Groups and Group Action, Sheet 3, HT2020 Starter

I would really appreciate feedback on ways in which these comments and solutions could be improved and made more helpful, so please let me know about typos (however trivial), mistakes, alternative solutions, or additional comments that might be useful.

Vicky Neale (vicky.neale@maths)
S1. In the dihedral group D_{8} (with the same notation as in lectures), what is the subgroup generated by $r s$? What is the subgroup $\langle r s, s\rangle$?

We have $\langle r s\rangle=\left\{(r s)^{k}: k \in \mathbb{Z}\right\}$.
But $(r s)^{2}=e$, so we find that $\langle r s\rangle=\{e, r s\} \leqslant D_{8}$.
Now $\langle r s, s\rangle$ is the smallest subgroup containing $r s$ and s, so it contains all products involving $r s$ and s. In particular, it contains their product $r s s=r$. So $\langle r s, s\rangle$ contains both r and s. But these generate all elements of the group, so $\langle r s, s\rangle=D_{8}$.

S2. In this question we work in the group \mathbb{Z}. Find all integers m such that $\langle m\rangle=\langle 3,4,6\rangle$, and find all integers n such that $\langle n\rangle=\langle 3\rangle \cap\langle 4\rangle \cap\langle 6\rangle$.

Let m be an integer such that $\langle m\rangle=\langle 3,4,6\rangle$. Then $1=4-3 \in\langle m\rangle$, and since 1 generates \mathbb{Z} this means that $\langle m\rangle=\mathbb{Z}$. We see that the only possibilities for m are 1 and -1 .

Let n be an integer such that $\langle n\rangle=\langle 3\rangle \cap\langle 4\rangle \cap\langle 6\rangle$. Now $\langle 6\rangle \subseteq\langle 3\rangle$ (every multiple of 6 is a multiple of 3), so $\langle n\rangle=\langle 4\rangle \cap\langle 6\rangle=\langle 12\rangle$. We see that $n=12$ or $n=-12$.

S3. Let G be a group. Define a relation \sim on G via $x \sim y$ if and only if $x=y$ or $x=y^{-1}$. Show that \sim is an equivalence relation. What are the equivalence classes?

- reflexive: for $x \in G$ we have $x=x$ and so $x \sim x$.
- symmetric: if $x \sim y$ then $x=y$ or $x=y^{-1}$, so $y=x$ or $y=x^{-1}$, so $y \sim x$.
- transitive: if $x \sim y$ and $y \sim z$, then we have four cases to check. If $x=y$ and $y=z$, then $x=z$ so $x \sim z$. If $x=y$ and $y=z^{-1}$, then $x=z^{-1}$ so $x \sim z$. If $x=y^{-1}$ and $y=z$, then $x=z^{-1}$ so $x \sim z$. Finally, if $x=y^{-1}$ and $y=z^{-1}$ then $x=z$ so $x \sim z$.

What is the equivalence class of a fixed element x ? If $x \neq x^{-1}$, then the equivalence class is $[x]=\left\{x, x^{-1}\right\}$. If x is self-inverse (that is, has order 1 or 2), then $[x]=\{x\}$.

