index set. For i ∈ I, let Si be a
subset of S. We say that the Si (for i ∈ I) partition S if

• Si 6= ∅ for all i ∈ I (non-empty);

•
⋃
i∈I

Si = S (cover);

• Si ∩ Sj = ∅ for i 6= j (pairwise disjoint).

Theorem 27. Let ∼ be an equivalence relation on a set S. The equivalence
classes of ∼ partition S.

Proof. • Non-empty: for any a ∈ S, we have a ∈ [a] as ∼ is reflexive, so
each equivalence class is non-empty.

• Cover: since a ∈ [a] for all a ∈ S, certainly
⋃
a∈S

[a] = S.

• Pairwise disjoint: take a, b ∈ S. Aim: [a] = [b] or [a] ∩ [b] = ∅
Suppose c ∈ [a] ∩ [b]. Aim: [a] = [b]

Then a ∼ c and b ∼ c, so by symmetry c ∼ b, so by transitivity a ∼ b.

If d ∈ [b], then b ∼ d, so by transitivity a ∼ d, so d ∈ [a]. So [b] ⊆ [a].

Similarly, [a] ⊆ [b].

So either [a] ∩ [b] = ∅ or [a] = [b].

Given an equivalence relation on a set S, we obtain a partition of S. We
can go the other way too.
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Theorem 28. Let P be a partition of a set S. For a ∈ S, write Pa for the
unique part in P with a ∈ Pa. Define a relation ∼ on S by a ∼ b if and only
if b ∈ Pa. Then ∼ is an equivalence relation.

Proof. Take a, b, c ∈ S.

• reflexive: we have a ∈ Pa so a ∼ a.

• symmetric: if a ∼ b then b ∈ Pa, so b ∈ Pa ∩ Pb, so Pa ∩ Pb 6= ∅, so
Pa = Pb, so a ∈ Pb, so b ∼ a.

• transitive: if a ∼ b and b ∼ c, then b ∈ Pa ∩ Pb and so Pa = Pb, but
also c ∈ Pb, so c ∈ Pa so a ∼ c.

Corollary 29. There is a bijection between equivalence relations on a set S
and partitions of that same set S.

Proof. Theorem 27 gives a map in one direction, and a quick check shows
that Theorem 28 gives the inverse.

We saw in Proposition 25 that congruence modulo n is an equivalence
relation on Z. We write a ≡ b (mod n) to mean that a and b are congruent
modulo n. We noted that the equivalence classes are 0, 1, . . . , n− 1. Write
Zn for the set of these equivalence classes. (Note that Zn is not a subset of
Z.)

Definition. Define binary operations + and × on Zn by

a+ b = a+ b

and a× b = a× b.

Lemma 30. The operations + and × on Zn are well defined.

Remark. The concern here is what happens if we have potentially different
representatives of the same equivalence class, say a = c and b = d. We want
to know that a+ b = c+ d and a× b = c× d.

Proof. Assume that a = c and b = d.
Then a ≡ c (mod n) and b ≡ d (mod n),
so there are k, l ∈ Z such that a− c = kn and b− d = ln.
Then (a + b) − (c + d) = (a − c) + (b − d) = (k + l)n so a + b ≡ c + d

(mod n),
and (a× b)− (c×d) = ab− (a−kn)(b− ln) = (bk+al−kln)n so ab ≡ cd

(mod n),
so a+ b = c+ d and a× b = c× d.
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Proposition 31. (Zn,+) is an Abelian group. Moreover, it is cyclic and
isomorphic to Cn.

Furthermore, × is associative and commutative on Zn, and × is distribu-
tive over +.

Proof. Exercise. Check that the relevant properties transfer across from Z.
Note that 1 has order n in Zn, so (Zn,+) is cyclic generated by 1.

Proposition 32. (i) Take x ∈ Zn. Then x has a multiplicative inverse in
Zn (that is, there exists y ∈ Zn with x y = 1) if and only if hcf(x, n) =
1.

(ii) If p is prime, then Zp is a field.

(iii) Let Z×n = {x ∈ Zn : x has a multiplicative inverse} be the set of units
in Zn. Then Z×n is a group under multiplication.

Proof. Exercise (see Sheet 4).

6 Cosets and Lagrange’s Theorem

Definition. Let G be a group, let H be a subgroup of G. A left coset of H
in G is a set gH := {gh : h ∈ H} where g ∈ G. The set of left cosets of H
in G is denoted G/H. The cardinality of this set is called the index of H in
G. A right coset of H in G is a set Hg := {hg : h ∈ H} where g ∈ G.

Remark. If G is Abelian, then left cosets and right cosets are the same
thing. If G is not Abelian, then we may or may not have gH = Hg for any
given g ∈ G.

Example. G = Z, H = nZ.
The left coset of r is r + nZ (note that we write this coset additively,

because the group operation is addition).
The cosets (left and right as G is Abelian) are nZ, 1+nZ, . . . , (n−1)+nZ.
This looks a lot like Zn. . . .

Example. G = S3, H = 〈(1 2)〉 = {e, (1 2)}. The left cosets are

eH = H

(1 2)H = H

(1 3)H = {(1 3), (1 3)(1 2)} = {(1 3), (1 3 2)}
(2 3)H = {(2 3), (2 3)(1 2)} = {(2 3), (1 2 3)}

(1 2 3)H = {(1 2 3), (1 2 3)(1 2)} = {(1 2 3), (2 3)}
(1 3 2)H = {(1 3 2), (1 3 2)(1 2)} = {(1 3 2), (1 3)},
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so H has index 3 in G.

Lemma 33 (Coset equality test). Let H be a subgroup of a group G. Take
g1, g2 ∈ G. We have g1H = g2H if and only if g−12 g1 ∈ H.

Proof. (⇒) Assume that g1H = g2H.
Then g1 = g1e ∈ g1H so g1 ∈ g2H so there is h ∈ H with g1 = g2h.
Then g−12 g1 = h ∈ H.

(⇐) Assume that g−12 g1 ∈ H, say g−12 g1 = h ∈ H. Aim: show sets g1H and
g2H are equal

Take an element of g1H, say g1h1 where h1 ∈ H. Aim: show g1h1 ∈ g2H
Then g−12 g1h1 = hh1 ∈ H so g1h1 = g2hh1 ∈ g2H
So g1H ⊆ g2H.
Since g−11 g2 = h−1 ∈ H, we similarly obtain g2H ⊆ g1H.
So g1H = g2H.

Theorem 34 (Lagrange’s Theorem). Let G be a finite group and let H be a
subgroup of G. Then |H| | |G|.

“the order of a subgroup divides the order of the group”

Proof.

Claim. The left cosets of H partition G.
Proof of claim

• Non-empty: we have g ∈ gH so gH 6= ∅ for all g ∈ G.

• Cover: since g ∈ gH for all g ∈ G, we have
⋃
g∈G

gH = G.

• Pairwise disjoint: take g1, g2 ∈ G. Aim: g1H = g2H or g1H ∩ g2H = ∅
Suppose g ∈ g1H ∩ g2H. Aim: g1H = g2H

Then there are h1, h2 ∈ H with g = g1h1 = g2h2,

so g−12 g1 = h2h
−1
1 ∈ H,

so by the coset equality test we have g1H = g2H.

So g1H = g2H or g1H ∩ g2H = ∅.

This proves the first claim.

Claim. Each left coset of H has the same size as H.
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Proof of claim Take g ∈ G. Define

f : H → gH

h 7→ gh.

This is a bijection (it has inverse g̃ 7→ g−1g̃).
So |H| = |gH|.
This proves the second claim.

Then |G| = |G/H| × |H|, so |H| | |G|.

Remark. We can define a relation ∼ on G via g1 ∼ g2 if and only if g−12 g1 ∈
H. We can check that ∼ is an equivalence relation on G, and that the
equivalence classes are precisely the left cosets of H in G. This gives an
alternative proof that the cosets partition G.

WARNING There is not a converse to Lagrange’s Theorem. It is not in
general true that if k | |G| then G has a subgroup of order k.

For example, |A4| = 1
2
× 4! = 12, but A4 has no subgroup of order 6

(exercise: check this).

Example. Since 13 is prime, the only subgroups of (Z13,+) are {0} and Z13.

Lemma 35. Let G be a finite group. Take g ∈ G. Then g has finite order.

Proof. Consider g, g2, g3, . . . . These are all in the finite set G, and so there
are positive integers r and s with r < s and gr = gs. Then e = gs−r, so the
order of g is finite (and is at most s− r).

Corollary 36. Let G be a finite group. Take g ∈ G. Then o(g) | |G|.
“the order of an element divides the order of the group”

Proof. Note that 〈g〉 = {e, g, g2, . . . , go(g)−1} is a subgroup of G with order
o(g). Now apply Lagrange.

Corollary 37. Let p be prime. Let G be a finite group with order p. Then
G is cyclic.

Proof. Take g ∈ G \ {e}. Then o(g) divides p and is not 1, so o(g) = p. So
g is a generator of G.

Remark. This proof shows that any non-identity element generates G.

Corollary 38. Let G be a finite group. Take g ∈ G. Then g|G| = e.
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Proof. We have go(g) = e and o(g) | |G|.

The next theorem is another corollary of Lagrange’s Theorem.

Theorem 39 (Fermat’s Little Theorem). Let p be prime. Let a be an integer
coprime to p. Then ap−1 ≡ 1 (mod p).

Proof. (Z×p ,×) is a group of order p− 1. Apply Corollary 38.

Theorem 40 (Fermat-Euler Theorem). Let n ≥ 2 be an integer. Let a be
an integer coprime to n. Define the Euler totient function φ via

φ(n) := |{k ∈ N : 1 ≤ k ≤ n, hcf(k, n) = 1}|.

Then aφ(n) ≡ 1 (mod n).

Proof. (Z×n ,×) is a group of order φ(n). Apply Corollary 38.

Remark. The Euler totient function φ has many interesting properties. One
special case is that if p is prime, then φ(p) = p−1, so Fermat’s Little Theorem
is a special case of the Fermat-Euler theorem.

7 Historical interlude

On MacTutor, you will find two short outlines of the historical develop-
ment of the idea of a group, one at http://mathshistory.st-andrews.ac.
uk/HistTopics/Development_group_theory.html and another at http://
mathshistory.st-andrews.ac.uk/HistTopics/Abstract_groups.html. It’s
an interesting story, and well worth exploring to trace the development of a
mathematical concept.

Why is the Chinese Remainder Theorem so named? The first known in-
stance of the sort of problem (which we would now express using simultaneous
congruences) that can be solved using this approach is in a Chinese text called
Sunzi suanjing, by Sun Zi, probably written around the 5th century CE. For
more discussion of this work, and the date it was written, you could consult
http://mathshistory.st-andrews.ac.uk/Biographies/Sun_Zi.html . As
with other ideas in maths, this one was refined and developed further by oth-
ers, including for example Qin Jiushao (see below).

The MacTutor website has biographies of many mathematicians. Here
are some whose names have occurred in this course, or who are in other ways
importantly connected with the study of abstract algebra (which includes
group theory).
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• Niels Abel (1802–1829) http://mathshistory.st-andrews.ac.uk/Biographies/
Abel.html

• Augustin-Louis Cauchy (1789–1857) http://mathshistory.st-andrews.
ac.uk/Biographies/Cauchy.html

• Arthur Cayley (1821–1895) http://mathshistory.st-andrews.ac.

uk/Biographies/Cayley.html

• Leonhard Euler (1707–1783) http://mathshistory.st-andrews.ac.

uk/Biographies/Euler.html

• Pierre de Fermat (1601–1665) http://mathshistory.st-andrews.ac.
uk/Biographies/Fermat.html

• Évariste Galois (1811–1832) http://mathshistory.st-andrews.ac.

uk/Biographies/Galois.html

• Qin Jiushao (1202–1261) http://mathshistory.st-andrews.ac.uk/

Biographies/Qin_Jiushao.html

• Joseph-Louis Lagrange (1736–1813) http://mathshistory.st-andrews.
ac.uk/Biographies/Lagrange.html

• Emmy Noether (1882–1935) http://mathshistory.st-andrews.ac.

uk/Biographies/Noether_Emmy.html

• Sun Zi (about 400 to about 460) http://mathshistory.st-andrews.
ac.uk/Biographies/Sun_Zi.html

The Groups and Groups Actions course will continue in Trinity
Term!
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