Groups and Group Actions, Sheet 2, HT20
 Permutations of a finite set. Transpositions. Parity. Conjugacy.

Main course

1. Three permutations α, β, γ of $\{1,2, \ldots, 11,12\}$ are given below. In each case express the permutation as a product of disjoint cycles.

$$
\begin{aligned}
\alpha & =\left(\begin{array}{cccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
12 & 6 & 5 & 7 & 4 & 8 & 11 & 2 & 3 & 9 & 10 & 1
\end{array}\right) \\
\beta & =\left(\begin{array}{cccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1
\end{array}\right) \\
\gamma & =\left(\begin{array}{ccccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
2 & 3 & 4 & 5 & 6 & 1 & 9 & 10 & 8 & 12 & 7 & 11
\end{array}\right)
\end{aligned}
$$

What is the order of each permutation? Which are even and which are odd permutations? Write $\alpha^{2}, \alpha \beta, \gamma^{-1}$ as products of disjoint cycles.
2. There are five different types of cycle decomposition of $\{1,2,3,4\}$: the identity permutation, 2 -cycles (e.g. (12)), 3-cycles (e.g. (123)), 4-cycles (e.g. (1234)) and double transpositions (e.g. $(12)(34)$). How many are there of each type in S_{4} ? (You should have $4!=24$ permutations in all.)

What types of cycle decomposition arise among even permutations of $\{1,2,3,4,5\}$ and how many are there of each type? (Note that $\left|A_{5}\right|=60$.)
3. Let σ be a permutation of $\{1, \ldots, n\}$ and let $k \in\{1, \ldots, n\}$. Show that

$$
\sigma^{-1}(123 \ldots k) \sigma=(1 \sigma 2 \sigma \ldots k \sigma)
$$

The permutations $\alpha, \beta, \gamma \in S_{5}$ are given by

$$
\alpha=(123)(45), \quad \beta=(1234), \quad \gamma=(23)
$$

Find $\left(\alpha \beta^{5} \gamma^{3} \alpha^{2} \gamma \beta^{3} \alpha^{5}\right)^{3}$.
4. (i) Let $\operatorname{sgn}(\sigma)$ denote the sign of a permutation $\sigma \in S_{n}$ (that is, $\operatorname{sgn}(\sigma)=1$ if σ is even and -1 if σ is odd). Show for $\sigma, \tau \in S_{n}$ that

$$
\operatorname{sgn}(\sigma \tau)=\operatorname{sgn}(\sigma) \operatorname{sgn}(\tau)
$$

(ii) Show that a permutation with odd order must be even. Does the converse hold?
(iii) The vertices of a regular pentagon are labelled clockwise 1 to 5 . Show that every symmetry of the pentagon corresponds to an even permutation. How will the situation vary if the vertices are now arbitrarily labelled with the numbers 1 to 5 ?
5. (i) Show that $V_{4}=\{e,(12)(34),(13)(24),(14)(23)\}$ is an Abelian group.
(ii) Show that V_{4} is isomorphic to $C_{2} \times C_{2}$.
(iii) How many isomorphisms are there from V_{4} to $C_{2} \times C_{2}$?
6. (i) Find a permutation $\alpha \in S_{7}$ such that $\alpha^{4}=(2143567)$. Is α unique?
(ii) Find all permutations $\alpha \in S_{7}$ such that $\alpha^{3}=(1234)$.
(iii) Find permutations $\alpha, \beta \in S_{5}$ both with order 3 such that $\alpha \beta$ has order 5 .
(iv) Let $n \geqslant 3$. Find permutations $\alpha, \beta \in S_{n}$ both with order 2 such that $\alpha \beta$ has order n.

Starter

S1. Here are two permutations in S_{10}. Write each as a product of disjoint cycles.

$$
\begin{aligned}
\alpha & =\left(\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
1 & 3 & 6 & 10 & 2 & 7 & 8 & 9 & 4 & 5
\end{array}\right) \\
\beta & =\left(\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
4 & 8 & 5 & 3 & 2 & 9 & 6 & 1 & 7 & 10
\end{array}\right)
\end{aligned}
$$

What is the order of each?
Find each of the following products (using disjoint cycle notation): $\alpha \beta, \beta \alpha, \alpha^{2} \beta, \alpha^{-7} \beta^{-5}, \alpha \beta^{3}$.
S2. Which permutations in S_{4} are even?
S3. How many permutations in S_{6} have order 6 ?

Pudding

P1. What is the largest possible order of an element in S_{5} ? In S_{9} ? What is the smallest n for which an element of largest order in S_{n} must have three cycles (in disjoint cycle notation)?
P2. For each of the following sets X_{i}, determine whether every permutation in S_{n} can be written as a product of elements of X_{i}.
(i) $X_{1}=\{(j j+1): 1 \leqslant j<n\}$
(ii) $X_{2}=\{(1 k): 1<k \leqslant n\}$

P3. If we choose a permutation in S_{n} at random, with all permutations being equally likely, what is the probability that our chosen permutation has exactly one 1-cycle?

