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1. The vector ψ = ψn is a normalised eigenvector for the energy level E = En = (n + 1
2)~ω

of the harmonic oscillator with Hamiltonian H = P 2/2m+ 1
2mω

2X2. Show that

E = Eψ[P 2]/2m+
1

2
mω2Eψ[X2].

By considering 〈ψ|(P ± imωX)kψ〉 for k = 1, 2 and using orthogonality properties of
eigenvectors, or otherwise, show that

Eψ[P ] = 0 = Eψ[X], and Eψ[P 2] = m2ω2Eψ[X2] = mE.

[Use section 7.4.2 in the notes.]

Deduce that

∆ψ[P ]∆ψ[X] =
E

ω
,

and discuss how this relates to Heisenberg’s Uncertainty Principle.

2. Show that angular momentum operators Li satisfy

∆ψ[L1]∆ψ[L2] ≥
1

2
~|Eψ[L3]|,

and find conditions which ensure equality.

[Don’t try to solve the resulting differential equations.]

3. A particle of mass m and charge e moving in 2 dimensions has Hamiltonian

H =
1

2m
((P1 +

1

2
eBX2)

2 + (P2 −
1

2
eBX1)

2),

where B is a constant (and we’ll suppose eB 6= 0).

Show that the energy levels have the form (n+ 1/2)~|eB|/m
[Hint: From the form of the answer you should be thinking of the harmonic oscillator;
invent new operators P and X proportional to P1 + 1

2eBX2 and P2 − 1
2eBX1, or vice

versa, and a suitable ω so that the given Hamiltonian takes the harmonic oscillator form.
Your choices should depend on the sign of eB.]

4. Use the theory of raising and lowering operators L1 ± iL2 to obtain an expression for
Y`,`(θ, φ). Now find Y`m(θ, φ) for (`,m) = (1, 1), (1, 0), (1,−1), (2, 2), (2, 1) and (2, 0) (up
to multiplicative constants).

[For this you need, from the lectures, to recall that L3 = −i~∂/∂φ and

L+ = L1 + iL2 = ~eiφ
(
∂

∂θ
+ i cot θ

∂

∂φ

)
.

Since Y`,`, Y11 and Y22 are in the kernel of L+ and are eigenfunctions of L3 they are easily
found; then lower for the rest.]
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5. The Laplacian in spherical polar coordinates is

∇2ψ =
1

r

∂2(rψ)

∂r2
+

1

r2 sin2 θ

[(
sin θ

∂

∂θ

)2

+
∂2

∂φ2

]
ψ.

An electron of mass m moves in a potential of the form −(~2/ma)r−1, where a is the Bohr
radius.

Show that (r sin θeiφ)` exp[−r/((`+ 1)a)] satisfies the time-independent Schrödinger equa-
tion with energy −~2/2m(`+ 1)2a2.

[This is easier if you write ψ = f(r)(sin θeiφ)`, get the equation for f and then just check
that the given f(r) works.]

Show that (with this wave function) the expected value of rk can be written as

E[rk] =

∫∞
0 r2(`+1)+ke−2r/(`+1)a dr∫∞
0 r2(`+1)e−2r/(`+1)a dr

Deduce that

E[r] = (`+
3

2
)(`+ 1)a, and E[r2] = (`+ 2)(`+

3

2
)(`+ 1)2a2.

[You may assume that ∫ ∞
0

rne−λrdr = n!/λn+1.]

By using Chebyshev’s inequality, P [|S| > ε] ≤ E[S2]/ε2, with S = (E[r] − r)/E[r], or
otherwise, deduce that

P

[ ∣∣∣∣∣1− r

(`+ 3
2)(`+ 1)a

∣∣∣∣∣ > (2`+ 3)−
1
3

]
≤ (2`+ 3)−

1
3 ,

and hence that, for large `, the particle is most likely to be found close to a distance
r = (`+ 3

2)(`+ 1)a from the origin.

Comments and corrections to hodges@maths.ox.ac.uk.
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