Groups and Group Actions, Sheet 1, HT20 Binary Operations. The Group Axioms. Examples.

Main course

1. For each of the following sets S and binary operations * on S, state whether (a) * is associative, (b) * is commutative, (c) an identity exists, (d) inverses exist.

- (i) $S = \mathbb{N}, m * n = \max\{m, n\}.$ (ii) $S = \mathbb{Z}, m * n = m + n + 1.$ (iii) $S = M_n(\mathbb{R})$ where $n \ge 2$ and $A * B = \frac{1}{2}(AB + BA).$
- (iv) $S = \{f : \mathbb{R} \to \mathbb{R}\}, f * g = f \circ g.$

2. There are 56 different Latin squares of size 5×5 whose first row and first column are both (e, a, b, c, d). Construct one such square which is a group table, justifying your reasons for it representing a group, and one such square that does not represent a group, again saying why.

3. Let A and B be complex $n \times n$ matrices. If $A = (a_{ij})$ then we define its complex conjugate as $\overline{A} = (\overline{a_{ij}})$. Show that

$$\overline{A+B} = \overline{A} + \overline{B}, \qquad \overline{AB} = \overline{A} \ \overline{B}.$$

Show that U(n) is a group. Show further that U(1) is Abelian and that U(n) is non-Abelian for $n \ge 2$.

4. An affine transformation of \mathbb{R}^2 is one of the form

$$\left(\begin{array}{c} x\\ y\end{array}\right)\mapsto A\left(\begin{array}{c} x\\ y\end{array}\right)+\mathbf{b}$$

where A is an invertible 2×2 matrix and **b** is a 2×1 column vector. Let g_1 and g_2 be affine transformations of \mathbb{R}^2 . Show that their composition $g_2 \circ g_1$ is an affine transformation. Show further that the affine transformations of \mathbb{R}^2 form a group $AGL(2, \mathbb{R})$ under composition.

5. The following Cayley table describes a group G. (You are not asked to prove this.)

*	e	a	b	С	d	f	g	h
e	e	a	b	С	d	f	g	h
a	a	e	h	g	f	d	С	b
b	b	c	d	f	g	h	e	a
c	c	b	a	e	h	g	f	d
d	d	f	g	h	e	a	b	С
f	f	d	c	b	a	e	h	g
g	g	h	e	a	b	С	d	f
h	h	g	f	d	c	b	a	e

- (i) Find the inverse of each element of G.
- (ii) Are there any elements of G, other than e, which commute with every element of G?
- (iii) Determine the order of each element of G.
- (iv) Show that $G = \{e, b, b^2, b^3, a, ba, b^2a, b^3a\}$ and that $ab = b^3a$.
- (v) In all, G has ten subgroups, of orders 1, 2, 2, 2, 2, 2, 4, 4, 4, 8. List the subgroups of G.

6. (i) Let G, H be groups. Show that $G \times H$ is Abelian if and only if G, H are both Abelian. (ii) Show that the map

 $\phi: \mathbb{C}^* \to (0,\infty) \times S^1$ given by $\phi(z) = (|z|, z/|z|)$

is an isomorphism.

(iii) Show that S^1 is isomorphic to SO(2) but that $S^1 \times \{\pm 1\}$ is not isomorphic to O(2).

Starter

S1. Show that the general linear group $GL_n(\mathbb{R})$ (of invertible $n \times n$ real matrices) does indeed form a group under matrix multiplication.

S2. Using the notation from the lecture notes, show that $e, r, r^2, r^3, s, rs, r^2s, r^3s$ are 8 distinct symmetries of the square.

S3. Complete the proof of Proposition 5 from the notes by showing that the product operation * on $G \times H$ is associative.

Pudding

P1. Let G be a finite group of even order. Must it contain an element of order 2?

P2.

- (i) Is there a group in which no non-identity element is its own inverse?
- (ii) Is there a group in which every non-identity element is its own inverse?

P3. How many ways are there to complete the following grid so that it is the Cayley table of a group?

