
6. SUBSPACES OF METRIC SPACES

If (X ,d) is a metric space, then as we noted before, any subset Y ⊆ X is automatically also a metric
space since the distance function d : X × X → R≥0 restricts to a distance function on Y . The set Y thus
has a topology given by this metric. In this section we show that this topology is easy to describe in terms
of the topology on X . The key to this description is the simple observation that the open balls in Y are
just the intersection of the open balls in X with Y . For clarity, for y ∈ Y ⊆ X we will write

BY (y,r ) = {z ∈ Y : d(z, y) < r }

for the open ball about y of radius r in Y and

BX (y,r ) = {x ∈ X : d(x, y) < r }

for the open ball of radius r about y in X . Thus BY (y,r ) = Y ∩BX (y,r ).

Lemma 6.1. If (X ,d) is a metric space and Y ⊆ X then a subset U ⊆ Y is an open subset of Y if and only if
there is an open subset V of X such that U =V ∩Y . Similarly a subset Z ⊆ Y is a closed subset of Y if and
only if there is a closed subset F of X such that Z = F ∩Y .

Proof. If U = Y ∩V where V is open in X and y ∈U then there is a δ> 0 such that BX (y,δ) ⊆V . But then
BY (y,δ) = BX (y,δ)∩Y ⊆V ∩Y =U and so U is a neighhourbood of each of its points as required. On the
other hand, if U is an open subset of Y then for each y ∈U we may pick an open ball BY (y,δy ) ⊆U . It
follows that U =⋃

y∈U BY (y,δy ). But then if we set V =⋃
y∈U BX (y,δy ) it is immediate that V is open in X

and V ∩Y =U as required.
The corresponding result for closed sets follows readily: F is closed in Y if and only if Y \F is open in

Y which by the above happens if and only if it equals Y ∩V for some open set in X . But this is equivalent
to F = Y ∩V c , the intersection of Y with the closed set V c . �

Remark 6.2. The lemma shows that the topology on X determines the topology on the subspace Y ⊆ X
directly. It is easy to see that if (X ,T ) is an abstract topological space and Y ⊆ X then the collection
TY = {U ∩Y : U ∈T } is a topology on Y which is called the subspace topology.

Remark 6.3. It is important here to note that the property of being open or closed is a relative one – it
depends on which metric space you are working in. Thus for example if (X ,d) is a metric space and
Y ⊆ X then Y is always open viewed as a subset of itself (since the whole space is always an open subset)
but it of course need not be an open subset of X ! For example, [0,1] is not open in R but it is an open
subset of itself.

Example 6.4. Let’s consider a more interesting example: Let X = R and let Y = [0,1]∪ [2,3]. As a subset
of Y the set [0,1] is both open and closed. To see that it is open, note that if x ∈ [0,1] then

BY (x,1/2) = BR(x,1/2)∩Y = (x − 1

2
, x + 1

2
)∩ ([0,1]∪ [2,3])

= (x − 1

2
, x + 1

2
)∩ [0,1] ⊂ [0,1],

Similarly we see that BY (x,1/2) ⊆ [2,3] if x ∈ [2,3] so that [2,3] is also open in Y . It follows [0,1] is both
open and closed in Y (as is [2,3]).

7. HOMEOMORPHISMS AND ISOMETRIES

If (X ,d) and (Y ,d) are metric spaces it is natural to ask when we wish to consider X and Y equivalent.
There is more than one way to answer this question – the first, perhaps most obvious one, is the following:

Definition 7.1. A function f : X → Y between metric spaces (X ,dX ) and (Y ,dY ) is said to be an isometry
if

dY ( f (x), f (y)) = dX (x, y) ∀x, y ∈ X
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An isometry is automatically injective. If there is a surjective (and hence bijective) isometry between two
metric spaces X and Y we say that X and Y are isometric.

Example 7.2. Let X =R2 (equipped with the Euclidean metric13 d2). The collection of all bijective isome-
tries from X to itself forms a group, the isometry group of the plane. Clearly the translations tv : R2 →R2

are isometries, where v ∈ R2 and tv (x) = x + v . Similarly, if A ∈ Mat2(R) is an orthogonal matrix, so that
At A = I , then x 7→ Ax is an isometry: since d2(Ax, Ay) = ‖A(x)− A(y)‖ = ‖A(x − y)‖ it is enough to check
that ‖Ax‖ = ‖x‖, but this is clear since ‖Ax‖2 = (Ax).(Ax) = x At Ax = x t I x = ‖x‖.

In fact these two kinds of isometries generate the full group of isometries. If T : R2 →R2 is any isome-
try, let v = T (0). Then T1 = t−v ◦T is an isometry which fixes the origin. Thus it remains to show that any
isometry which fixes the origin is in fact linear. But you showed in Prelims Geometry that any such isom-
etry of Rn must preserve the inner product (because it preserves the norm and you can express the inner
product in terms of the norm). It follows such an isometry takes an orthonormal basis to an orthonormal
basis, from which linearity readily follows. (Note that this argument works just as well in Rn .)

Example 7.3. Let Sn = {x ∈ Rn+1 : ‖x‖2 = 1} be the n-sphere (so S1 is a circle and S2 is the usual sphere).
Clearly On+1(R) acts by isometries on Sn . In fact you can show that Isom(Sn) = On+1(R). To prove this
one needs to show that any isometry of Sn extends to an isometry of Rn+1 which fixes the origin.

We have already seen that on Rn the metrics d1,d2,d∞, although different, induce the same notion
of convergence and continuity14 . The notion of isometry is thus in some sense too rigid a notion of
equivalence if these are the notions we are primarily interested in. A weaker, but often more useful,
notion of equivalence is the following:

Definition 7.4. Let f : X → Y be a continuous function between metric spaces X and Y . We say that f
is a homeomorphism if there is a continuous function g : Y → X such that f ◦ g = idY and g ◦ f = idX . If
there is a homeomorphism between two metric spaces X and Y we say they are homeomorphic.

Remark 7.5. Note that the definition implies that f is bijective as a map of sets but it is not true in gen-
eral15 that a continuous bijection is necessarily a homeomorphism. To see this, consider the spaces
X = [0,1)∪ [2,3] and Y = [0,2]. Then the function f : X → Y given by

f (x) =
{

x, if x ∈ [0,1)
x −1, if x ∈ [2,3]

is a bijection and is clearly continuous. Its inverse g : Y → X is however not continuous at 1 – the one-
sided limits of g as x tends to 1 from above and below are 1 and 2 respectively.

Example 7.6. The closed disk B̄(0,1) of radius 1 inR2 is homoemorphic to the square [−1,1]×[−1,1]. The
easiest way to see this is inscribe the disk in the square and stretch the disk radially out to the square. One
can write explicit formulas for this in the four quarters of the disk given by the lines x ± y = 0 to check
this does indeed give a homeomorphism.

The open interval (0,1) is homeomorphic toR: a homeomorphism between them is given by the func-
tion x 7→ tan(π.(x −1/2)), which has inverse y 7→ 1

π arctan(y)+ 1
2 .

8. COMPLETENESS

One of the important notions in Prelims analysis was that of a Cauchy sequence. This is a notion, like
convergence, which makes sense in any metric space.

13Unless it is explicitly stated otherwise, we will always take Rn to be a metric space equipped with the d2 metric.
14There is actually a slightly subtle point here – to know that (Rn ,d1) and (Rn ,d2) are not isometric we would need to show

that there is no bijective map α : Rn →Rn such that d2(α(x),α(y)) = d1(x, y) for all x, y ∈Rn .
15This is unlike the examples you have seen in algebra – the inverse of a bijective linear map is automatically linear, and the

inverse of a bijective group homomorphism is automatically a homomorphism. Similarly, the inverse of a bijective isometry is
also an isometry.
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Definition 8.1. Let (X ,d) be a metric space. A sequence (xn) in X is said to be a Cauchy sequence if, for
any ε> 0, there is an N ∈N such that d(xn , xm) < ε for all n,m ≥ N .

The following lemma establishes basic properties of Cauchy sequences in an arbitrary metric space
which you saw before for real sequences.

Lemma 8.2. Let (X ,d) be a metric space.

(1) If (xn) is a convergent sequence then it is Cauchy.
(2) Any Cauchy sequence is bounded.

Proof. Suppose that xn → ` as n →∞ and ε> 0 is given. Then there is an N ∈N such that d(xn ,`) < ε/2
for all n ≥ N . It follows that if n,m ≥ N we have

d(xn , xm) ≤ d(xn ,`)+d(`, xm) < ε/2+ε/2 = ε,

so that (xn) is a Cauchy sequence as required.
If (xn) is a Cauchy sequence, then taking ε= 1 in the definition, we see that there is an N ∈N such that

d(xn , xm) < 1 for all n,m ≥ N . It follows that if we set

M = max{1,d(x1, xN ),d(x2, xN ), . . . ,d(xN−1, xN )}

then for all n ∈Nwe have xn ∈ B(xN , M) so that (xn) is bounded as required. �

Part (1) of the lemma motivates the following definition:

Definition 8.3. A metric space (X ,d) is said to be complete if every Cauchy sequence in X converges.

Example 8.4. One of the main results in Analysis I was that R is complete, and it is easy to deduce from
this that Rn is complete also (since a sequence in Rn converges if and only if each of its coordinates
converge).

On the other hand, consider the metric space (0,1]: The sequence (1/n) converges in R (to 0) so the
sequence is Cauchy in R and hence also in (0,1], however it does not converge in (0,1].

The previous example suggests a connection between completeness and closed sets. One precise
statement of this form is the following:

Lemma 8.5. Let (X ,d) be a complete metric space and let Y ⊆ X . Then Y is complete if and only if Y is a
closed subset of X .

Proof. Note that if (xn) is a Cauchy sequence in Y then it is certainly a Cauchy sequence in X . Since X is
complete, (xn) converges in X , say xn → a as n →∞. Thus (xn) converges in Y precisely when a ∈ Y . It
follows that Y is complete if and only if it contains the limits of all sequences (xn) in Y which converge
in X . But Lemma 5.30 shows that the set of limits of all sequences in Y is exactly Ȳ , hence Y is complete
if and only if Ȳ ⊆ Y , that is, if and only if Y is closed.

�

Another useful consequence of completeness is that it guarantees certain intersections of closed sets
are non-empty:

Lemma 8.6. Let (X ,d) be a complete metric space and suppose that D1 ⊇ D2 ⊇ . . . form a nested sequence
of non-empty closed sets in X with the property that diam(Dk ) → 0 as k →∞. Then there is a unique point
w ∈ X such that w ∈ Dk for all k ≥ 1.

Proof. For each k pick zk ∈ Dk . Then since the Dk are nested, zk ∈ Dl for all k ≥ l , and hence the as-
sumption on the diameters ensures that (zk ) is a Cauchy sequence. Let w ∈ X be its limit. Since Dk is
closed and contains the subsequence (zn+k )n≥0 it follows w ∈ Dk for each k ≥ 1. To see that w is unique,
suppose that w ′ ∈ Dk for all k. Then d(w, w ′) ≤ diam(Dk ) and since diam(Dk ) → 0 as k →∞ it follows
d(w, w ′) = 0 and hence w = w ′. �
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Remark 8.7. Notice that the property of a metric space being complete is not preserved by homeomor-
phism – we have seen that (0,1) is homeomorphic to R but the former is not complete, while the latter is.
This is because a homeomorphism does not have to take Cauchy sequences to Cauchy sequences.

Example 8.8. Let Y = {z ∈ C : |z| = 1}\{1}. Then Y is homeomorphic to (0,1) via the map t 7→ e2πi t , but
their respective closures Ȳ and [0,1] however are not homeomorphic. (We will seem a rigorous proof of
this later using the notion of connectedness.) The metric spaces Y and (0,1) contain information about
their closures in R2 which is lost when we only consider the topologies the metrics give: the space Y has
Cauchy sequences which don’t converge in Y , but these all converge to 1 ∈ C, whereas in (0,1) there are
two kinds of Cauchy sequences which do not converge in (0,1) – the ones converging to 0 and the ones
converging to 1. The point here is that given two Cauchy sequences we can detect if they converge to
the same limit without knowing what that the limit actually is: (xn) and (yn) converge to the same limit
if for all ε> 0 there is an N ∈N such that d(xn , yn) < ε for all n ≥ N . Using this idea one can define what
is called the completion of a metric space (X ,d): this is a complete metric space (Y ,d) such which X
embeds isometrically into as a dense16 subset. For example, the real numbers R are the completion ofQ.

Many naturally arising metric spaces are complete. We now give a important family of such: recall
that if X is any set, the space B(X ) of bounded real-valued functions on X is normed vector space where
if f ∈B(X ) we define its norm to be ‖ f ‖∞ = supx∈X | f (x)|.
Theorem 8.9. Let X be a set. The normed vector space (B(X ),‖.‖∞) is complete.

Proof. Let ( fn)n≥1 be a Cauchy sequence in B(X ). Then we have for each x ∈ X

| fn(x)− fm(x)| ≤ ‖ fn − fm‖∞ → 0,

as n,m →∞. It follows that the sequence ( fn(x)) is a Cauchy sequence of real numbers and hence since
R is complete it converges to a real number. Thus we may define a function f : X → R by setting f (x) =
limn→∞ fn(x).

We claim fn → f in B(X ). Note that this requires us to show both that f ∈ B(X ) and fn → f with
respect to the norm ‖.‖∞. To check these both hold, fix ε> 0. Since ( fn) is Cauchy, we may find an N ∈N
such that ‖ fn − fm‖∞ < ε for all n,m ≥ N . Thus we have for all x ∈ X and n,m ≥ N

| fn(x)− fm(x)| ≤ ‖ fn − fm‖ < ε.

But now letting n →∞ we see that for any m ≥ N we have | f (x)− fm(x)| ≤ ε for all x ∈ X . But then for any
such m we certainly have f − fm ∈B(X ) so that17 f = fm + ( f − fm) ∈B(X ), and since ‖ f − fm‖∞ ≤ ε for
all m ≥ N it follows fm → f as m →∞ as required.

�

As we already observed, if X is also a metric space then we can also consider the space of bounded
continuous functions Cb(X ) on X . This is a normed subspace of B(X ), and the following theorem is
a generalization of the result you saw last year showing that a uniform limit of continuous functions is
continuous (the proof is essentially the same also).

Theorem 8.10. Let (X ,d) be a metric space. The space Cb(X ) is a complete normed vector space.

Proof. Since we have shown in Theorem 8.9 that B(X ) is complete, by Lemma 8.5 we must show that
Cb(X ) is a closed subset of B(X ). Let ( fn) be a Cauchy sequence of bounded continuous functions on
X . By Theorem 8.9 this sequence converges to a bounded function f : X → R. We must show that f
is continuous. Suppose that a ∈ X and let ε > 0. Then since fn → f there is an N ∈ N such that ‖ f −

16that is, Y is the closure of X .
17Recall from Lemma 3.8 that B(X ) is a vector space!
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fn‖∞ < ε/3 for all n ≥ N . Moreover, if we fix n ≥ N then since fn is continuous, there is a δ> 0 such that
| fn(x)− fn(a)| < ε/3 for all x ∈ B(a,δ). But then for x ∈ B(a,δ) we have

| f (x)− f (a)| ≤ | f (x)− fn(x)|+ | fn(x)− fn(a)|+ | fn(a)− f (a)|
< ε/3+ε/3+ε/3 = ε.

It follows that f is continuous at a, and since a was arbitrary, f is a continuous function as required.
�

Remark 8.11. If X and Y are metric spaces, as we saw in Example 2.12, one can also consider the space
B(X ,Y ) of bounded functions from X to Y , that is, functions f : X → Y such that f (X ) is a bounded
subset of Y , along with its subspace Cb(X ,Y ) of bounded continuous functions. These are no longer
normed vector spaces, but they are both complete metric spaces provided Y is, as you are asked to show
in the second problem sheet.

Lemma 8.12. (“Weierstrass M-test”): Let X be a metric space. Suppose that ( fn) is a sequence in Cb(X ) and
(Mn)n≥0 is a sequence of non-negative real numbers such that ‖ fn‖∞ ≤ Mn for all n ∈ Z≥0 and

∑
n≥0 Mn

exists. Then the series
∑

n≥0 fn converges in Cb(X ).

Proof. Let Sn =∑N
k=0 fk be the sequence of partial sums. Since we know Cb(X ) is complete, it suffices to

prove that the sequence (Sn)m≥0 is Cauchy. But if n ≤ m then we have

‖Sm −Sn‖ ≤
m∑

k=n+1
‖ fk‖ ≤

m∑
k=n+1

Mk ,

and since
∑

k≥0 Mk converges, the sum
∑m

k=n+1 Mk tends to zero as m,n →∞ as required. �

Finally, we conclude this section with a theorem which is extremely useful, and is a natural general-
ization of a result you saw last year in constructive mathematics. We first need some terminology:

Definition 8.13. Let (X ,d) and (Y ,d) be metric spaces and suppose that f : X → Y . We say that f is a
Lipschitz map (or is Lipschitz continuous) if there is a constant K ≥ 0 such that

d( f (x), f (y)) ≤ K d(x, y).

If Y = X and K ∈ [0,1) then we say that f is a contraction mapping (or simply a contraction). Any Lipschitz
map is continuous, and in fact uniformly continuous, as is easy to check.

The reason for the restriction of the term contraction to maps from a space to itself is the following
theorem. The result is a broad generalization of a result you saw before in the Constructive Mathematics
course in Prelims, which you will also see put to good use in the Differential Equations course this term.

Theorem 8.14. Let (X ,d) be a nonempty complete metric space and suppose that f : X → X is a contrac-
tion. Then f has a unique fixed point, that is, there is a unique z ∈ X such that f (z) = z.

Proof. If y1, y2 ∈ X are such that f (y1) = y1 and f (y2) = y2 we have d(y1, y2) = d( f (y1), f (y2)) ≤ K d(y1, y2)
so that (1−K )d(y1, y2) ≤ 0. Since K ∈ [0,1) and the function d is nonnegative this is possible only if
d(y1, y2) = 0 and hence y1 = y2. It follows that f has at most one fixed point.

To see that f has a fixed point, fix a ∈ X and consider the sequence defined by x0 = a and xn = f (xn−1)
for n ≥ 1. We claim that (xn) converges and that its limit z is the unique fixed point of f . Indeed if xn → z
as n →∞ then since f is continuous we have

f (z) = lim
n→∞ f (xn) = lim

n→∞xn+1 = z.

Thus z is indeed a fixed point. Thus it remains to show that (xn) is convergent. Since (X ,d) is complete,
we need only show that (xn) is Cauchy. To see this this note first that for n ≥ 1 we have d(xn , xn−1) ≤
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K n−1d( f (a), a) (by induction). But then if n ≥ m by the triangle inequality we have

d(xn , xm) ≤
n−m∑
k=1

d(xm+k , xm+k−1) ≤ d(a, f (a))K m
n−m∑
k=1

K k−1 ≤ d(a, f (a))

1−K
K m ,

which clearly tends to 0 as n,m →∞. It follows (xn) is a Cauchy sequence as required. �

Remark 8.15. This theorem is important not just for the statement, but because the proof shows us how
to find the fixed point! (Or rather, at least how to approximate it). The sequence (xn) in the proof con-
verges to the fixed point, and in fact does so quickly – if we start with an initial guess a, and z is the actual
fixed point, then d(xn , z) ≤ K n .d(a, z).

Remark 8.16. It is worth checking to what extent the hypotheses of the theorem are necessary. One might
think of a weaker notion of contraction, for example: if f : X → X has the property that d( f (x), f (y)) <
d(x, y) for all x, y ∈ X then it is easy to see that f has at most one fixed point, but the example f : [1,∞) →
[1,∞) where f (x) = x +1/x shows that such a map need not have any fixed points.

The requirement that X is complete is also clearly necessary: if f : (0,1) → (0,1) is given by f (x) = x/2
clearly f is a contraction, but f has no fixed points in (0,1).

9. CONNECTED SETS

In this section we try to understand what makes a space “connected”. There are in fact more than one
approaches one can take to this question. We will consider two, and show that for reasonably nice spaces
the two notions in fact coincide18.

The first definition we make tries to capture the fact that the space should not “fall apart” into separate
pieces. Since we can always write a space with more than one element as a disjoint union of two subsets,
we must take into account the metric, or at least the topology, of our space in making a definition.

Example 9.1. Let X = [0,1] and let A = [0,1/2) and B = [1/2,1]. Then clearly X = A ∪B so that X can be
divided into two disjoint subsets. However, the point 1/2 ∈ B has points in A arbitrarily close to it, which,
intuitively speaking, is why it is “glued” to A.

This suggests that we might say that a decomposition of metric space X into two subsets A and B
might legitimately show X to be disconnected if no point of A was a limit point of B and vice versa. This
is precisely the content of our definition.

Definition 9.2. Suppose that (X ,d) is a metric space. We say that X is disconnected if we can write
X =U ∪V where U and V are nonempty open subsets of X and U ∩V =;. We say that X is connected if
it is not disconnected.

Note that if X = U ∪V and U and V are both open and disjoint, then U = V c is also closed, as is V .
Thus U and V also contain all of their limit points, so that no limit point of A lies in B and vice versa.

Remark 9.3. Note that if (X ,d) is a metric space and A ⊆ X , then the condition that A is connected can
be rewritten as follows: if U ,V are open in X and U ∩V ∩ A =; then whenever A ⊆U ∪V , either A ⊆U
or A ⊆V .

As the previous remark shows, there are a few ways of expressing the above definition which are all
readily seen to be equivalent. We record the most common in the following lemma.

Lemma 9.4. Let (X ,d) be a metric space. The following are equivalent.

(1) X is connected.
(2) If f : X → {0,1} is a continuous function then f is constant.
(3) The only subsets of X which are both open and closed are X and ;.

18In particular, for the open subsets of the complex plane which are the sets we will be most interested in for second part of
the course, the two notions will coincide, but both characterizations of connectedness will be useful.
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(Here the set {0,1} is viewed as a metric space via its embedding in R, or equivalently with the discrete
metric.)

Proof. (1) ⇐⇒ (2): Let f : X → {0,1} be a continuous function. Then since the singleton sets {0} and {1}
are both open in {0,1} each of f −1(0) and f −1(1) are open subsets of X which are clearly disjoint. It follows
if X is connected then one must be the empty set, and hence f is constant as required. Conversely, if X
is not connected then we may write X = A∪B where A and B are nonempty disjoint open sets. But then
the function f : X → {0,1} which is 1 on A and 0 on B is non-constant and by the characterization of
continuity in terms of open sets, f is clearly continuous.

(1) ⇐⇒ (3): If X is disconnected then we may write X = A ∪B where A and B are disjoint nonempty
open sets. But then Ac = B so that A is closed (as is B = Ac ) so that A and B proper sets of X which are
both open and closed. Conversely, if A is a proper subset of X which is closed and open then Ac is also
a proper subset which is both closed and open so that the decomposition X = A ∪ Ac shows that X is
disconnected. �

Example 9.5. If X = [0,1]∪ [2,3] ⊂ R then we have seen that both [0,1] and [2,3] are open in X , hence
since X is their disjoint union, X is not connected.

Lemma 9.6. Let (X ,d) be a metric space.

i ) Let {Ai : i ∈ I } be a collection of connected subsets of X such that
⋂

i∈I Ai 6= ;. Then
⋃

i∈I Ai is
connected.

i i ) If A ⊆ X is connected then if B is such that A ⊆ B ⊆ Ā, the set B is also connected.
i i i ) If f : X → Y is continuous and A ⊆ X is connected then f (A) ⊆ Y is connected.

Proof. For the first part, suppose that f :
⋃

i∈I Ai → {0,1} is continuous. We must show that f is constant.
Pick x0 ∈⋂

i∈I Ai . Then if x ∈⋃
i∈I Ai there is some i for which x ∈ Ai . But then the restriction of f to Ai is

constant since Ai is connected, so that f (x) = f (x0) as x, x0 ∈ Ai . But since x was arbitrary, it follows that
f is constant as required.

See the second problem sheet for hints for the second part.
For the final part, note that since f is continuous, if f (A) ⊆U ∪V for U and V open in Y with U ∩V ∩

f (A) =;, then A ⊂ f −1(U )∪ f −1(V ), f −1(U )∩ f −1(V )∩ A =; and f −1(U ), f −1(V ) are open in X . Since A
is connected it must lie entirely in one of f −1(U ) or f −1(V ) and hence f (A) must lie entirely in U or V as
required. �

Remark 9.7. Notice that i i i ) in the previous Lemma implies that if X and Y are homeomorphic, they if
X is connected so is Y , and vice versa. Note also that i i i ) allows us to generalize the characterization of
connectedness in terms of functions to the set {0,1}. We say that a metric (or topological) space is discrete
if every point is an open set. It is easy to see that the connected subsets of a discrete metric space are
precisely the singleton sets, thus any continuous function from a connected set to a discrete set must be
constant. This applies for example to sets such as N and Z, which will be very useful for us later in the
course.

Definition 9.8. Part i ) of Lemma 9.6 has an important consequence: if (X ,d) is a metric space and x0 ∈ X ,
then the set of connected subsets of X which contain x0 is closed under unions, that is, if {Ci : i ∈ I } is
any collection of connected subsets containing x0 then

⋃
i∈I Ci is again a connected subset containing

x0. This means that

Cx0 =
⋃

C⊆X connected,
x0∈C

C ,
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is the largest19 connected subset of X which contains x0, in the sense that any connected subset of X
which contains x0 lies in Cx0 . It is called the connected component of X containing x0. The space X is the
disjoint union of its connected components.

9.1. Connected sets in R.

Proposition 9.9. The real line R is connected.

Proof. Let U and V be open subsets of R such that R = U ∪V and U ∩V = ;. Suppose for the sake of
a contradiction that both U and V are non-empty so that we may pick x ∈ U and y ∈ V . By symmetry
we may assume that x < y (since U ∩V = ; we cannot have x = y). Since [x, y] is bounded and x ∈ U ,
if we let S = {z ∈ [x, y] : z ∈U }, then c = sup(S) exists, and certainly c ∈ [x, y]. If c ∈U then c 6= y and as
U is open there is some ε1 > 0 such that B(c,ε1) ⊆U . Thus if we set δ = min{ε1/2,(y − c)/2} > 0 we have
c +δ ∈U ∩ [x, y] contradicting the fact that c is an upper bound for S. Similarly if c ∈ V then there is an
ε2 > 0 such that B(c,ε2) ⊆ V . But then ;= (c − ε2,c]∩U ⊇ (c − ε2,c]∩S, so that c − ε2 is an upper bound
for S, contradiction the fact that c is the least upper bound of S. It follows that one of U or V is the empty
set as required. �

Corollary 9.10. The real line R, every half-line (a,∞), (−∞, a), [a,∞) or (−∞, a] and any interval are all
connected subsets of R.

Proof. We have already seen that R is connected, and since every open interval (a,b) or open half-line
(a,∞), (−∞, a) is homeomorphic to R they are also connected. The remaining cases the follow from part
i i ) of Lemma 9.6. �

Exercise 9.11. Show that any interval or half-line is homeomorphic to one of [0,1], [0,1) or (0,1).

Lemma 9.12. Suppose that A ⊂R is a connected set. Then A is either R, an interval, or a half-line.

Proof. Suppose that x, y ∈ A and x < y . We claim that [x, y] ⊆ A. Indeed if this is not the case then there
is some c with x < c < y and c ∉ A. But then A = (

A∩ (−∞,c)
)∪ ((A∩ (c,∞)

)
so that A is not connected.

If we let sup(A) =+∞ if A is not bounded above and inf(A) = −∞ if A is not bounded below, then by
the approximation property it follows that

(inf(A),sup(A)) = ⋃
x,y∈A
x≤y

[x, y] ⊆ A,

so that A is an interval or half-line as required. (The inf(A) and sup(A) may or may not lie in A, leading
to open, closed, or half-open intervals and open or closed half-lines.) �

Proposition 9.13. (Intermediate Value Theorem.) Let f : [a,b] → R be a continuous function. Then the
image of f is an interval in R. In particular, f takes every value between f (a) and f (b).

Proof. Since [a,b] is connected, its image must be connected, and hence by the above it is an interval.
The in particular claim follows. �

Remark 9.14. Note that for the Intermediate Value Theorem we only needed to know that [a,b] was
connected and that a connected subset A of R has the property that if x ≤ y lie in A then [x, y] ⊆ A.

9.2. Path connectedness. A quite different approach to connectedness might start assuming that, what-
ever a connected set should be, the closed interval should be one20.

19This is the analogous to the definition of the interior of a subset S of X , which is the largest open subset of X contained in
S.

20Since we’ve seen that the closed interval is connected according to our previous definition, it shouldn’t be too surprising
that we will readily be able to see our second notion of connectedness implies the first. The subtle point will be that it is actually
in general a strictly stronger condition.

22



Definition 9.15. Let (X ,d) be a metric space. A path in X is a continuous function γ : [a,b] → X where
[a,b] is any non-empty closed interval. If x, y ∈ X then we say there is a path between x and y if there is
a path γ : [a,b] → X such that γ(a) = x and γ(b) = y . We say that the metric space X is path-connected if
there is a path between any two points in X . Note that since every closed interval [a,b] is homeomorphic
to [0,1] one can equivalently require that paths are continuous functions γ : [0,1] → X . In the subsequent
discussion we will, for convenience, impose this condition.

There are a number of useful operations on paths: Given two paths γ1,γ2 in X such that γ1(1) = γ2(0)
we can form the concatenation γ1?γ2 of the two paths to be the path

γ1?γ2(t ) =
{

γ1(2t ), 0 ≤ t ≤ 1/2
γ2(2t −1), 1/2 ≤ t ≤ 1

Finally, if γ : [0,1] → X is a path, then the opposite path γ− is defined by γ−(t ) = γ(1− t ).

Definition 9.16. There is a notion of path-component for a metric space: Let us define a relation on
points in X as follows: Say x ∼ y if there is a path from x to y in X . The constant path γ(t ) = x (for all
t ∈ [0,1]) shows that this relation is reflexive. If γ is a path from x to y then γ− is a path from y to x, so the
relation is symmetric. Finally if γ1 is a path from x to y and γ2 is a path from y to z then γ1?γ2 is a path
from x to z, so the relation is transitive. It follows that ∼ is an equivalence relation and its equivalence
classes, which partition X , are known as the path components of X .

We now relate the two notions of connectedness.

Proposition 9.17. Let (X ,d) be a metric space. If X is path-connected then it is connected. If X is an open
subset of V where V is a normed vector space, then X is path-connected if it is connected.

Proof. Suppose that X is path-connected. To see X is connected we use the characterization of connect-
edness in terms of functions to {0,1}. Consider such a function f : X → {0,1}. We wish to show that f is
constant, that is, we need to show that if x, y ∈ X then f (x) = f (y). But Z is path-connected, so there
is a path γ : [0,1] → X such that γ(0) = x and γ(1) = y . But then f ◦γ is a continuous function from the
connected set [0,1] to {0,1} so that f ◦γ must be constant. But then f (x) = f ◦γ(0) = f ◦γ(1) = f (y) as
required.

Now suppose that X is open in V where V is a normed vector space. Let x0 be a point in X and let P be
its path component. Then if v ∈ P , since X is open, there is an open ball B(v,r ) ⊆ Z . Given any point w in
B(v,r ) we have the path γw (t ) = t w + (1− t )v from v to w , and hence concatenating a path from x0 to v
with γv we see that w lies in P . It follows that B(v,r ) ⊆ P so that P is open in V . But since X is the disjoint
union of its path components, it follows that if Z is connected it must have at most one path-component
and so is path-connected as required. �

Remark 9.18. Note that it is easy to see that if (X ,d) is path-connected and f : X → Y is continuous, then
the image of X under f is a path-connected subset of Y : if y1 = f (x1) and y2 = f (x2) are in the image of
f , then if we pick a path γ : [0,1] → X from x1 to x2 in X , clearly f ◦γ is a path from y1 to y2 in f (X ).

Example 9.19. In general it is not true that a connected set need be path-connected. One reason the two
notions differ is because, as well as being connected, the closed interval is what is known as compact, a
notion we will examine shortly. One consequence of this is that if (X ,d) is a metric space and A ⊂ X is a
path-connected subspace then Ā, the closure of A need not be path-connected, despite the fact that we
have already seen that it must be connected.

Consider the subset A ⊆R2 given by

A = {(t , sin(1/t ) : t ∈ (0,1]}.

Since A is clearly the image of (0,1] under a continuous map, it is a connected subset of R2, and hence
its closure Ā = A ∪ ({0}× [−1,1]) is also connected. We claim however that Ā is not path-connected. To
see informally why this is the case, suppose γ : [0,1] → R2 has a path from (1,sin(1)) to (0,1). Then the
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first and second coordinates x(t ) and y(t ) of γ are continuous functions on a closed interval, so they are
uniformly continuous. By the intermediate value theorem x(t ) must take every value between 1 and 0,
but then y(t ) must oscillate between −1 and 1 infinitely often which violates uniform continuity.

10. COMPACTNESS

One of the most fundamental theorems in Prelims Analysis was the Bolzano-Weierstrass theorem on
bounded sequences of real numbers. It is the key technical ingredient in a number of the main theorems
in the whole sequence – the completeness of the reals, the fact that a continuous function on a closed
interval is bounded and attains its bounds, the equivalence of continuity and uniform continuity for
functions on a closed interval all rely on it.

In this section we study metric spaces in which the conclusion of the Bolzano-Weierstrass theorem
holds, and show that not only do many of the results from Prelims which relied on the Bolanzo-Weierstrass
theorem extend to these metric spaces (which is perhaps unsurprising) but also that the class of such
spaces is quite rich – it includes for example all closed bounded subsets of Rn for any n.

Definition 10.1. Let (X ,d) be a metric space. We say that X is (sequentially21) compact if any sequence
(xn)n≥1 in X contains a subsequence (xnk )k≥1 for which there exists an ` ∈ X with xnk → ` as k →∞.

Example 10.2. You saw last year that any bounded sequence of real numbers contains a convergent sub-
sequence. This readily implies that any closed interval [a,b] ⊂R is compact: Indeed if (xn) is a sequence
in [a,b] then clearly it is bounded, so it contains a convergent subsequence (xnk ), say xnk → ` as k →∞.
But since limits preserve weak inequalities (or in the language we have now developed, [a,b] is a closed
subset of R and so contains its limit points) we must have ` ∈ [a,b] and hence [a,b] is compact.

It is also easy to see that (a,b], [a,b) and (a,b) are not compact when b > a: Take (a,b] for example:
a tail of the sequence (a +1/n)n≥1 will lie in (a,b] and any subsequence of it will converge to a ∉ (a,b]
since (a +1/n)n≥1 does, thus (a +1/n)n≥1 has no subsequence which converges in (a,b].

We now establish some basic properties of compact metric spaces:

Lemma 10.3. Let (X ,d) be a metric space and suppose Z ⊆ X is a subspace.

(1) If Z is compact then Z is closed and bounded.
(2) If X is compact and Z is closed in X then Z is compact.

Proof. Suppose that Z is compact in X . If a ∈ X is a limit point of X then there is a sequence (zn) in Z
which converges to a. Since Z is compact, the sequence (zn) has a subsequence (znk ) which converges in
Z . But since the limit of a subsequence of a convergent sequence is just the limit of the original sequence
we have

a = lim
n→∞zn = lim

k→∞
znk ∈ Z .

Thus Z contains all its limit points and hence Z is closed. Next suppose that Z is unbounded in X . Then
picking z0 ∈ Z we may find zn ∈ Z with d(z0, zn) ≥ n for each n ∈ N. But then if (zn) had a convergent
subsequence (znk ) say znk → b ∈ Z then we would have d(znk , z0) ≥ nk ≥ k and also d(znk , z0) → d(b, z0),
which is a contradiction, since a convergent sequence of real numbers must be bounded.

Now suppose that X is compact and Z is closed in X . Then if (zn) is a sequence in Z , since X is
compact it has a convergent subsequence (znk ) tending to c ∈ X say. But then c is a limit point of Z and
since Z is closed c ∈ Z , so that (zn) has a convergent subsequence in Z as required.

�

The next Lemma essentially shows that compactness, like connectedness, is a topological property:

21The word “compact” is in general used for a notion which is discussed in Section 11. For metric spaces the two notions
are equivalent. [Aside: the two notions make sense for arbitrary topological spaces, where they turn out not to be equivalent.]
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Lemma 10.4. Let (X ,d) and (Y ,d) be metric spaces and suppose that f : X → Y is continuous. Then if X
is compact, f (X ) is a compact subspace of Y . In particular, if X is compact and f : X → R is continuous,
then f is bounded and attains its bounds.

Proof. Suppose that (yn) is a sequence in f (X ) ⊆ Y . Then for each n we may pick an xn ∈ X such that
f (xn) = yn . Since X is compact the sequence (xn) contains a convergent subsequence (xnk ) say, with
xnk → a as k →∞ for some a ∈ X . But then since f is continuous we have ynk = f (xnk ) → f (a) ∈ f (X ) ⊆ Y ,
so that (yn) has a convergent subsequence whose limit lies in f (X ) as required.

For the final sentence, note that f (X ) is a compact subset of R and hence by Lemma 10.3 it is closed
and bounded. But this precisely means that the image of f is bounded and attains its bounds as required.

�

Remark 10.5. The previous Lemma also shows that compactness is a property which is preserved by
homoeomorphisms: If f : X → Y is a continuous bijection with g : Y → X its continuous inverse, then
if X is compact f (X ) = Y must be compact, while conversely if Y is compact then X = g (Y ) must be
compact.

Theorem 10.6. Let f : X → Y be a continuous function and suppose that X is a compact metric space.
Then f is uniformly continuous.

Proof. Suppose for the sake of a contradiction that f is not uniformly continuous. Then there exists some
ε > 0 such that for each n ∈ N we may find an ,bn ∈ X such that d(an ,bn) < 1/n but d( f (an), f (bn)) ≥ ε.
Now since X is compact, (an) contains a convergent subsequence, (ank ) say, and since d(ank ,bnk ) ≤
1/nk ≤ 1/k it follows limk→∞ ank = limk→∞ bnk = c say. But since f is continuous at c there is a δ> 0 such
that for all x ∈ X with d(c, x) < δ, we have d( f (c), f (x)) < ε/2. As both (ank ) and (bnk ) tend to c, for all
sufficiently large k we will have d(c, ank ),d(c,bnk ) < δ and hence

ε≤ d( f (ank ), f (bnk )) ≤ d( f (ank ), f (c))+d( f (c), f (bnk )) < ε/2+ε/2 < ε,

which is a contradiction. Thus f must be uniformly continuous as required. �

10.1. Compactness and products: a generalization of the Bolzano-Weierstrass theorem. If (X ,dX ) and
(Y ,dY ) are metric spaces there are various ways of making their Cartesian product into a metric space. A
convenient one for our purposes is the following:

Definition 10.7. Let (X ,dX ) and (Y ,dY ) be metric spaces. Define a function d on (X ×Y )2 by setting

d((x1, y1), (x2, y2)) = max{d(x1, x2),d(y1, y2)}.

It is immediate that this function satisfies the positivity and symmetry requirements of a metric, and the
triangle inequality is also readily checked, so that d gives X ×Y the structure of a metric space.

Example 10.8. Writing Rn = Rn−1 ×R this gives us an inductive definition of a metric on Rn . Check
that the metric one obtains is the metric d∞. Since we know this metric is equivalent to the metrics d1

and d2 if we can characterize the compact subsets of Rn equipped with the metric d = d∞ then we also
characterize the compact subsets of Rn with respect to either d1 and d2.

Using the above definition of a metric on products of metric spaces makes the following result easy to
check:

Lemma 10.9. Let X and Y be metric spaces. A sequence
(
(xn , yn)

)
n≥1 in X ×Y converges if and only if (xn)

converges in X and (yn) converges in Y .

Proof. It is clear from the definitions that the projection maps pX : X ×Y → X and pY : X ×Y → Y are
continuous (in fact they are Lipschitz continuous with Lipschitz constant 1). It follows that if (xn , yn)
converges in X ×Y then (xn) and (yn) must converge.
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Conversely, if xn → a ∈ X and yn → b ∈ Y then

d((xn , yn), (a,b)) = max{d(xn , a),d(yn ,b)} → 0

as n →∞ so that (xn , yn) → (a,b) as n →∞ as required. �

Proposition 10.10. Let X and Y be compact metric spaces. Then X ×Y is compact.

Proof. Let (xn , yn) be a sequence in X ×Y . As X is compact, the sequence (xn) in X has a convergent
subsequence (xnk ), say xnk → a ∈ X as k → ∞. But then consider the sequence (ynk ) in Y . Since Y is
compact this in turn has a convergent subsequence (ynkr

)r≥1, say ynkr
→ b ∈ Y . But since (xnkr

) is a
subsequence of xnk is also converges to a and hence by the previous Lemma (xnkr

, ynkr
) → (a,b) and

(xn , yn) has a convergent subsequence as required. �

It is now easy to give a generalisation of the Bolzano-Weierstrass theorem to Rn .

Theorem 10.11. (Bolzano-Weierstrass in Rn). A subset X ⊆ Rn is compact if and only if it is closed and
bounded.

Proof. We have already seen in Lemma 10.3 that if X is compact in Rn then it must be closed and
bounded, thus it remains to show that any such set is compact. But if X is bounded then there is an
R > 0 such that22 X ⊆ B(0,R) = [−R,R]n . Now by the Bolzano-Weierstrass theorem for R, any closed in-
terval such as [−R,R] is compact. But then using Proposition 10.10 and induction it follows readily that
[−R,R]n is compact, but then again by Lemma 10.3 it follows that X , being a closed subset of a compact
metric space, is compact as required. �

Remark 10.12. Note that in a general metric space X , a closed bounded subset of X need not be compact.
An example of this is given by taking Cb(R) the normed space of continuous bounded functions on the
real line equipped with ‖.‖∞ the supremum metric. If we let

f (t ) =
{

2t , 0 ≤ t ≤ 1/2;
2(1− t ), 1/2 ≤ t ≤ 1

and set fn(t ) = f (t +n) the each fn is bounded and in fact has ‖ fn‖∞ = 1, so that they all lie in B̄(0,1).
However, if n 6= m it is easy to see that ‖ fn − fm‖∞ = 1, so that ( fn) has no convergent subsequence and
thus B̄(0,1) is not compact, despite clearly being closed and bounded in Cb(R).

22Recall that the “open balls” in the d∞ metric are hypercubes.
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