Metric spaces and complex analysis

Mathematical Institute, University of Oxford Michaelmas Term 2019

Problem Sheet 1

1. Let $X = \mathbb{N}^{\mathbb{N}}$ be the set of all sequences of natural numbers $(\mathbb{N} = \{1, 2, ...\})$. If $(x_n), (y_n)$ are elements of X set

 $d((x_n), (y_n)) = \frac{1}{\min\{n : x_n \neq y_n\}},$

(where the right-hand side is to be interpreted as zero when $x_n = y_n$ for all n). Show that (X, d) is a metric space.

- 2. Let (X,d) be a metric space and let $f: X \to \mathbb{R}$ is a continuous function (where \mathbb{R} is a metric space using the standard distance d(a,b) = |a-b| for all $a,b \in \mathbb{R}$). Show that if $a \in X$ is such that $f(a) \neq 0$, then there is an r > 0 such that the function 1/f is defined and is continuous on B(a,r).
- 3. Let X, Y and Z be metric spaces and equip $Y \times Z$ with the d_2 metric, so that

$$d((y_1,z_1),(y_2,z_2)) = \sqrt{d(y_1,y_2)^2 + d(z_1,z_2)^2}, \quad \forall y_1,y_2 \in Y, z_1,z_2 \in Z.$$

If $F: X \to Y \times Z$ is a function and we write $F(x) = (f_1(x), f_2(x))$, show that F is continuous if and only if f_1 and f_2 are continuous.

- 4. Show that the functions of addition and multiplication of real numbers are continuous. Deduce that if $f, g: X \to \mathbb{R}$ are continuous functions, so are f + g and f.g.
- 5. Let ℓ_2 denote the space of real-valued sequences which are square summable, that is, sequences (x_n) where $x_n \in \mathbb{R}$ and $\sum_{n=1}^{\infty} x_N^2 < \infty$. Show that ℓ_2 equipped with the function $\|(x_k)\|_2 = (\sum_{k=1}^{\infty} x_k^2)^{1/2}$ is a normed \mathbb{R} -vector space. (Thus you need to check that ℓ_2 is a vector space and that $\|.\|_2$ defines a norm on it.)

The function d_2 given by

$$d_2((x_n), (y_n)) = \left(\sum_{n=1}^{\infty} (x_n - y_n)^2\right)^{1/2},$$

is the metric associated to the norm $\|.\|_2$.

Consider also the function $\|.\|_{\infty}$ given by

$$||(x_k)||_{\infty} = \sup_{k \in \mathbb{N}} |x_k|.$$

Say briefly why this is well-defined. Is this a norm? Are the norms $\|.\|_2$ and $\|x\|_{\infty}$ equivalent, that is, do there exist constants C_1, C_2 such that $\|(x_k)\|_{\infty} \leq C_1 \|(x_k)\|_2$ and $\|(x_k)\|_2 \leq C_2 \|(x_k)\|_{\infty}$ for all $(x_k) \in \ell_2$?

6. Say which of the following subsets of \mathbb{R}^2 are open.

$$B(0,1); [0,1] \times [0,1]; (0,1) \times (0,1), (0,1) \times \{0\}.$$

- 7. Let (X,d) be a metric space. Show that the closure of the union of two subsets A,B of X is the union of the closures of A and B, that is $\overline{A \cup B} = \overline{A} \cup \overline{B}$. Is $\overline{A} \cap \overline{B} = \overline{A \cap B}$?
- 8. Let $A \subseteq [0,1]$ be the set of real numbers which can be expressed in the form $\sum_{n=1}^{\infty} \frac{a_n}{3^n}$ where $a_n \in \{0,1\}$. By considering the sets $A_N = \{x \in [0,1] : x = \sum_{k=1}^{\infty} \frac{a_k}{3^k}, a_k \in \{0,1\}, \forall k \leq N\}$ or otherwise, find the closure of A. [You may assume that any $y \in [0,1]$ can be written in the form $\sum_{k=1}^{\infty} \frac{b_k}{3^k}$ where $b_k \in \{0,1,2\}$.]
- 9 (*Optional*). Let \mathbb{N} be the set of natural numbers. Let \mathcal{A} be the set of arithmetic progressions in \mathbb{N} , that is, subsets of the form $A_{a,b} = \{a + b(n-1) : n \in \mathbb{N}\}$ where a,b are fixed positive integers. Let \mathcal{U} be the collection of subsets of \mathbb{N} which are (arbitrary) unions of elements of \mathcal{A} , *i.e.* unions of arithmetic progressions. Show that \mathcal{U} is a topology on \mathbb{N} . Deduce that there are infinitely many primes. [It may help to consider which subsets of \mathbb{N} are both open and closed.]