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1. INTRODUCTION

In Prelims you studied Analysis, the rigorous theory of calculus for (real-valued) functions of a single
real variable. This term we will largely focus on the study of functions of a complex variable, but we
will begin by seeing how much of the theory developed last year can in fact can be made to work, with
relatively little extra effort, in a significantly more general context.

Recall the trajectory of the Prelims Analysis course – initially it focused on sequences and developed
the notion of the limit of a sequence which was crucial for essentially everything which followed1. Then
it moved to the study of continuity and differentiability, and finally it developed a theory of integration.
This term’s course will follow approximately the same pattern, but the contexts we work in will vary a bit
more. To begin with we will focus on limits and continuity, and attempt to gain a better understanding
of what is needed in order for make sense of these notions.

Example 1.1. Consider for example one of the key definitions of Prelims analysis, that of the continuity
of a function. Recall that if f : R!R is a function, we say that f is continuous at a 2R if, for any ≤> 0, we
can find a ±> 0 such that if |x°a| < ± then | f (x)° f (a)| < ≤. Stated somewhat more informally, this means
that no matter how small an ≤ we are given, we can ensure f (x) is within distance ≤ of f (a) provided we
demand x is sufficiently close to – that is, within distance ± of – the point a.

Now consider what it is about real numbers that we need in order for this definition to make sense:
Really we just need, for any pair of real numbers x1 and x2, a measure of the distance between them.
(Note that we needed this notion of distance in the above definition of continuity for both the pairs (x, a)
and ( f (x), f (a)).) Thus we should be able to talk about continuous functions f : X ! X on any set X
provided it is equipped with a notion of distance. Even more generally, provided we have prescribed a
notion of distance on two sets X and Y , we should be able to say what it means for a function f : X ! Y
to be continuous. In order to make this precise, we will therefore need to give a mathematically rigorous
definition of what a “notion of distance” on a set should be.

As a first step, consider as an example the case of Rn . The dot product on vectors in Rn gives us a
notion of distance between vectors in Rn : Recall that if v = (v1, . . . , vn), w = (w1, . . . , wn) are vectors in Rn

then we set

hv, wi=
nX

i=1
vi wi ,

and we define the length of a vector to be2 kvk = hv, vi1/2. Recall that the Cauchy-Schwarz inequality
then says that |hv, wi|∑ kvkkwk. It has the following important consequence for the length function:

Lemma 1.2. If x, y 2Rn then kx + yk ∑ kxk+kyk.

Date: November 6, 2019.
1Although continuity is introduced via ≤s and ±s, the notion can be expressed in terms of convergent sequences. Similarly

one can define the integral in terms of convergent sequences.
2Sometimes the notation kvk2 is used for this length function – we will see later there are other natural choices for the length

of a vector in Rn .
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Proof. Since kvk ∏ 0 for all v 2Rn the desired inequality is equivalent to

kx + yk2 ∑ kxk2 +2kxkkyk+kyk2.

But since kx + yk2 = hx + y, x + yi = kxk2 +2hx, yi+kyk2, this inequality is immediate from the Cauchy-
Schwarz inequality. ⇤

Once we have a notion of length for vectors, we also immediately have a way of defining the distance
between them – we simply take the length of the vector v °w . Explicitly, this is:

kv °wk=
° nX

i=1
(vi °wi )2¢1/2.

Now that we have defined the distance between any two vectors in Rn , we can immediately make
sense both of what it means for a function f : Rn !R to be continuous3 as above and also what it means
for a sequence to converge.

Definition 1.3. If (vk )k2N is a sequence of vectors in Rn (so vk = (vk
1 , . . . , vk

n)) we say (vk )k2N converges to
w 2Rn if for any ≤> 0 there is an N > 0 such that for all k ∏ N we have kvk °wk< ≤.

If f : Rn ! R and a 2 Rn then we say that f is continuous at a if for any ≤> 0 there is a ±> 0 such that
| f (a)° f (x)| < ≤ whenever kx °ak< ±. (As usual, we say that f is continuous on Rn if it is continuous at
every a 2Rn .)

Many of the results about convergence for sequences of real or complex numbers which were estab-
lished last year readily extend to sequences in Rn , with almost identical proofs. As an example, just as for
sequences of real or complex numbers, we have the following:

Lemma 1.4. Suppose that (vk )k∏1 is a sequence in Rn which converges to w 2Rn and also to u 2Rn. Then
w = u, that is, limits are unique.

Proof. We prove this by contradiction: suppose w 6= u. Then d = kw °uk> 0, so since (vk ) converges to
w we can find an N1 2N such that for all k ∏ N we have kw ° vkk< d/2. Similarly, since (vk ) converges
to u we can find an N2 such that for all k ∏ N2 we have kvk °uk < d/2. But then if k ∏ max{N1, N2} we
have

d = kw °uk= k(w ° vk )+ (vk °u)k ∑ kw ° vkk+kvk °uk< d/2+d/2 = d ,

where in the first inequality we use Lemma 1.2. Thus we have a contradiction as required. ⇤

2. METRIC SPACES

We now come to the definition of a metric space. To motivate it, let’s consider what a notion of dis-
tance on a set X should mean: Given any two points in X , we should have a non-negative real number –
the distance between them. Thus a distance on a set X should therefore be a function d : X £ X ! R∏0,
but we must also decide what properties of such a function capture our intuition of distance. A couple
of properties suggest themselves immediately – the distance between two points x, y 2 X should be sym-
metric, that is, the distance from x to y should4 be the same as the distance from y to x, and the distance
between two points should be 0 precisely when they are equal. Note that this latter property was one of
the crucial ingredients in the proof of the uniqueness of limits as we just saw. The last requirement we
make of a distance function is known as the “triangle inequality”, a version of which we established in
Lemma 1.2 and which was also essential in the above uniqueness proof. These requirements yield in the
following definition:

3More ambitiously, using the notions of distance we have for Rn and Rm you can readily make sense of the notion of conti-
nuity for a function g : Rn !Rm .

4In fact it’s possible to think of contexts where this assumption doesn’t hold – consider e.g. swimming in a river – going up-
stream is harder work than going downstream, so if your notion of distance took this into account it would fail to be symmetric.
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Definition 2.1. Let X be a set and suppose that d : X £ X ! R. Then we say that d is a distance function
on X if it has the following properties: For all x, y, z 2 X :

(1) (Positivity): d(x, y) ∏ 0 and d(x, y) = 0 if and only if x = y .
(2) (Symmetry): d(x, y) = d(y, x).
(3) (Triangle inequality): If x, y, z 2 X then we have

d(x, z) ∑ d(x, y)+d(y, z).

Note that for the normal distance function in the plane R2, the third property expresses the fact that the
length of a side of a triangle is at most the sum of the lengths of the other two sides (hence the name!).
We will write a metric space as a pair (X ,d) of a set and a distance function d : X £ X ! R∏0 satisfying
the axioms above. If the distance function is clear from context, we may, for convenience, simply write
X rather than (X ,d).

Example 2.2. The vector space Rn equipped with the distance function d2(v, w) = kv °wk= hv °w, v °
wi1/2 is a metric space: The first two properties of the metric d2 are immediate from the definition, while
the triangle inequality follows from Lemma 1.2.

Example 2.3. In Prelims Linear Algebra, you met the notion of an inner product space (V ,h°,°i) (over the
real or complex numbers). For any two vectors v, w 2 V setting d(v, w) = kv °wk, where kvk= hv, vi1/2,
gives V a notion of distance. Since the Cauchy-Schwarz inequality holds in any inner product space,
Lemma 1.2 holds in any inner product space (the proof is word for word the same), it follows that d is
also a metric in this more general setting.

Definition 2.4. If (X ,dX ) is a metric space and A µ X then we set

diam(A) = sup{d(a1, a2) : a1, a2 2 X } 2R∏0 [ {1},

(where we take diam(A) =1 if the {d(a1, a2) : a1, a2 2 A} is not bounded above. If diam(A) is finite then
we say that A is a bounded subset of X .

To make good our earlier assertion, we now define the notions of continuity and convergence in a
metric space.

Definition 2.5. Let (X ,dX ) and (Y ,dY ) be metric spaces. A function f : X ! Y is said to be continuous at
a 2 X if for any ≤> 0 there is a ±> 0 such that for any x 2 X with dX (a, x) < ± we have dY ( f (x), f (a)) < ≤.
We say f is continuous if it is continuous at every a 2 X .

If (xn)n∏1 is a sequence in X , and a 2 X , then we say (xn)n∏1 converges to a if, for any ≤> 0 there is an
N 2N such that for all n ∏ N we have dX (xn , a) < ≤.

In fact it is clear that the notion of uniform continuity also extends to functions between metric spaces:
A function f : X ! Y is said to be uniformly continuous if, for any ≤> 0, there exists a ±> 0 such that for
all x1, x2 2 X with dX (x1, x2) < ± we have dY ( f (x1), f (x2)) < ≤.

For later use, we also note that a function f : X ! Y is said to be bounded if its image f (X ) is a bounded
subset of Y in the sense of Definition 2.4, that is, if

{dY ( f (x), f (y)) : x, y 2 X } µR

is a bounded subset ofR. Note that, unlike continuity or uniform continuity, the condition that a function
is bounded only requires that Y has a metric (X need not).

Example 2.6. Consider the case of Rn again. The distance function d2 coming from the dot product
makes Rn into a metric space, as we have already seen. On the other hand it is not the only reasonable
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notion of distance one can take. We can define for v, w 2Rn

d1(v, w) =
nX

i=1
|vi °wi |;

d2(v, w) =
° nX

i=1
(vi °wi )2¢1/2

d1(v, w) = max
i2{1,2,...,n}

|vi °wi |.

Each of these functions clearly satisfies the positivity and symmetry properties of a metric. We have
already checked the triangle inequality for d2, while for d1 and d1 it follows readily from the triangle
inequality for R.

Example 2.7. Suppose that (X ,d) is a metric space and let Y be a subset of X . Then the restriction of
d to Y £Y gives Y a metric so that (Y ,d|Y £Y ) is a metric space. We call Y equipped with this metric a
subspace5 of X .

Example 2.8. The discrete metric on a set X is defined as follows:

d(x, y) =
Ω

1, if x 6= y
0, if x = y

The axioms for a distance function are easy to check.

Example 2.9. A slightly more interesting example is the Hamming distance on words: if A is a finite set
which we think of as an “alphabet”, then a word of length n in just an element of An , that is, a sequence
of n elements in the alphabet. The Hamming distance between two such words a = (a1, . . . , an),b =
(b1, . . . ,bn) is

dH (a,b) = |{i 2 {1,2, . . . ,n} : ai 6= bi }.

An important special case of this is the space of binary sequences of length n, that is, where the al-
phabet A is just {0,1}. In this case one can view set of words of length n in this alphabet as a subset of
Rn , and moreover you can check that the Hamming distance function is the same as the subspace metric
induced by the d1 metric on Rn given above.

Example 2.10. If (X ,d) is a metric space, then we can consider the space XN of all sequences in X . That
is, the elements of XN are sequences (xn)n∏1 in X . While there is no obvious metric on the whole space
of sequences, if we take XN

b to be the space of bounded sequences, that is, sequences such that the set
{d1(xn , xm) : n,m 2N} ΩR is bounded, then the function6

d1((xn)n∏1, (yn)n∏1) = sup
n2N

d(xn , yn),

is a metric on XN
b . It clearly satisfies positivity and symmetry, and the triangle inequality follows from the

inequality
d(xn , zn) ∑ d(xn , yn)+d(yn , zn) ∑ d1((xn), (yn))+d1((yn), (zn)),

by taking the supremum of the left-hand side over n 2N.

Example 2.11. If (X ,dX ) and (Y ,dY ) are metric spaces, then it is natural to try to make X £Y into a metric
space. In fact this can be done in a number of ways – we will return to this issue later. One method is to
set dX£Y = max{dX ,dY }, that is if x1, x2 2 X and y1, y2 2 Y then we set

dX£Y ((x1, y1), (x2, y2)) = max{dX (x1, x2),dY (y1, y2)}.

5This is completely standard terminology, though it’s a little unfortunate if X is a vector space, where we use the word
subspace to mean linear subspace also. Context (usually) makes it clear which meaning is intended, and I’ll try and be as clear
about this as possible!

6The fact that the sequences are bounded ensure the right-hand side is finite.
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It is straight-forward to check that this is indeed a metric on X£Y . It is also easy to see that if f : Z ! X£Y
is a function from a metric space Z to X £Y , so that we may write f (z) = ( fX (z), fY (z)) with fX (z) 2 X
and fY (z) 2 Y , then f is continuous if and only if fX and fY are both continuous. Problem set 1 asks you
to check this is also true when you use the metric on X £Y given by

d 0
X£Y ((x1, y1), (x2, y2)) =

q
dX (x1, x2)2 +dY (y1, y2)2.

Example 2.12. If (X ,dX ) and (Y ,dY ) are metric spaces, then we can also consider the set B(X ,Y ) of
bounded functions from X to Y . This set has a natural metric given by

d( f , g ) = sup
x2X

dY ( f (x), g (x)).

Indeed one can check that d( f , g ) is finite for any f , g 2B(X ,Y ), so that since dY is non-negatively val-
ued, so is d . This space has a natural subspace consisting of the continuous bounded function Cb(X ,Y ).

Example 2.13. Consider the set P(Rn) of lines in Rn (that is, one-dimensional subspace of Rn , or lines
through the origin). A natural way to define a distance on this set is to take, for lines L1,L2, the distance
between L1 and L2 to be

d(L1,L2) =

s

1° |hv, wi|2
kvk2kwk2 ,

where v and w are any non-zero vectors in L1 and L2 respectively. It is easy to see this is independent of
the choice of vectors v and w . The Cauchy-Schwarz inequality ensures that d is well-defined, and more-
over the criterion for equality in that inequality ensures positivity. The symmetry property is evident,
while the triangle inequality is left as an exercise.

It is useful to think of the case when n = 2 here, that is, the case of lines through the origin in the plane
R2. The distance between two such lines given by the above formula is then sin(µ) where µ is the angle
between the two lines.

The next exercise is the natural generalization of the result you saw last year which showed that con-
tinuity could be expressed in terms of convergent sequences. It show it one uses exactly the same argu-
ment, just phrased in the language of metric spaces.

Exercise 2.14. Let f : X ! Y be a function. Show that f is continuous at a 2 X if and only if for every
sequence (xk )k∏0 converging to a we have f (xk ) ! f (a) as k !1.

Solution: Suppose that f is continuous at a. Then given ≤> 0 there is a ±> 0 such that for all x 2 X with
d(x, a) < ±we have d( f (x), f (a)) < ≤. Now if (xk )k∏0 is a sequence tending to a then there is an N > 0 such
that d(a, xk ) < ± for all k ∏ N . But then for all k ∏ N we see that d( f (a), f (xk )) < ≤, so that f (xk ) ! f (a)
as k !1 as required.

For the converse, we use the contrapositive, hence we suppose that f is not continuous at a. Then
there is an ≤> 0 such that for all ±> 0 there is some x 2 X with d(x, a) < ± and d( f (x), f (a)) ∏ ≤. Chose for
each k 2Z>0 a point xk 2 X with d(xk , a) < 1/k but d( f (xk ), f (a)) ∏ ≤. Then d(xk , a) < 1/k ! 0 as k !1
so that xk ! a as k !1, but since d( f (xk ), f (a))) ∏ ≤ for all k clearly ( f (xk ))k∏0 does not tend to f (a).

We now review some of the algebra of limits-type results from last year in our more general context:

Definition 2.15. If X is a metric space we write C (X ) = { f : X !R : f is continuous} for the set of contin-
uous real-valued functions on X . (Here the real line is viewed as a metric space equipped with the metric
coming from the absolute value).

Lemma 2.16. The set C (X ) is a vector space. Moreover if f , g 2C (X ) then so is f .g .

Proof. C (X ) is a subset of the vector space of all real-valued functions on X , so we just need to check it
is closed under addition and multiplication (since we can view scalars as constant functions, the latter
clearly being continuous).
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To see that C (X ) is closed under multiplication, suppose that f , g 2 C (X ) and a 2 X . To see that f .g
is continuous at a, note that if ≤ > 0 is given, then since both f and g are continuous at a, we may find
a ±1 such that | f (x)° f (a)| < min{1,≤/2(|g (a)|+1)} for all x 2 X with d(x, a) < ±1 and a ±2 > 0 such that
|g (x)° g (a)| < ≤/2(| f (a)| +1) for all x 2 X with d(x, a) < ±2. Setting ± = min{±1,±2} it follows that for all
x 2 X with d(x, a) < ± we have

| f (x)g (x)° f (a)g (a)| = | f (x)g (x)° f (x)g (a)+ f (x)g (a)° f (a)g (a)|
∑ | f (x)||g (x)° g (a)|+ | f (x)° f (a)||g (a)|
∑ (| f (a)|+1)|g (x)° g (a)|+ | f (x)° f (a)||g (a)|
< ≤/2+≤/2 = ≤

where in the third line we use the fact that | f (x)| < | f (a)| +1 for all x 2 X such that d(x, a) < ±1. Since
a was arbitrary, this shows that f .g lies in C (X ). Checking that C (X ) is closed under addition is similar
but easier, and we leave it as an exercise for the reader to check the details. ⇤
Exercise 2.17. One can also check that if f : X !R is continuous at a and f (a) 6= 0 then 1/ f is continuous
at a. Again this is proved just as in the single-variable case. Problem set 1 asks you to provide the details
for this.

3. NORMED VECTOR SPACES.

If we start with a vector space V , for example the set of solutions to a homogeneous linear differential
equation, then it is natural to consider metrics which interact with the linear structures – addition and
scalar multiplication– of the space.

Two natural conditions to consider are the following: for any vectors x, y, z 2 Rn and any scalar ∏ we
have

(1) d(x + z, y + z) = d(x, y),
(2) d(∏x,∏y) = |∏|d(x, y).

The first of these is known as translation invariance and the second is a kind of homogeneity.
A vector space V with a distance function compatible with the vector space structure in the above

sense is then clearly determined by the function from V to the non-negative real numbers given by v 7!
d(v,0). The following definition and Lemma formalize this discussion.

Definition 3.1. Let V be a (real or complex) vector space. A norm on V is a function k.k : V ! R which
satisfies the following properties:

(1) (Positivity): kxk ∏ 0 for all x 2V and kxk= 0 if and only if x = 0.
(2) (Homogeneity): if x 2V and ∏ is a scalar then

k∏.xk= |∏|kxk.

(3) (Triangle inequality): If x, y 2V then kx + yk ∑ kxk+kyk.

Note that in the second property |∏| denotes the absolute value of ∏ if V is a real vector space, and the
modulus of ∏ if V is a complex vector space.

Remark 3.2. If there is the potential for ambiguity, we will write the norm on a vector space V as k.kV ,
but usually this is clear from the context, and so just as for metric spaces we will write k.k for the norm
on all vector spaces we consider.

Lemma 3.3. If V is a vector space with a norm k.k then the function d : V £V ! R∏0 given by d(x, y) =
kx ° yk is a metric which is compatible with the vector space structure in that:

(1) For all x, y 2V we have
d(∏.x,∏.y) = |∏|d(x, y).

(2) d(x + z, y + z) = d(x, y).
6



Conversely, if d is a metric satisfying the above conditions then kvk= d(v,0) is a norm on V .

Proof. This follows immediately from the definitions. ⇤
Example 3.4. As discussed above, if V = Rn then the metrics d1,d2,d1 all come from the norms. We
denote these by kxk1 =

Pm
i=1 |xi | and kxk2 = (

Pm
i=1 x2

i )1/2 and kxk1 = max1∑i∑m |xi |.

Since the most natural maps between vector spaces are linear maps, it is natural to ask when a lin-
ear map between normed vector spaces is continuous. The following lemma gives an answer to this
question:

Lemma 3.5. Let f : V ! W be a linear map between normed vector spaces. Then f is continuous if and
only if {k f (x)k : kxk ∑ 1} is bounded.

Proof. If f is continuous, then it is continuous at 0 2V and so there is a ±> 0 such that for all v 2V with
kvk < ± we have k f (v)° f (0)k = k f (v)k < ≤. But then if kvk ∑ 1 we have ±

2k f (v)k = k f (±2 .v))k < ≤, and
hence k f (v)k ∑ 2≤

± .
For the converse, if we have k f (v)k< M for all v with kvk ∑ 1, then if ≤> 0 is given we may pick ±> 0

so that ±.M < ≤ and hence if kv °wk< ± we have

k f (v)° f (w)k= k f (v °w)k= ±k f (±°1(v °w))k ∑ ±.M < ≤,

so that f is in fact uniformly continuous on V . ⇤
Remark 3.6. The boundedness condition above can be rephrased as saying there is a constant K > 0 such
that k f (v)k ∑ K .kvk, since any non-zero vector v can be rescaled to a vector of unit length, v/kvk.

An important source of (normed) vector spaces for us will be the space of functions on a set X (usually
a metric space). Indeed if X is any set, the space of all real-valued functions on X is a vector space –
addition and scalar multiplication are defined “pointwise” just as for functions on the real line. It is not
obvious how to make this into a normed vector space, but if we restrict to the subspace B(X ) of bounded
functions there is an reasonably natural choice of norm.

Definition 3.7. If X is any set we define

B(X ) = { f : X !R : f (X ) ΩR bounded},

to be the space of bounded functions on X , that is f 2 B(X ) if and only if there is some K > 0 such that
| f (x)| < K for all x 2 X . For f 2B(X ) we set k f k1 = supx2X | f (x)|.

Lemma 3.8. Let X be any set, then (B(X ),k.k1) is a normed vector space.

Proof. To see that B(X ) is a vector space, note that if f , g 2 B(X ) then we may find N1, N2 2 R>0 such
that f (X ) µ [°N1, N1] and g (X ) µ [°N2, N2]. But then clearly ( f +g )(X ) µ [°N1°N2, N1+N2] and if ∏ 2R
then (∏. f )(X ) µ [°|∏|N1, |∏|N1], so that ∏. f 2B(X ) and f + g 2B(X ).

Next we check that k f k1 is a norm: it is clear from the definition that k f k1 ∏ 0 with equality if and
only if f is identically zero. Compatibility with scalar multiplication is also immediate, while for the
triangle inequality note that if f , g 2B(X ), then for all x 2 X we have

|( f + g )(x)| = | f (x)+ g (x)|∑ | f (x)|+ |g (x)|∑ k f k1+kgk1.

Taking the supremum over x 2 X then yields the result. ⇤

We will write d1 for the metric associated to the norm k.k1.
If X is itself a metric space, we also have the space C (X ) of continuous real-valued functions on X .

While C (X ) does not automatically have a norm, the subspace Cb(X ) = C (X )\B(X ) of bounded con-
tinuous functions clearly inherits a norm from B(X ).

7



Example 3.9. One can check that if X = [a,b] then if ( fn)n∏1 is a sequence in7 C ([a,b]) = Cb([a,b])
then fn ! f in (Cb(X ),d1) (where d1 is the metric given by the norm k.k1) if and only if fn tends to f
uniformly.

Example 3.10. For certain spaces X , we can define other natural metrics on the space of continuous
functions: Let X = [a,b] Ω R be a closed interval. Then we know that in fact all continuous functions on
X are bounded, so that k.k1 defines a norm on C ([a,b]). We can also define analogues of the norms k.k1
and k.k2 on Rn using the integral in place of summation: Let

k f k1 =
Zb

a
| f (t )|d t ,

k f k2 =
°Zb

a
f (t )2d t

¢1/2

Lemma 3.11. Suppose that a < b so that the interval [a,b] has positive length. Then the functions k.k1
and k.k2 are norms on C ([a,b]).

Proof. The compatibility with scalars and the triangle inequality both follow from standard properties of
the integral. The interesting point to check here is that both k.k1 and k.k2 satisfy postitivity – continuity8

is crucial for this! Indeed if f = 0 clearly k f k1 = k f k2 = 0. On the other hand if f 6= 0 then there is
some x0 2 [a,b] such that f (x0) 6= 0, and so | f (x0)| > 0. Since f is continuous at x0, there is a ± > 0 such
that | f (x)° f (x0)| < | f (x0)|/2 for all x 2 [a,b] with |x ° x0| < ±. But the it follows that for x 2 [a,b] with
|x °x0| < ± we have | f (x)|∏ | f (x0)|° | f (x)° f (x0)| > | f (x0)|/2. Now set

s(x) =
Ω
| f (x0)|/2, if x 2 [a,b]\ (x0 °±, x0 +±)

0, otherwise

Since the interval [a,b]\ (x0 °±, x0 +±) has length at least d = min{±, (b ° a)} we see that
Rb

a s(x)d x ∏
d .| f (x0)|/2 > 0. Since s(x) ∑ | f (x)| for all x 2 [a,b] it follows from the positivity of the integral that
0 < d | f (x0)|/2 ∑ k f k1. Similarly we see that k f k2 ∏ f

p
d | f (x0)|/2, so that both k.k1 and k.k2 satisfy the

positivity property. ⇤

There are very similar metrics on certain sequence spaces:

Example 3.12. Let

`1 = {(xn)n∏1 :
X

n∏1
|xn | <1}

`2 = {(xn)n∏1 :
X

n∏1
x2

n <1}

`1 = {(xn)n∏1 : sup
n2N

|xn | <1}.

The sets `1,`2,`1 are all real vector spaces, and moreover the functions k(xn)k1 = P
n∏1 |xn |, k(xn)k2 =°P

n∏1 x2
n
¢1/2, k(xn)k1 = supn2N |xn | define norms on `1,`2 and `1 respectively. Note that `2 is in fact an

inner product space where

h(xn), (yn)i=
X

n∏1
xn yn ,

(the fact that the right-hand side converges if (xn) and (yn) are in `2 follows from the Cauchy-Schwarz
inequality). The problem sets investigate the example of `2 in some detail.

7The result from Prelims Analysis showing any continuous function on a closed bounded interval is bounded implies the
equality C ([a,b]) =Cb ([a,b]).

8So in particular, k.k1 and k.k2 are not norms on the space of Riemann integrable functions on [a,b].
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4. METRICS AND CONVERGENCE

Recall that if (X ,d) is a metric space, then a sequence (xn) in X converges to a point a 2 X if for any
≤> 0 there is an N 2N such that for all n ∏ N we have d(xn , a) < ≤. In the case of Rm , although d1,d2,d1
are all different distance functions, they in fact give the same notion of convergence. To see this we need
the following:

Lemma 4.1. Let x, y 2Rm. Then we have

d2(x, y) ∑ d1(x, y) ∑
p

md2(x, y); d1(x, y) ∑ d2(x, y) ∑
p

md1(x, y).

Proof. It is enough to check the corresponding inequalities for the norms kxki (where i 2 {1,2,1}) that
is, we may assume y = 0. For the first inequality, note that

kxk2
1 = (

mX

i=1
|xi |)2 =

mX

i=1
x2

i +
X

1∑i< j∑m
2|xi x j |∏

mX

i=1
x2

i = kxk2
2,

so that kxk2 ∑ kxk1. On the other hand, if x = (x1, . . . , xm), set a = (|x1|, |x2|, . . . , |xm |) and 1 = (1,1, . . . ,1).
Then by the Cauchy-Schwarz inequality we have

kxk1 = h1, ai ∑
p

m.kak2 =
p

m.kxk2

The second pair of inequalities is simpler. Note that clearly

max
1∑i∑m

|xi | = max
1∑i∑m

(x2
i )1/2 ∑ (

mX

i=1
x2

i )1/2,

yielding one inequality. On the other hand, since for each i we have |xi |∑ kxk1 by definition, clearly

kxk2
2 =

mX

i=1
|xi |2 ∑ mkxk2

1,

giving kxk2/
p

m ∑ kxk1 as required. ⇤

Lemma 4.2. If (xn) Ω Rm is a sequence then (xn) converges to a 2 Rm with respect to the metric d2, if and
only if it does with respect to the metric d1, if and only if it does so with respect to the metric d1. Thus the
three metrics all yield the same notion of convergence.

Proof. Suppose (xn) converges to a with respect to the metric d2. Then for any ≤ > 0 there is an N 2 N
such that d2(xn , a) < ≤/

p
m for all n ∏ N . It follows from the previous Lemma that for n ∏ N we have

d1(xn , a) ∑
p

m.d2(xn , a) <
p

m.(≤/
p

m) = ≤,

and so (xn) converges to a with respect to d1 also. Similarly we see that convergence with respect to
d1 implies convergence with respect to d2 using kxk2 ∑ kxk1. In the same fashion, the inequalities
d1(x, y) ∑ d2(x, y) ∑

p
md1(x, y) yield the equivalence of the notions of convergence for d2 and d1. ⇤

Remark 4.3. (Non-examinable): If X is any set and d1,d2 are two metrics on X , we say they are equivalent
if there are positive constants K ,L such that

d1(x, y) ∑ K d2(x, y); d2(x, y) ∑ Ld1(x, y).

The proof of the previous Lemma extends to show that if two metrics are equivalent, then a sequence con-
verges with respect to one metric if and only if it does with respect to the other.
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5. OPEN AND CLOSED SETS

In this section we will define two special classes of subsets of a metric space – the open and closed
subsets. To motivate their definition, recall that we have two ways of characterizing continuity in a metric
space: the “≤-±” definition, and the description in terms of convergent sequences. Examining the former
will lead us to the notion of an open set, while examining the latter will lead us to the notion of a limit
point and hence that of a closed set.

The definitions of continuity and convergence can be made somewhat more geometric if we introduce
the notion of a ball in a metric space:

Definition 5.1. Let (X ,d) is a metric space. If x0 2 X and ≤> 0 then we define the open ball of radius ≤ to
be the set

B(x0,≤) = {x 2 X : d(x, x0) < ≤}.

Similarly we defined the closed ball of radius ≤ about x0 to be the set

B̄(x0,≤) = {x 2 X : d(x, x0) ∑ ≤}.

The term “ball” comes from the case where X =R3 equipped with the usual Euclidean notion of distance.
When X =R an open/closed ball is just an open/closed interval.

Recall that if f : X ! Y is a function between any two sets, then given any subset Z µ Y we let9

f °1(Z ) = {x 2 X : f (x) 2 Z }. The set f °1(Z ) is called the pre-image of Z under the function f .

Lemma 5.2. Let (X ,d) and (Y ,d) be metric spaces. Then f : X ! Y is continuous at a 2 X if and only if,
for any open ball B( f (a),≤) centred at f (a) there is an open ball B(a,±) centred at a such that f (B(a,±)) µ
B( f (a),≤), or equivalently B(a,±) µ f °1(B( f (a),≤)).

Proof. This follows directly from the definitions. (Check this!) ⇤
We have seen in the last section that different metrics on a set X can give the same notions of conti-

nuity. The next definition is motivated by this – it turns out that we can attach to a metric a certain class
of subsets of X known as open sets and knowing these open sets suffices to determine which functions
on X are continuous. Informally, a subset U µ X is open if, for any point y 2U , every point sufficiently
close to y in X is also in U . Thus, if y 2U , it has some “wiggle room” – we may move slightly away from
y while still remaining in U . The rigorous definition is as follows:

Definition 5.3. If (X ,d) is a metric space then we say a subset U Ω X is open (or open in X ) if for each
y 2 U there is some ± > 0 such that B(y,±) µ U . More generally, if Z µ X and z 2 Z then we say Z is a
neighbourhood of z if there is a ±> 0 such that B(z,±) µ Z . Thus a subset U µ X is open exactly when it
is a neighbourhood of all of its elements.

The collection T = {U Ω X : U open in X } of open sets in a metric space (X ,d) is called the topology of
X .

We first note an easy lemma, which can be viewed as a consistency check on our terminology.

Lemma 5.4. Let (X ,d) be a metric space. If a 2 X and ≤> 0 then B(a,≤) is an open set.

Proof. We need to show that B(a,≤) is a neighbourhood of each of its points. If x 2 B(a,≤) then by def-
inition r = ≤°d(a, x) > 0. We claim that B(x,r ) µ B(a,≤). Indeed by the triangle inequality we have for
z 2 B(x,r )

d(z, a) ∑ d(z, x)+d(x, a) < r +d(x, a) = ≤,

as required. ⇤
9The notion is not meant to suggest that f is invertible, though when it is, the preimage of any point in Y is a single point

in X , so the notation is in this sense consistent. Note that formally, f °1 as defined here is a function from the power set of Y to
the power set of X .
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Remark 5.5. While reading the above proof, please draw a picture of the case where X = R2 with the
standard metric d2.

Next let us observe some basic properties of open sets.

Lemma 5.6. Let (X ,d) be metric space and let T be the associated topology on X . Then we have

(1) The subsets X and ; are open.
(2) For any indexing set I and {Ui ; i 2 I } a collection of open sets, the set

S
i2I Ui is an open set.

(3) If I is finite and {Ui : i 2 I } are open sets then
T

i2I Ui is open in X .

Proof. The first claim is trivial. For the second claim, if x 2 S
i2Ui then there is some i 2 I with x 2 Ui .

Since Ui is open, there is an ≤> 0 such that

B(x,≤) ΩUi µ
[

i2I
Ui ,

so that
S

i2I Ui is a neighbourhood of each of its points as required. Applying this to the case I =; shows
that ;µ X is open (or simply note that the empty set satisfies the condition to be an open set vacuously).

For the final claim, if I is finite and x 2T
i2I Ui , then for each i there is an ≤i > 0 such that B(x,≤i ) µUi .

But then since I is finite, ≤= min({≤i : i 2 I }[ {1}) > 0, and

B(x,≤) µ
\

i2I
B(x,≤i ) µ

\

i2I
Ui ,

so that
T

i2I Ui is an open subset as required. Applying this to the case I = ; shows that X is open (or
simply note that if U = X and x 2 X then B(x,≤) µ X for any positive ≤ so that X is open). ⇤
Remark 5.7. Apart from being trivial, the first part of the above lemma is also redundant in that it follows
from the second and third: If I is an indexing set, then a collection {Ui : i 2 I } of subsets of X is just a
function u : I ! P (X ) where P (X ) denotes the power set of X , where by convention10 we write Ui µ X
for u(i ). Then union

S
i2I Ui of the collection of subsets {Ui : i 2 I } is then {x 2 X : 9i 2 I , x 2Ui }, while the

intersection of the collection {Ui : i 2 I } is just {x 2 X : 8i 2 I , x 2Ui }. Using this, one readily sees that if
I =; then the intersection of the collection is X and the union is the empty set ;.

Exercise 5.8. Using Lemma 4.1, show that the topologies Ti on Rn given by the norms di (i = 1,2,1)
coincide.

Example 5.9. A subset U of R is open if for any x 2U there is an open interval centred at x contained in
U . Thus we can readily see that the finiteness condition for intersections is necessary: if Ui = (°1/i ,1)
for i 2N then each Ui is open but

T
i2NUi = [0,1) and [0,1) is not open because it is not a neighbourhood

of 0.

One important consequence of the fact that arbitrary unions of open sets are open is the following:

Definition 5.10. Let (X ,d) be a metric space and let S µ X . The interior of S is defined to be

int(S) =
[

UµS
U open

U .

Since the union of open subsets is always open, int(S) is an open subset of X and it is the largest open
subset of X which is contained in S in the sense that any open subset of X which is contained in S is in
fact contained in int(S). If x 2 int(S) we say that x is an interior point of S. One can also phrase this in
terms of neighborhoods: the interior of S is the set of all points in S for which S is a neighbourhood.

Example 5.11. If S = [a,b] is a closed interval in R then its interior is just the open interval (a,b). If we
take S =QΩR then int(Q) =;.

10This is similar to how a sequence in a space X is actually a function a : N! X , but we usually write an rather than a(n).
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We now show that the topology given by a metric is sufficient to characterize continuity.

Proposition 5.12. Let X and Y be metric spaces and let f : X ! Y be a function. If a 2 X then f is contin-
uous at a if and only if for every neighbourhood N µ Y of f (a), the preimage f °1(N ) is a neighbourhood of
a 2 X . Moreover, f is continuous on all of X if and only if for each open subset U of Y , its preimage f °1(U )
is open in X .

Proof. First suppose that f is continuous at a, and let N be a neighhourhood of f (a). Then we may
find an ≤ > 0 such that B( f (a),≤) µ N . Since f is continuous at a, there is a ± > 0 such that B(x,±) µ
f °1(B( f (a),≤)) µ f °1(U ). It follows f °1(N ) is a neighbourhood of a as required. Conversely, if ≤ > 0 is
given, then certainly B( f (a),≤) is a neighbourhood of f (a), so that f °1(B( f (a),≤)) is a neighbourhood of
a, hence there is a ±> 0 such that B(a,±) µ f °1(B( f (a),≤)), and thus f is continuous at a as required.

Now if f is continuous on all of X , since a set is open if and only if it is a neighbourhood of each of its
points, it follows from the above that f °1(U ) is an open subset of X for any open subset U of Y . For the
converse, note that if a 2 X is any point of X and ≤ > 0 is given then the open ball B( f (a),≤) is an open
subset of Y , hence f °1(B( f (a),≤)) is open in X , and in particular is a neighbourhood of a 2 X . But then
there is a ±> 0 such that B(a,±) µ f °1(B( f (a),≤)), hence f is continuous at a as required.

⇤
Example 5.13. Notice that this Proposition gives us a way of producing many examples of open sets: if
f : Rn ! R is any continuous function and a,b 2 R are real numbers with a < b then {v 2 Rn : a < f (x) <
b} = f °1((a,b)) is open in Rn . Thus for example {(x, y) 2 R2 : 1 < 2x2 +3x y < 2} is an open subset of the
plane.

Exercise 5.14. Use the characterization of continuity in terms of open sets to show that the composition
of continuous functions is continuous11.

Remark 5.15. The previous Proposition 5.12 shows, perhaps surprisingly, that we actually need some-
what less than a metric on a set X to understand what continuity means: we only need the topology
induced by the metric on the set X . In particular any two metrics which give the same topology give the
same notion of continuity. This motivates the following, perhaps rather abstract-seeming, definition.

Definition 5.16. If X is a set, a topology on X is a collection of subsets T of X , known as the open subsets
which satisfy the conclusion of Lemma 5.6. That is,

(1) If {Ui : i 2 I } are in T then
S

i2I Ui is in T . In particular ; is an open subset.
(2) If I is finite and {Ui : i 2 I } are in T , then

T
i2I Ui is in T . In particular X is an open subset of X .

A topological space is a pair (X ,TX ) consisting of a set X and a choice of topology TX on X .
Motivated by Proposition 5.12, if f : X ! Y is a function between two topological spaces (X ,TX ) and

(Y ,TY ) we say that f is continuous if for every open subset U 2TY we have f °1(U ) 2TX , that is, f °1(U )
is an open subset of X .

Remark 5.17. There are a variety of ways of stating the axioms for a topology. They are often phrased by
stating separately that X and ; are open. For example the Topology course choses the axioms:

(1) The sets X and ; are open.
(2) If U and V are open, then U \V is open.
(3) If I is any indexing set and {Ui : i 2 I } are a collection of open sets in X then

S
i2I Ui is open.

In this articulation of the axioms, the the condition that ; is open is redundant12, while the condition
that

T
i2I Ui is open for finite indexing sets I follows from axioms 1) and 2) using induction.

11This is easy, the point is just to check you see how easy it is!
12This is not necessarily a terrible thing, for example in giving the axioms for a group, one can require the existence of a

two-sided indentity and of two-sided inverses, or just the existence of a left-indentity and left-inverses. Although the two-sided
version is contains redundant stipulations it is nevertheless the most commonly used one.
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The properties of a metric space which we can express in terms of open sets can equally be expressed
in terms of their complements, which are known as closed sets. It is useful to have both formulations (as
we will show, the formulation of continuity in terms of closed sets is closer to that given by convergence
of sequences rather than the ≤-± definition).

Definition 5.18. If (X ,d) is a metric space, then a subset F µ X is said to be a closed subset of X if its
complement F c = X \F is an open subset.

Remark 5.19. It is important to note that the property of being closed is not the property of not being
open! In a metric space, it is possible for a subset to be open, closed, both or neither: In R the set R is
open and closed, the set (0,1) is open and not closed, the set [0,1] is closed and not open while the set
(0,1] is neither.

The following lemma follows easily from Lemma 5.6 by using DeMorgan’s Laws.

Lemma 5.20. Let (X ,d) be a metric space and let {Fi : i 2 I } be a collection of closed subsets.

(1) The intersection
T

i2I Fi is a closed subset. In particular X is a closed subset of X .
(2) If I is finite then

S
i2I Fi is closed. In particular the empty set ; is a closed subset of X .

Moreover, if f : X ! Y is a function between two metric spaces X and Y then f is continuous if and only if
f °1(G) is closed for every closed subset G µ Y .

Proof. The properties of closed sets follow immediately from DeMorgan’s law, while the characterisza-
tion of continuity follows from the fact that if G Ω Y is any subset of Y we have f °1(Gc ) = ( f °1(G))c , that
is, X \ f °1(G) = f °1(Y \G). ⇤
Lemma 5.21. If (X ,d) is a metric space then any closed ball B̄(a,r ) for r ∏ 0 is a closed set. In particular,
singleton sets are closed.

Proof. We must show that X \B̄(a,r ) is open. If y 2 X \B̄(a,r ) then d(a, y) > r , so that ≤= d(a, y)° r > 0.
But then if z 2 B(y,≤) we have

d(a, z) ∏ d(a, y)°d(z, y) > d(a, y)°≤= r,

so that z › B̄(a,r ). It follows that B(y,≤) µ X \B̄(a,r ) and so X \B̄(a,r ) is open as required. ⇤
The relation between closed sets and convergent sequences mentioned at the beginning of this sec-

tion arises through the notion of a limit point which we now define.

Definition 5.22. If (X ,d) is a metric space and Z µ X is any subset, then we say a point a 2 X is a limit
point if for any ≤> 0 we have

°
B(a,≤)\{a}

¢
\Z 6=;. If a 2 Z and a is not a limit point of Z we say that a is

an isolated point of Z . The set of limit points of Z is denoted Z 0. Notice that if Z1 µ Z2 are subsets of X
then it follows immediately from the definition that Z 0

1 µ Z 0
2.

Example 5.23. If Z = (0,1][ {2} Ω R then 0 is a limit point of Z which does not lie in Z , while 2 is an
isolated point of Z because B(2,1/2)\Z = (1.5,2.5)\Z = {2}.

If (xn) is a sequence in (X ,d) which converges to ` 2 X then {xn : n 2N} is either empty or equal to {`}.
(See the problem set.)

The term “limit point” is motivated by the following easy result:

Lemma 5.24. If S is a subset of a metric space (X ,d) then x 2 S0 if and only if there is a sequence in S\{x}
converging to x.

Proof. If x is a limit point then for each n 2N we may pick zn 2 B(x,1/n)\ (S\{x}). Then clearly zn ! x
as n !1 as required. Conversely if (zn) is a sequence in S\{x} converging to x and ±> 0 is given, there is
an N 2N such that zn 2 B(x,±) for all n ∏ N . It follows that B(x,±)\ (S\{x}) is nonempty as required. ⇤
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The fact that a subset of a metric space is closed can be characterized in terms of limit points (and
hence in terms of convergent seqeunces):

The fact that any intersection of closed subsets is closed has an important consequence – given any
subset S of a metric space (X ,d) there is a unique smallest closed set which contains S.

Definition 5.25. Let (X ,d) be a metric space and let S µ X . Then the set

S̄ =
\

G∂S
G closed

G ,

is the closure of S. It is closed because it is the intersection of closed subsets of X and is the smallest
closed set containing S in the sense that if G is any closed set containing S then G contains S̄. If S µ Y µ X
we say that S is dense in Y if Y µ S̄. (Thus every point of Y lies in S or is a limit point of S.)

Example 5.26. The rationalsQ are a dense subset of R, as is the set { a
2n : a 2Z,n 2N}.

Definition 5.27. The notions of closure and interior also allow us to define the boundary @S of a subset
S of a metric space to be S̄\int(S).

Proposition 5.28. Let (X ,d) be a metric space and let S µ X . Then

S [S0 = S̄.

In particular, a subset S is closed if and only if S0 µ S, i.e. if and only if S contains all of its limit points.

Proof. Let Y = S [S0. Since S µ S̄, certainly S0 µ (S̄)0, and as S̄ is closed, by Lemma ??, (S̄)0 µ S̄. Hence
Y µ S̄. To see the opposite inclusion, suppose that a › Y . Then there is a ±> 0 such that B(a,±)\S =;.
It follows that S µ B(a,±)c and thus since B(a,±)c is closed, S̄ µ B(a,±)c , and so certainly a › S̄. It follows
S̄ µ Y and hence S̄ = Y are required.

⇤
Remark 5.29. If Z µ X is an arbitrary subset you can check that (Z 0)0 µ Z 0, that is, the limit points of Z 0

are limit points of Z . It then follows from Proposition 5.28 that Z 0 is closed, since it contains its limit
points.

Exercise 5.30. Show that if S µ X and a 2 X , then a 2 S̄ if and only if there is a sequence (xn) in S with
xn ! a.

Solution: First suppose that (xn) is a sequence in S and xn ! y as n !1. Let M = {n 2N : xn 6= y}. If M
is infinite then the corresponding subsequence (xn)n2M lies in S\{y} and clearly converges to y , so that
y 2 S0 by Lemma 5.24. If M is finite, then xn = y for infinitely many n so certainly y 2 S. Conversely, if
y 2 S̄ then by Proposition 5.28, either y 2 S or y 2 S0. If y 2 S we may take the constant sequence xn = y
while if yn 2 S0\S then we are again done by Lemma 5.24.

Example 5.31. In general, it need not be the case that B̄(a,r ) is the closure of B(a,r ). Since we have seen
that B̄(a,r ) is closed, it is always true that B(a,r ) µ B̄(a,r ) but the containment can be proper. As a (per-
haps silly-seeming) example take any set X with at least two elements equipped with the discrete metric.
Then if x 2 X we have {x} = B(x,1) is an open set consisting of the single point {x}. Since singletons are
always closed we see that B(x,1) = B(x,1) = {x}. On the other hand B̄(x,1) = X the entire set, which is
strictly larger than {x} by assumption.

Remark 5.32. Combining the above characterization of closed sets in terms of limit points and the char-
acterization of continuity in terms of closed sets we can give yet another description of continuity for a
function f : X ! Y between metric spaces: If Z Ω Y is a subset of Y which contains all its limit points
then so does f °1(Z ). Yet another characterization can be given using the notion of the closure of a set,
namely that a function f : X ! Y is continuous if and only if for any subset Z µ X we have f (Z ) µ f (Z ).
It is easy to relate this to the definition of continuity in terms of convergent sequences.

14


