Length of a curve. Circumference of a circle.

Suppose we have a function $f(x)$, continuous on [a, b] and differentiable on (a, b) . We can draw its graph Γ, that is to say the set $\{(x, f(x)) : x \in$ $[a, b] \subset \mathbb{R}^2$. What is the "length" of this curve?

For notational simplicity, let us take $a = 0, b = 1$.

Let \mathcal{P}_n be the usual partition of [0, 1] into n parts, thus $x_i^{(n)}$ $i_i^{(n)} := i/n$ for $i =$ $0, \ldots, n$. We can approximate Γ on each interval $[x_{i-1}^{(n)}]$ $\binom{n}{i-1}$, $x_i^{(n)}$ $\binom{n}{i}$ by the straight line segment joining $(x_{i-1}^{(n)})$ $\binom{n}{i-1}$, $f(x_{i-1}^{(n)})$ $\binom{n}{i-1}$) to $\left(x_i^{(n)}\right)$ $i^{(n)}$, $f(x_i^{(n)})$ $\binom{n}{i}$. The total length of this straight-line approximation to Γ is easily computed (using Pythagoras' theorem) to be

$$
L_n := \sum_{i=1}^n \sqrt{\frac{1}{n^2} + \left(f(\frac{i}{n}) - f(\frac{i-1}{n})\right)^2}.
$$

By the mean-value theorem, there is some $\xi_i^{(n)} \in (x_{i-1}^{(n)})$ $\binom{n}{i-1}$, $x_i^{(n)}$ $i^{(n)}$ such that

$$
f(\frac{i}{n}) - f(\frac{i-1}{n}) = \frac{1}{n}f'(\xi_i^{(n)}).
$$

Substituting in gives

$$
L_n = \sum_{i=1}^n \frac{1}{n} \sqrt{1 + f'(\xi_i^{(n)})^2}.
$$

This is a Riemann sum, specifically

$$
L_n = \Sigma(\sqrt{1 + (f')^2}, \mathcal{P}_n, \vec{\xi}^{(n)}).
$$

Assuming that $\sqrt{1 + (f')^2}$ is integrable on [0, 1], it follows from Proposition 3.2 in the notes that

$$
\lim_{n \to \infty} L_n = \int_0^1 \sqrt{1 + (f')^2}.
$$
 (1)

Remark. If f' is integrable, then $\sqrt{1 + (f')^2}$ is automatically integrable. We did not quite prove this in lectures, but it follows from Question 3 on the sheet of further questions.

The limit (1) obviously makes the following definition extremely natural.

Definition. Suppose that $f : [0,1] \to \mathbb{R}$ is continuous, is differentiable on $(0, 1)$ and that f' is integrable on $(0, 1)$. Then we define the *length* $\ell(\Gamma)$ of the curve Γ to be $\int_0^1 \sqrt{1 + (f')^2}$.

Let's try to compute the circumference C of a circle with unit radius. It is natural, by symmetry considerations, to define $C = 8\ell(\Gamma)$, where $\Gamma =$ $\{(x, f(x)) : x \in [0, 1/\sqrt{2}]\},\$ where $f(x) = \sqrt{1-x^2}$. By the chain rule, $f' = -x/\sqrt{1-x^2}$, and so

$$
C = 8 \int_0^{1/\sqrt{2}} \frac{dx}{\sqrt{1 - x^2}}.
$$

Remark. It seems, at first sight, to be more natural to divide the circle into four, and look at the integral on $[0,1]$. However, f' becomes unbounded as $x \to 1$, so the length of this curve is not properly defined. One can make sense of it as an improper integral, an exercise we leave to the reader.

To evaluate C , we use the substitution rule. As many of you know, the substitution $x = \sin t$, $t \in [0, \pi/4]$, is a very sensible one. However, we have to be careful to avoid tautology, and must ask ourselves how we define the function $\sin t$. To this end, we refer to Exercise Sheet 3, Q2. There, we defined

$$
c(x) := \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}
$$

and

$$
s(x) := \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}.
$$

We will make use of some of the properties established in that question, namely:

- (i) The series for c, s converge for all x and that both functions are differentiable, with $c' = -s$ and $s' = c$.
- (ii) $c(x)^2 + s(x)^2 = 1$ for all x.
- (iii) $c(x) > 0$ for $0 \le x \le 1$, and there is a unique $\sigma \in (0,1)$ such that $c(\sigma) = s(\sigma)$.

Remark. Of course we "know" that $c = \cos s$, $s = \sin$ and $\sigma = \pi/4$.

To evaluate $\ell(\Gamma)$, we make the substitution $x = s(t)$, $t \in [0, \sigma]$. That is, we intend to apply Proposition 4.2 from the notes (substitution) with $[a, b] = [0, 1/\sqrt{2}], f(x) = 1/\sqrt{1-x^2}, [c, d] = [0, \sigma], \phi(t) = s(t)$. Let us check the conditions of that proposition:

- f is certainly continuous.
- ϕ is continuously differentiable, by (i).
- $\phi(c) = a$ is obvious from the definition of s.
- $\phi(d) = b$ follows from the fact that $c(\sigma) = s(\sigma)$ and (ii).
- To show that ϕ maps (c, d) to (a, b) , we need to know that $s(t) \notin$ {0, 1/ $\sqrt{2}$ } for $0 < t < \sigma$. By (i) and (iii) we know that $s'(t) = c(t) > 0$ for $t > 0$, and so s is strictly increasing on $[0, \sigma]$. This is all we need.

Thus Proposition 4.2 may be applied, and we obtain

$$
\ell(\Gamma) = \int_a^b f = \int_c^d (f \circ \phi) \phi'.
$$

Now

$$
f(\phi(t))\phi'(t) = \frac{1}{1 - s(t)^2}c(t) = 1,
$$

by (ii). Finally, we see that $\ell(\Gamma) = \sigma = \pi/4$, and so the circumference of the unit circle is $8\sigma = 2\pi$.

Let us summarise what we have shown here. Defining π to be the 4σ , where σ is the smallest solution to $c(\sigma) = s(\sigma)$, with c and s given by series as above, we have *proven* that the circumference of a unit circle is 2π .

Exercise. Defining the *area* of the unit circle as $A := 4 \int_0^1$ $\sqrt{1-x^2}dx,$ show that $A = 4\sigma$.

ben.green@maths.ox.ac.uk