Groups and Group Actions, Sheet 2, HT20

Permutations of a finite set. Transpositions. Parity. Conjugacy.

Main course

1. Three permutations α , β , γ of $\{1, 2, ..., 11, 12\}$ are given below. In each case express the permutation as a product of disjoint cycles.

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 12 & 6 & 5 & 7 & 4 & 8 & 11 & 2 & 3 & 9 & 10 & 1 \end{pmatrix}$$

$$\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 \end{pmatrix}$$

$$\gamma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 2 & 3 & 4 & 5 & 6 & 1 & 9 & 10 & 8 & 12 & 7 & 11 \end{pmatrix}$$

What is the order of each permutation? Which are even and which are odd permutations? Write α^2 , $\alpha\beta$, γ^{-1} as products of disjoint cycles.

2. There are five different types of cycle decomposition of $\{1, 2, 3, 4\}$: the identity permutation, 2-cycles (e.g. (12)), 3-cycles (e.g. (123)), 4-cycles (e.g. (1234)) and double transpositions (e.g. (12)(34)). How many are there of each type in S_4 ? (You should have 4! = 24 permutations in all.)

What types of cycle decomposition arise among even permutations of $\{1, 2, 3, 4, 5\}$ and how many are there of each type? (Note that $|A_5| = 60$.)

3. Let σ be a permutation of $\{1, \ldots, n\}$ and let $k \in \{1, \ldots, n\}$. Show that

 $\sigma^{-1}(1\,2\,3\,\ldots\,k)\sigma = (1\sigma\,2\sigma\,\ldots\,k\sigma).$

The permutations $\alpha, \beta, \gamma \in S_5$ are given by

$$\alpha = (1\,2\,3)(4\,5), \quad \beta = (1\,2\,3\,4), \quad \gamma = (2\,3).$$

Find $(\alpha\beta^5\gamma^3\alpha^2\gamma\beta^3\alpha^5)^3$.

4. (i) Let $sgn(\sigma)$ denote the sign of a permutation $\sigma \in S_n$ (that is, $sgn(\sigma) = 1$ if σ is even and -1 if σ is odd). Show for $\sigma, \tau \in S_n$ that

$$\operatorname{sgn}(\sigma\tau) = \operatorname{sgn}(\sigma)\operatorname{sgn}(\tau).$$

(ii) Show that a permutation with odd order must be even. Does the converse hold?

(iii) The vertices of a regular pentagon are labelled clockwise 1 to 5. Show that every symmetry of the pentagon corresponds to an even permutation. How will the situation vary if the vertices are now arbitrarily labelled with the numbers 1 to 5?

- **5.** (i) Show that $V_4 = \{e, (12), (34), (13), (24), (14), (23)\}$ is an Abelian group.
- (ii) Show that V_4 is isomorphic to $C_2 \times C_2$.
- (iii) How many isomorphisms are there from V_4 to $C_2 \times C_2$?
- **6**. (i) Find a permutation $\alpha \in S_7$ such that $\alpha^4 = (2143567)$. Is α unique?
- (ii) Find all permutations $\alpha \in S_7$ such that $\alpha^3 = (1234)$.
- (iii) Find permutations $\alpha, \beta \in S_5$ both with order 3 such that $\alpha\beta$ has order 5.
- (iv) Let $n \ge 3$. Find permutations $\alpha, \beta \in S_n$ both with order 2 such that $\alpha\beta$ has order n.

Starter

S1. Here are two permutations in S_{10} . Write each as a product of disjoint cycles.

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 3 & 6 & 10 & 2 & 7 & 8 & 9 & 4 & 5 \end{pmatrix}$$
$$\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 4 & 8 & 5 & 3 & 2 & 9 & 6 & 1 & 7 & 10 \end{pmatrix}$$

What is the order of each?

Find each of the following products (using disjoint cycle notation): $\alpha\beta$, $\beta\alpha$, $\alpha^2\beta$, $\alpha^{-7}\beta^{-5}$, $\alpha\beta^3$.

S2. Which permutations in S_4 are even?

S3. How many permutations in S_6 have order 6?

Pudding

P1. What is the largest possible order of an element in S_5 ? In S_9 ? What is the smallest *n* for which an element of largest order in S_n must have three cycles (in disjoint cycle notation)?

P2. For each of the following sets X_i , determine whether every permutation in S_n can be written as a product of elements of X_i .

- (i) $X_1 = \{(j \ j+1) : 1 \le j < n\}$
- (ii) $X_2 = \{(1 \ k) : 1 < k \leq n\}$

(iii)
$$X_3 = \{(1 \ 2), (1 \ 2 \ \dots \ n)\}.$$

P3. If we choose a permutation in S_n at random, with all permutations being equally likely, what is the probability that our chosen permutation has exactly one 1-cycle?