Linear Algebra II Problem Sheet 4, HT 2020

1. Let $V = \mathbb{R}^3$ and

$$u_1 = (1, 0, 1), u_2 = (2, 3, 2), u_3 = (-1, 4, 7).$$

Compute a basis v_1, v_2, v_3 for \mathbb{R}^3 which is orthonormal with respect to the dot product such that $\operatorname{Sp}\{u_1, \dots, u_i\} = \operatorname{Sp}\{v_1, \dots, v_i\}$ for each $1 \leq i \leq 3$.

- 2. Let $A \in M_n(\mathbb{R})$ be a symmetric matrix. Show that if λ , $\mu \in \mathbb{R}$ are distinct eigenvalues of A with v and w associated eigenvectors, then v and w are orthogonal; that is, $v^T w = 0$.
- 3. Find a real orthogonal matrix P such that P^TAP is diagonal when A is each of the following matrices

$$\left(\begin{array}{cc} 3 & 2 \\ 2 & 0 \end{array}\right), \left(\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right), \left(\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{array}\right).$$

4. Verify that if P is an orthogonal matrix and x = Py then $y^Ty = x^Tx$.

Let A be a real symmetric $n \times n$ matrix. Then we know that there exists a real orthogonal matrix P such that P^TAP is diagonal. By using the transformation x = Py, or otherwise, prove that for every $x \in \mathbb{R}^n$

$$mx^Tx \le x^TAx \le Mx^Tx$$
,

where m and M are the smallest and greatest eigenvalues of A respectively. For which x is it true that $x^TAx = Mx^Tx$?

Let $A=\begin{pmatrix}5&1&\sqrt{2}\\1&5&\sqrt{2}\\\sqrt{2}&\sqrt{2}&6\end{pmatrix}$. Find the maximum and minimum values of x^Tx for

those x for which $x^T A x = 1$. Giving no heed to orientation, sketch the surface S with equation $x^T A x = 1$, and indicate on it those vectors x at which $x^T x$ attains its maximum and minimum values on S.

5. Show that for any real $n \times n$ matrix A, $A^T A$ is symmetric.

Suppose that

$$A = \left(\begin{array}{rrr} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & -1 \end{array}\right).$$

By considering A^TA , or otherwise, calculate the maximum and minimum value of ||Ax|| on the sphere $\{x \in \mathbb{R}^3 : ||x|| = 1\}$.

1