Linear Algebra II Problem Sheet 3, HT 2020

1. Let A be each of the following matrices in turn:

$\binom{2}{2}$	1	2		/ 1	1	0 \		$\binom{2}{2}$	1	$1 \rangle$	
0	0	1	,	-1	3	0	,	1	2	1	
$\int 0$	1	0 /		$\begin{pmatrix} -1 \end{pmatrix}$	4	$\begin{pmatrix} 0\\ 0\\ -1 \end{pmatrix}$		1	1	2 /	

Find all the eigenvectors of A, determine whether A is diagonalisable (over \mathbb{R}) and, if so, find an invertible real matrix P such that $P^{-1}AP$ is diagonal.

- 2. Define $S: M_n(\mathbb{R}) \to M_n(\mathbb{R})$ by $S(A) = A^T$. Prove that S has only two distinct eigenvalues and that its eigenvectors span $M_n(\mathbb{R})$.
- 3. For any polynomial $p(x) = a_0 + a_1 x + \dots + a_k x^k$ and any square matrix A, p(A) is defined as $p(A) = a_0 I + a_1 A + \dots + a_k A^k$. Show that if v is any eigenvector of A and $\chi_A(x)$ is the characteristic polynomial of A, then $\chi_A(A)v = 0$, Deduce that if A is diagonalisable then $\chi_A(A)$ is the zero matrix.
- 4. Let $M = \begin{pmatrix} -5 & 3 \\ 6 & -2 \end{pmatrix}$.
 - (i) Find a diagonal matrix D and an invertible matrix P such that $M = PDP^{-1}$.
 - (ii) Find at least one cube root of M, by observing that if $D = E^3$ then $M = (PEP^{-1})^3$.
 - (iii) Express the infinite series $e^M = \sum_{n=0}^{\infty} \frac{1}{n!} M^n$ (where $M^0 = I$) as a 2 × 2 matrix with entries involving the constant e. (You may assume any general properties of infinite series of matrices that you need.)
- 5. Let V be a real n dimensional vector space, and $T: V \to V$ be a linear mapping. Show that if λ is the only eigenvalue of T and T is diagonalisable then $T = \lambda I$.

Now let V be the vector space of real polynomials in x of degree at most d where d > 0. Which of the following linear mappings of V into itself are diagonalisable?

- (i) $T_1: f(x) \mapsto x \frac{df}{dx}$
- (ii) $T_2: f(x) \mapsto \frac{df}{dx}$
- (iii) $T_3: f(x) \mapsto f(x+1)$
- (iv) $T_4: f(x) \mapsto f(-x).$