Prelims Statistics and Data Analysis – Sheet 5 TT 2020

1. Suppose that in the model $Y_i = \alpha + \beta x_i + \epsilon_i$, $i = 1, \ldots, n$, the errors ϵ_i are independent and normally distributed with mean 0, but that $var(\epsilon_i) = \sigma^2/w_i$ where $w_1, \ldots, w_n > 0$ are known constants.

Show that the maximum likelihood estimates of α and β can be found by minimizing

$$
\sum_{i=1}^n w_i (y_i - \alpha - \beta x_i)^2.
$$

Can you give two examples of situations in which this model might arise?

2. Suppose the straight-line model

$$
Y_i = a + b(x_i - \overline{x}) + \epsilon_i, \quad i = 1, \dots, n
$$

is fitted using maximum likelihood, where $\epsilon_1, \ldots, \epsilon_n \stackrel{iid}{\sim} N(0, \sigma^2)$. Suppose we estimate the position of the line at new value x_0 of x by $\hat{\mu}(x_0)$, where

$$
\widehat{\mu}(x_0) = \widehat{a} + \widehat{b}(x_0 - \overline{x}).
$$

Derive an expression for the variance of $\widehat{\mu}(x_0)$.

Sketch the regression line $y = \hat{\mu}(x)$ together with $y = \hat{\mu}(x) + 2 \text{SE}(\hat{\mu}(x))$ and $y = \hat{\mu}(x) - 2 \text{SE}(\hat{\mu}(x))$ as a function of x $2 \text{SE}(\widehat{\mu}(x))$ as a function of x.

3. (a) In the model $Y_i = \alpha + \beta x_i + \epsilon_i$, $i = 1, \ldots, n$, where $\epsilon_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$, show that the maximum likelihood estimator $\hat{\sigma}^2$ of σ^2 is given by

$$
\widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \widehat{\alpha} - \widehat{\beta} x_i)^2
$$

where $\widehat{\alpha}, \widehat{\beta}$ are the usual estimates of α, β .

(b) Show that $E(\hat{\sigma}^2) = \left(\frac{n-2}{n}\right)$ $\frac{-2}{n}$) σ^2 and deduce an unbiased estimator of σ^2 . [*Hint*: use the result from lectures that $\text{var}(e_i) = \sigma^2(1 - h_i)$.]

4. Let

$$
Y_i = f(x_i) + \epsilon_i, \quad i = 1, \dots, n
$$

where $f(x)$ is some function (not necessarily $f(x) = \alpha + \beta x$) and where $\epsilon_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$. Suppose that f is estimated by some estimator f (where f depends on $(x_i, y_i), i = 1, ..., n$). The mean squared error for a new Y at a new value of x, say $Y_0 = f(x_0) + \epsilon_0$, is defined by $E[(Y_0 - \hat{f}(x_0))^2]$. Here $\epsilon_0 \sim N(0, \sigma^2)$ independent of $\epsilon_1, \ldots, \epsilon_n$. Show that

$$
E[(Y_0 - \widehat{f}(x_0))^2] = \text{Var}(\widehat{f}(x_0)) + [\text{Bias}(\widehat{f}(x_0))]^2 + \sigma^2
$$

where

Bias
$$
(\widehat{f}(x_0))
$$
 = $E[\widehat{f}(x_0)] - f(x_0)$
Var $(\widehat{f}(x_0))$ = $E[\{\widehat{f}(x_0) - E[\widehat{f}(x_0)]\}^2]$.

[*Hint*: start from $E[(Y_0 - \hat{f}(x_0))^2] = E[{(Y_0 - f(x_0)) + (f(x_0) - \hat{f}(x_0))]^2}].$

5. (Using R or Matlab) Complete Q4 on Sheet 4.