Analysis III 2020

Exercises 2 of 4

1. Determine the following limits (you may assume that standard functions are Riemann integrable and that their integrals are as you learned in school: we'll prove this later in the course).

(i)

$$\lim_{n \to \infty} \frac{1}{n} \left(1 + e^{\frac{1}{n}} + e^{\frac{2}{n}} \dots + e^{\frac{n-1}{n}} \right)$$
(ii)

$$\lim_{n \to \infty} \frac{1}{n^6} \left(1 + 2^5 + \dots + n^5 \right)$$
(iii)

$$\lim_{n \to \infty} \frac{1}{\sqrt{n}} \left(\frac{1}{\sqrt{1+2n}} + \frac{1}{\sqrt{2+2n}} + \frac{1}{\sqrt{3+2n}} + \dots + \frac{1}{\sqrt{3n}} \right)$$

2. Let a < b. Suppose that \mathcal{P}_i , i = 1, 2, ... is a sequence of partitions of [a, b] for which mesh $(\mathcal{P}_i) \not\rightarrow 0$. Show that there is a Riemann integrable function on [a, b] and a sequence of Riemann sums such that $\Sigma(f; \mathcal{P}_i, \xi_i) \not\rightarrow \int_a^b f$.

3. By using Riemann sums associated to the sequence of partitions \mathcal{P}_n into n equal parts, show from first principles that $\int_0^1 x^2 dx = \frac{1}{3}$.

4. Is every Riemann integrable function a uniform limit of step functions?

5. Show that a bounded function $f : [a, b] \to \mathbb{R}$ is integrable if and only if the following is true. For every $\varepsilon > 0$, there is a partition $\mathcal{P} : a = x_0 \leq x_1 \leq \ldots \leq x_n = b$, such that the total length of all subintervals (x_{i-1}, x_i) on which $\sup_{x \in (x_{i-1}, x_i)} f > \inf_{x \in (x_{i-1}, x_i)} f + \varepsilon$ is at most ε .

ben.green@maths.ox.ac.uk